1
|
Zhang X, Gu W, Lin A, Duan R, Lian L, Huang Y, Li T, Sun Q. The role of OIP5 in the carcinogenesis and progression of ovarian cancer. J Ovarian Res 2023; 16:185. [PMID: 37660035 PMCID: PMC10474646 DOI: 10.1186/s13048-023-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Opa interacting protein 5 (OIP5), which is a cancer/testis-specific gene, plays a cancer-promoting role in various types of human cancer. However, the role of OIP5 in the carcinogenesis and progression of ovarian cancer remains unknown. METHODS We first analyzed the expression of OIP5 in ovarian cancer and various human tumors with the Sangerbox online analysis tool. GSE12470, GSE14407 and GSE54388 were downloaded from the Gene Expression Omnibus (GEO) database, and GEO2R was used to screen differentially expressed genes in ovarian cancer tissues. Gene Ontology (GO) enrichment analysis was used to explore the related biological processes. Receiver operating characteristic (ROC) curve was generated to evaluate the predictive ability of OIP5 for ovarian cancer. Next, RT-PCR, immunohistochemistry and Western blotting were utilized to evaluate the expression of OIP5 in ovarian cancer. CCK8, EdU proliferation assays and colony formation assays were used to measure cell proliferation, cell cycle progression was examined by PI staining and flow cytometry, and cell apoptosis was examined by Caspase3/7 activity assays. The effect of OIP5 on the migration and invasion of ovarian cancer cells was analyzed with Transwell assays. RESULTS We found that OIP5 is highly expressed in ovarian cancer through bioinformatics analysis, and importantly, OIP5 may be an important biomarker for the prognosis and diagnosis of ovarian cancer. RT-PCR assays, immunohistochemistry and Western blotting were also used to confirm the high expression of OIP5 in ovarian cancer. Subsequently, we demonstrated that the proliferation and migration of the ovarian cancer cell line A2780 were significantly inhibited after OIP5 gene silencing, apoptosis was increased and cell cycle progression was arrested at the G1 phase. CONCLUSION This study indicated that OIP5 was highly expressed in ovarian cancer and that downregulation of OIP5 inhibited the proliferation, migration and invasion of ovarian cancer cells, induced cell cycle arrest and promoted cell apoptosis. Therefore, OIP5 may be an important biomarker for the early diagnosis and potential target for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Wenjie Gu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Aiqin Lin
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Renjie Duan
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Likai Lian
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yuanyuan Huang
- Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Tiechen Li
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, P.R. China.
| | - Qing Sun
- Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China.
| |
Collapse
|
2
|
Prognostic and Therapeutic Potential of the OIP5 Network in Papillary Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13174483. [PMID: 34503297 PMCID: PMC8431695 DOI: 10.3390/cancers13174483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) is an aggressive but minor type of RCC. The current understanding and management of pRCC remain poor. We report here OIP5 being a novel oncogenic factor and possessing robust prognostic values and therapeutic potential. OIP5 upregulation is observed in pRCC. The upregulation is associated with pRCC adverse features (T1P < T2P < CIMP, Stage1 + 2 < Stage 3 < Stage 4, and N0 < N1) and effectively stratifies the fatality risk. OIP5 promotes ACHN pRCC cell proliferation and xenograft formation; the latter is correlated with network alterations related to immune regulation, metabolism, and hypoxia. A set of differentially expressed genes (DEFs) was derived from ACHN OIP5 xenografts and primary pRCCs (n = 282) contingent to OIP5 upregulation; both DEG sets share 66 overlap genes. Overlap66 effectively predicts overall survival (p < 2 × 10-16) and relapse (p < 2 × 10-16) possibilities. High-risk tumors stratified by Overlap66 risk score possess an immune suppressive environment, evident by elevations in Treg cells and PD1 in CD8 T cells. Upregulation of PLK1 occurs in both xenografts and primary pRCC tumors with OIP5 elevations. PLK1 displays a synthetic lethality relationship with OIP5. PLK1 inhibitor BI2356 inhibits the growth of xenografts formed by ACHN OIP5 cells. Collectively, the OIP5 network can be explored for personalized therapies in management of pRCC patients.
