1
|
Lin G, Ye T, Wang J. The association between long noncoding RNA ABHD11-AS1 and malignancy prognosis: a meta-analysis. BMC Cancer 2024; 24:1083. [PMID: 39223500 PMCID: PMC11367821 DOI: 10.1186/s12885-024-12866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Accumulating evidence has highlighted that lncRNA ABHD11-AS1 plays an essential role in tumorigenesis and is expected to become a new predictive biomarker and ideal target for cancer therapy, whereas some of their findings are conflicting due to the relatively small sample size of individual studies. Thus, this meta-analysis aimed to quantitatively ascertain the association of ABHD11-AS1 with diverse human malignancies. METHODS Eight databases were comprehensively screened for relevant articles on January 1, 2024. The significance of ABHD11-AS1 in malignancies was determined by odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence interval (CI). Subgroup analyses and sensitivity analyses were applied to verify the reliability and robustness of the pooled results. Simultaneously, the GEPIA2021 and UCSC Xena databases were applied to further strengthen the results. RESULTS Fourteen clinical studies comprising eight kinds of malignancies and 1215 malignancy cases were enrolled into this meta-analysis. The pooled results showed that increased ABHD11-AS1 expression was remarkably associated with lymph node metastasis (OR = 2.73, 95%CI [1.97, 3.77], I2 = 0%, p < 0.00001), advanced tumor stage ( OR = 3.14, 95%CI [2.34, 4.21], I2 = 39%, p < 0.00001), and unfavorable overall survival (OS) (HR = 1.81, 95%CI [1.58, 2.06], I2 = 0%, p < 0.00001). Subgroup analyses and sensitivity analyses indicated that the pooled results were reliable and robust. Additionally, ABHD11-AS1 was significantly increased in eight kinds of malignancies according to the validation of the GEPIA2021 database. Meanwhile, the UCSC Xena databases further revealed that elevated ABHD11-AS1 expression was significantly associated with poor prognosis as assessed by progression free interval (PFI), disease free interval (DFI), disease specific survival (DSS), and OS. CONCLUSIONS Current evidence supports the association of elevated ABHD11-AS1 expression with poor prognosis. Thereby, ABHD11-AS1 may be considered as a promising biomarker to screen cancer and predict malignancy prognosis. Also, there is a necessity for larger-scale multicenter studies with uniform study protocols from different countries to further validate the conclusions.
Collapse
Affiliation(s)
- Guangyao Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Tao Ye
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Wang
- Department of Obstetrics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
3
|
Shafaee Arani S, Nejati M, Rastgoufar S, Raisi A, Eshraghi R, Ostadian A, Matini AH, Rahimain N, Mirzaei H. Evaluation of expression level of BANCR, MALAT1 and FER1L4 and their target genes in coumarin-treated AGS cell line. Pathol Res Pract 2024; 257:155291. [PMID: 38643553 DOI: 10.1016/j.prp.2024.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Because long non-coding RNAs (lncRNAs) can affect several interconnected processes, its value as a predictive marker for gastric cancer has been demonstrated. Coumarin - a natural compound known to contain some beneficial antitumor qualities - was tested for its effects on AGS gastric cancer cells. In this study, we investigated the expression level of selected cellular lncRNAs (BANCR, MALAT1 and FER1L4) and their target genes (PTEN, p-PI3K and p-AKT) in coumarin-treated AGS cell line. The expressions of the three lncRNAs: BANCR, MALAT1 and FER1L4, as well as their specified targets, PTEN, PI3K and AKT, were measured by qRT-PCR. To gauge the impact of coumarin on the AGS cells, a MTT assay was utilized. A Western blot has been employed to assess variations in PTEN, p-PI3K, and p-AKT expression. The experiment's results showed that AGS viability diminished with increasing doses of coumarin. Compared to the control cells, the cells exposed to coumarin had showed reduced levels of mRNAs which are known targets of the lncRNA BANCR. At the same time, levels of lncRNAs MALAT1 and FER1L4 within coumarin group have been higher comparing to those within control group. Additionally, the Western blot analysis revealed that the coumarin-treated cells expressed lower levels of p-PI3K, PTEN as well as p-AKT compared to control group. This information points to coumarin being a possible option in a treatment regimen for gastric cancer due to its ability to affect lncRNAs and the molecules they target.
Collapse
Affiliation(s)
- Shirin Shafaee Arani
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepide Rastgoufar
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimain
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Pan Y, Zheng Y, Yang J, Wei Y, Wu H, Liu S, Yin A, Hu J, Zeng Y. A new biomarker for the early diagnosis of gastric cancer: gastric juice- and serum-derived SNCG. Future Oncol 2022; 18:3179-3190. [PMID: 35947016 DOI: 10.2217/fon-2022-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the possibility of gastric juice (GJ)- and serum-derived SNCG as a potential biomarker for the early diagnosis of gastric cancer (GC). Materials & methods: GJ and serum samples were collected from 87 patients with GC, 38 patients with gastric precancerous lesions and 44 healthy volunteers. The levels of SNCG in GJ and serum samples were detected by ELISA. Results: The levels of SNCG in GJ and serum were significantly higher in the GC group when compared with the GPL group or the control group. The expression of SNCG in GJ and serum was associated with tumor node metastasis stage, lymph node metastasis, tumor size and drinking, and it is important for the diagnosis and prognosis of GC (p < 0.05). Conclusion: The findings highlight the significance of SNCG in GC diagnosis and prognosis and implicate SNCG as a promising candidate for GC treatment.
Collapse
Affiliation(s)
- Yangyang Pan
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Key Laboratory of Xinjiang Endemic & Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yi Zheng
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Yang
- Department of Laboratory, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yi Wei
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hanrui Wu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shuo Liu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Aihua Yin
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jinfeng Hu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Zeng
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
|
7
|
Song J, Yu S, Zhong D, Yang W, Jia Z, Yuan G, Li P, Zhang R, Li Y, Zhong G, Chen Z. The circular RNA hsa_circ_000780 as a potential molecular diagnostic target for gastric cancer. BMC Med Genomics 2021; 14:282. [PMID: 34838011 PMCID: PMC8627072 DOI: 10.1186/s12920-021-01096-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
Background The present study aimed to identify a specific circular RNA (circRNA) for early diagnosis of gastric cancer (GC). Methods Totally 82 patients with GC, 30 with chronic nonatrophic gastritis and 30 with chronic atrophic gastritis were included in this study. Four of the 82 GC patients were selected for screening. Total RNA from malignant and adjacent tissue samples was extracted, and circRNAs in four patients were screened. According to the screening results, the eight most upregulated and downregulated circRNAs with a statistically significant association with GC were identified by real-time fluorescent quantitative polymerase chain reaction (PCR). Then, the most regulated circRNA was selected for further sensitivity and specificity assessments. CircRNA expression was examined by quantitative reverse transcriptase PCR in 78 GC (21 and 57 early and advanced GC, respectively) and adjacent tissue samples, as well as in gastric fluid samples from 30 patients with chronic nonatrophic gastritis, 30 with chronic atrophic gastritis, and 78 GC. Results A total of 445 circRNAs, including 69 upregulated and 376 downregulated circRNAs, showed significantly altered expression in GC tissue samples. Hsa_circ_000780 was significantly downregulated in 80.77% of GC tissue samples, with levels in GC tissue samples correlating with tumor size, tumor stage, T stage, venous invasion, carcinoembryonic antigen amounts, and carbohydrate antigen 19–9 levels. Strikingly, this circRNA was found in the gastric fluid of patients with early and advanced GC. Conclusions The present study uncovered a new circRNA expression profile in human GC, with hsa_circ_000780 significantly downregulated in GC tissue and gastric fluid specimens. These findings indicate that hsa_circ_000780 should be considered a novel biomarker for early GC screening.