Collapse
|
3
|
Identification of Prognosis-Related Genes in Bladder Cancer Microenvironment across TCGA Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9143695. [PMID: 33204728 PMCID: PMC7658688 DOI: 10.1155/2020/9143695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/02/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
Background Bladder cancer (BCa) is a common urothelial malignancy. The Cancer Genome Atlas (TCGA) database allows for an opportunity to analyze the relationship between gene expression and clinical outcomes in bladder cancer patients. This study is aimed at identifying prognosis-related genes in the bladder cancer microenvironment. Methods Immune scores and stromal scores were calculated by applying the ESTIMATE algorithm. We divided bladder cancer patients into high and low groups based on their immune/stromal scores. Then, differentially expressed genes (DEGs) were identified in bladder cancer patients based on the TCGA database. We evaluated the correlation between immune/stromal scores and clinical characteristics as well as prognosis. Finally, we validated identified genes associated with bladder cancer prognosis through a cohort study in the Gene Expression Omnibus (GEO) database. Results A higher stromal score was associated with female (vs. malep = 0.037), age > 65 (vs.age ≤ 65 p = 0.015), T3/4 (vs. T1/2,p < 0.001), N status(p = 0.016), and pathological high grade (vs. low gradeP < 0.001). By analyzing DEGs, there were 1125 genes commonly upregulated, and 209 genes were commonly downregulated. Protein-protein interaction networks further showed the important protein that may be involved in the biological behavior and prognosis of BCa, such as FN1, CXCL12, CD3E, LCK, and ZAP70. A total of 14 DEGs were found to be associated with overall survival of bladder cancer. After validation by a cohort of 165 BCa cases with detailed follow-up information from GSE13507, 10 immune-associated DEGs were demonstrated to be predictive of prognosis in BCa. Among them, 5 genes have not been reported previously associated with the prognosis of BCa, including BTBD16, OLFML2B, PRRX1, SPINK4, and SPON2. Conclusions Our study elucidated tight associations between stromal score and clinical characteristics as well as prognosis in BCa. Moreover, we obtained a group of genes closely related to the prognosis of BCa in the tumor microenvironment.
Collapse
|
4
|
Wang G, Yang X, Zhu G. [Expression and Clinical Significance of Cancer-derived Immunoglobulin G in Non-small Cell Lung Cancer by Bioinformatics and Immunohistochemistry]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:341-348. [PMID: 31196367 PMCID: PMC6580082 DOI: 10.3779/j.issn.1009-3419.2019.06.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
背景与目的 经典免疫学理论认为,免疫球蛋白G(immunoglobulin G, IgG)仅由B细胞合成。近年来研究发现恶性肿瘤细胞也可以合成IgG(cancer-IgG)。本研究分析了cancer-IgG在非小细胞肺癌(non-small cell lung cancer, NSCLC)中的表达及临床意义,并初步探究其机制。 方法 应用数据库分析IgG1重链编码基因(immunoglobulin heavy constant gamma 1, IGHG1)、免疫组化分析cancer-IgG在NSCLC中的表达及与预后的关系;基因富集分析(gene set enrichment analysis, GSEA)方法探究与IGHG1调控相关的信号通路。 结果 Cancer-IgG在NSCLC中的表达量显著高于正常组织,与预后呈负相关,并与患者的临床分期(P=0.042)、T分期(P=0.044)和转移(P=0.007)密切相关。GSEA分析显示,IGHG1与细胞黏附、细胞因子相互作用和趋化因子信号通路相关。 结论 在NSCLC中,cancer-IgG高表达是预后不良的因素,可能与促进肿瘤的侵袭转移相关。
Collapse
Affiliation(s)
- Guohui Wang
- Peking University China-Japan Friendship School of Clinical Medicine; Department of Radiation Oncology, Center of Respiratory Medicine,China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Beijing 100000, China
| | - Xiongtao Yang
- Peking University China-Japan Friendship School of Clinical Medicine; Department of Radiation Oncology, Center of Respiratory Medicine,China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Beijing 100000, China
| | - Guangying Zhu
- Peking University China-Japan Friendship School of Clinical Medicine; Department of Radiation Oncology, Center of Respiratory Medicine,China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Beijing 100000, China
| |
Collapse
|
5
|