Collapse
Affiliation(s)
- Jian Song
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China.
| | - Shuyong Yu
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Dunjing Zhong
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Weizhong Yang
- Department of Digestive Endoscopy, The Affiliated Second Hospital of Hainan Medical University, Haikou, 570100, China
| | - Zhen Jia
- Department of Anesthesiology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Guihong Yuan
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Ping Li
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Ronglin Zhang
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Yini Li
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Guobing Zhong
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| | - Zhaowei Chen
- Department of Gastroenterology, The Affiliated Cancer Hospital of Hainan Medical University, Haikou, 570123, China
| |
Collapse
|
8
|
Virgilio E, Giarnieri E, Carico E, Montagnini M, Villani S, Fiorenti M, Cavallini M, Montali F, Costi R. Prognostic Role of Intragastric Cytopathology and Microbiota in Surgical Patients with Stomach Cancer. J Cytol 2021; 38:82-87. [PMID: 34321774 PMCID: PMC8280856 DOI: 10.4103/joc.joc_238_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: In the last decade, analysis of malignant cells and flora in gastric lavage (GL) has provided interesting data on pathogenesis of gastric cancer (GC). For this study, combining such two aspects into one cyto-microbiologic category, we tested the prognostic role of the presence/absence of cancer cells (GL1/GL0) and bacterial microbiota (MB1/MB0) in our GC population. Material and Methods: Between April 2012 and August 2019, 79 surgical patients with GC were prospectively investigated with the determination of GL MB. Results: Compared with GL1 MB0, GL1 MB1 strongly correlated with advanced GC, portended poorer overall survival (OS) (45.8 months vs 20.5 months, P = 0.049), and resulted a significant (P = 0.008) and an independent (P = 0.013) prognostic factor unfavorable for OS. Conclusion: In the light of our results, the cyto-microbiologic parameter of GL MB should be used to gain a better prognosis of GC patients. Administration of antimicrobial treatment for MB1 subjects should be entertained because it could reduce the risk of oncogenesis.
Collapse
Affiliation(s)
- Edoardo Virgilio
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of General Surgery, di Vaio Hospital, Fidenza (PR), Italy
| | - Enrico Giarnieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Elisabetta Carico
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Monica Montagnini
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Sandra Villani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Michele Fiorenti
- Department of Anesthesiology and Reanimation, St. Andrea Hospital, Rome, Italy
| | - Marco Cavallini
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza," Rome, Italy
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza (PR), Italy.,Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Renato Costi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of General Surgery, di Vaio Hospital, Fidenza (PR), Italy
| |
Collapse
|
9
|
Yukimoto A, Watanabe T, Sunago K, Nakamura Y, Tanaka T, Koizumi Y, Yoshida O, Tokumoto Y, Hirooka M, Abe M, Hiasa Y. The long noncoding RNA of RMRP is downregulated by PERK, which induces apoptosis in hepatocellular carcinoma cells. Sci Rep 2021; 11:7926. [PMID: 33846370 PMCID: PMC8041825 DOI: 10.1038/s41598-021-86592-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays an important role in hepatocyte degeneration, especially in patients with chronic liver injury. Protein kinase R-like endoplasmic reticulum kinase (PERK) is a key molecule in ER stress. PERK may contribute to apoptotic cell death in HCC, however the details of the mechanism are not clear. In this study, we identified PERK-associated molecules using transcriptome analysis. We modulated PERK expression using a plasmid, tunicamycin and siRNA against PERK, and then confirmed the target gene expression with real-time PCR and Northern blotting. We further analyzed the apoptotic function. Transcriptome analysis revealed that expression of the RNA component of mitochondrial RNA processing endoribonuclease (RMRP), which is a long noncoding RNA, was strongly correlated with the function of PERK. The expression of RMRP was correlated with the expression of PERK in experiments with the siRNA and PERK plasmid in both HCC cell lines and human HCC tissue. Furthermore, RMRP downregulation induced apoptotic cell death. RMRP is downregulated by PERK, which induces apoptosis in HCC. RMRP could be a new therapeutic target to regulate HCC in patients with chronic liver diseases associated with ER stress.
Collapse
Affiliation(s)
- Atsushi Yukimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Kotaro Sunago
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Takaaki Tanaka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
10
|
Cai Y, Li Y, Shi C, Zhang Z, Xu J, Sun B. LncRNA OTUD6B-AS1 inhibits many cellular processes in colorectal cancer by sponging miR-21-5p and regulating PNRC2. Hum Exp Toxicol 2021; 40:1463-1473. [PMID: 33686892 DOI: 10.1177/0960327121997976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has revealed that long noncoding RNAs (lncRNAs) play essential roles in regulating cellular process of various cancers. There have been many studies on the biological functions of lncRNAs in colorectal cancer (CRC). In this research, we explored the role and mechanism of lncRNA ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC. Here, we detected OTUD6B-AS1 expression in CRC tissues and cells by RT-qPCR. Functional experiments were performed to test alterations in different cellular processes. Moreover, to verify the binding ability among the indicated RNA molecules, we carried out RIP, RNA pull-down and luciferase reporter assays. According to our data, OTUD6B-AS1 expression was low in CRC tissues and cells. Functionally, overexpression of OTUD6B-AS1 inhibited cell proliferation, migration, invasion and EMT, and promoted cell apoptosis. Bioinformatic analysis and mechanistical experiments confirmed that OTUD6B-AS1 could act as a competitive endogenous RNA (ceRNA) to upregulate Proline-Rich Nuclear Receptor Coactivator 2 (PNRC2) expression by sequestering miR-21-5p. Further rescue experiments validated the inhibitory function of the OTUD6B-AS1/miR-21-5p/PNRC2 axis in cellular process of CRC. Overall, OTUD6B-AS1 inhibits cellular development in CRC by sponging miR-21-5p and upregulating PNRC2, providing a novel insight into the exploration on CRC treatment.
Collapse
Affiliation(s)
- Y Cai
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Y Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - C Shi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Z Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - J Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - B Sun
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Virgilio E, Giarnieri E, Giovagnoli MR, Montagnini M, Villani S, Proietti A, D'Urso R, Cardelli P, Balducci G, Cavallini M. Combined Analysis of Intragastric Malignant Exfoliation and Ca 72.4 Concentration in Stomach Adenocarcinoma: The "GL1 Ca 72.4" Parameter. Acta Cytol 2020; 64:563-571. [PMID: 32526755 DOI: 10.1159/000508019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION/OBJECTIVE Differently from other digestive malignancies, gastric cancer (GC) pathobiology is still little known and understood. Recently, cytopathology and molecular biology on gastric juice/gastric lavage (GJ/GL) of GC patients have provided novel and interesting results in terms of screening, diagnosis, prognosis, and therapy. However, entertaining cytologic examination and molecular test as a unified solo-run test is previously unreported. Our aim was to assess the new parameter "GL Ca 72.4" for GC patients. METHODS Between April 2012 and July 2013, GJ/GL obtained from 37 surgical GC patients were tested for the presence/absence (GL1/GL0) of exfoliated malignant cells along with the intragastric concentration of Ca 72.4 (normal value <6.49 ng/mL: Ca 72.4n; elevated level ≥6.49 ng/mL: Ca 72.4+). RESULTS At a median follow-up of 79.3 months, all the GC alive patients were "GL0 Ca 72.4n." The "GL1 Ca 72.4+" parameter, in comparison with GL0 Ca 72.4n, strongly correlated with deeper tumor invasion (p = 0.027), severe nodal metastasis (p = 0.012), worst metastatic node ratio (p = 0.041), higher number of metastatic lymph nodes (30 vs. 20 nodes, p = 0.014), angiolymphatic invasion (p = 0.044), advanced stage (p = 0.034), and adjuvant therapy (p = 0.044). The Kaplan-Meier model showed that GL1 Ca 72.4+ subjects had shorter overall survival (OS) than GL0 Ca 72.4n cases (9.7 vs. 43.2 months, respectively, p = 0.042). At univariate analysis, the GL1 Ca 72.4+ parameter resulted a significant prognostic factor for OS (p = 0.023). CONCLUSIONS The combined cyto-molecular parameter "GL1 Ca 72.4+" appears to be a strong indicator of aggressive tumor behavior and a significant prognostic factor of poor survival for GC patients.