Wang Y, Shi F, Xia Y, Zhao H. LncRNA OIP5-AS1 predicts poor prognosis and regulates cell proliferation and apoptosis in bladder cancer. J Cell Biochem 2019; 120:7499-7505. [PMID: 30485498 DOI: 10.1002/jcb.28024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) is a long intergenic noncoding RNA, which has been suggested to be dysregulated in human cancers and served as tumor suppressor or promoter depending on tumor types. However, the role of OIP5-AS1 in bladder cancer was still unknown. In our study, OIP5-AS1 was overexpressed in bladder cancer, and associated with clinical progression and short overall survival. The loss-of-function studies suggested downregulation of OIP5-AS1 expression decreased cell viability, induced cell-cycle arrest and promoted cell apoptosis in bladder cancer. There was a positive association between OIP5-AS1 expression and OIP5 expression in bladder cancer tissues. Moreover, downregulation of OIP5-AS1 expression reduced messenger RNA and protein levels of OIP5 in bladder cancer cell lines. In conclusion, OIP5-AS1 is a useful biomarker for predicting clinical progression and poor prognosis and promotes cell proliferation through modulating OIP5 expression.
Collapse
Affiliation(s)
- Yang Wang
- Department of Urology, Hanzhong Central Hospital, Hangzhong, China
| | - Fu Shi
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yong Xia
- Department of Urology, Hanzhong Central Hospital, Hangzhong, China
| | - Huacai Zhao
- Department of Urology, The Third Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
6
|
Li Y, Xiao F, Li W, Hu P, Xu R, Li J, Li G, Zhu C. Overexpression of Opa interacting protein 5 increases the progression of liver cancer via BMPR2/JUN/CHEK1/RAC1 dysregulation. Oncol Rep 2019; 41:2075-2088. [PMID: 30816485 PMCID: PMC6412147 DOI: 10.3892/or.2019.7006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Opa interacting protein 5 (OIP5) overexpression is associated with human carcinoma. However, its biological function, underlying mechanism and clinical significance in liver cancer remain unknown. In the present study, the effects of OIP5 expression on liver cancer, and the mechanisms regulating these effects, were investigated. OIP5 expression was measured in human hepatocellular carcinoma (HCC) tissues and liver cancer cell lines. The effect of OIP5 knockdown on tumorigenesis was also detected in nude mice, and differentially‑expressed genes (DEGs) were identified and their biological functions were identified. The results indicated that OIP5 expression was significantly upregulated in HCC tissues and four liver cancer cell lines (P<0.01). Increased OIP5 protein expression significantly predicted reduced survival rate of patients with HCC (P<0.01). OIP5 knockdown resulted in the suppression of proliferation and colony forming abilities, cell cycle arrest at the G0/G1 or G2/M phases, and promotion of cell apoptosis. A total of 628 DEGs, including 87 upregulated and 541 downregulated genes, were identified following OIP5 knockdown. Functional enrichment analysis indicated that DEGs were involved in 'RNA Post‑Transcriptional Modification, Cancer and Organismal Injury and Abnormalities'. Finally, OIP5 knockdown in Huh7 cells dysregulated bone morphogenetic protein receptor type 2/JUN/checkpoint kinase 1/Rac family small GTPase 1 expression. In conclusion, the overall results demonstrated the involvement of OIP5 in the progression of liver cancer and its mechanism of action.
Collapse
MESH Headings
- Adult
- Animals
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Proteins
- Cell Line, Tumor
- Checkpoint Kinase 1/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Disease Progression
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- JNK Mitogen-Activated Protein Kinases/metabolism
- Kaplan-Meier Estimate
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- RNA, Small Interfering/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Yuwen Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Xiao
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Wenting Li
- Third Liver Unit, Department of Infectious Disease, The First Affiliated Hospital of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Correspondence to: Dr Guimei Li, Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, Shandong 250021, P.R. China, E-mail:
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Dr Chuanlong Zhu, Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China, E-mail:
| |
Collapse
|