Collapse
Affiliation(s)
- Edoardo Virgilio
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, St. Andrea Hospital, Rome, Italy,
| | - Enrico Giarnieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Maria Rosaria Giovagnoli
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Monica Montagnini
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Sandra Villani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Antonella Proietti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Rosaria D'Urso
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Patrizia Cardelli
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Genoveffa Balducci
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, St. Andrea Hospital, Rome, Italy
| | - Marco Cavallini
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, St. Andrea Hospital, Rome, Italy
| |
Collapse
|
12
|
Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer 2020; 19:96. [PMID: 32460771 PMCID: PMC7251695 DOI: 10.1186/s12943-020-01219-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is a deadly disease and remains the third leading cause of cancer-related death worldwide. The 5-year overall survival rate of patients with early-stage localized gastric cancer is more than 60%, whereas that of patients with distant metastasis is less than 5%. Surgical resection is the best option for early-stage gastric cancer, while chemotherapy is mainly used in the middle and advanced stages of this disease, despite the frequently reported treatment failure due to chemotherapy resistance. Therefore, there is an unmet medical need for identifying new biomarkers for the early diagnosis and proper management of patients, to achieve the best response to treatment. Long non-coding RNAs (lncRNAs) in body fluids have attracted widespread attention as biomarkers for early screening, diagnosis, treatment, prognosis, and responses to drugs due to the high specificity and sensitivity. In the present review, we focus on the clinical potential of lncRNAs as biomarkers in liquid biopsies in the diagnosis and prognosis of gastric cancer. We also comprehensively discuss the roles of lncRNAs and their molecular mechanisms in gastric cancer chemoresistance as well as their potential as therapeutic targets for gastric cancer precision medicine.
Collapse
Affiliation(s)
- Li Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| | - Shan-Ming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| |
Collapse
|
13
|
Deng J, Zhang Q, Lu L, Fan C. Long Noncoding RNA DLGAP1-AS1 Promotes the Aggressive Behavior of Gastric Cancer by Acting as a ceRNA for microRNA-628-5p and Raising Astrocyte Elevated Gene 1 Expression. Cancer Manag Res 2020; 12:2947-2960. [PMID: 32431541 PMCID: PMC7197941 DOI: 10.2147/cmar.s246166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The long noncoding RNA DLGAP1 antisense RNA 1 (DLGAP1-AS1) plays well-defined roles in the malignant progression of hepatocellular carcinoma. The purpose of this study was to determine whether DLGAP1-AS1 affects the aggressive behavior of gastric cancer (GC). Methods DLGAP1-AS1 expression in GC tissue samples and cell lines was determined by reverse-transcription quantitative PCR. GC cell proliferation, apoptosis, migration, invasion, and tumor growth in vitro as well as in vivo were examined by the Cell Counting Kit-8 assay, flow-cytometric analysis, transwell migration and invasion assays, and xenograft model experiments, respectively. Results DLGAP1-AS1 was overexpressed in GC tissue samples and cell lines. Among patients with GC, the increased level of DLGAP1-AS1 correlated with tumor size, TNM stage, lymph node metastasis, distant metastasis, and shorter overall survival. The knockdown of DLGAP1-AS1 suppressed GC cell proliferation, migration, and invasion in vitro, as well as promoted cell apoptosis and hindered tumor growth in vivo. Mechanistically, DLGAP1-AS1 functioned as a competing endogenous RNA for microRNA-628-5p (miR-628-5p) in GC cells, thereby increasing the expression of the miR-628-5p target astrocyte elevated gene 1 (AEG-1). Functionally, the recovery of the miR-628-5p/AEG-1 axis output attenuated the effects of DLGAP1-AS1 knockdown in GC cells. Conclusion DLGAP1-AS1 is a pleiotropic oncogenic lncRNA in GC. DLGAP1-AS1 plays a pivotal part in the oncogenicity of GC in vitro and in vivo by regulating the miR-628-5p/AEG-1 axis. DLGAP1-AS1, miR-628-5p, and AEG-1 form a regulatory pathway to facilitate GC progression, suggesting this pathway as an effective target for the treatment of GC.
Collapse
Affiliation(s)
- Jiying Deng
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Qin Zhang
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Lianwei Lu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong 261000, People's Republic of China
| | - Chunxia Fan
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| |
Collapse
|
14
|
Zhou X, Liu J, Meng A, Zhang L, Wang M, Fan H, Peng W, Lu J. Gastric juice piR-1245: A promising prognostic biomarker for gastric cancer. J Clin Lab Anal 2019; 34:e23131. [PMID: 31777102 PMCID: PMC7171314 DOI: 10.1002/jcla.23131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Emerging reports demonstrated that PIWI‐interacting RNAs (piRNAs) played an indispensable role in tumorigenesis. However, it still remains elusive whether piR‐1245 in gastric juice specific in stomach could be employed as a biomarker for gastric cancer (GC). The present work is aiming at exploring the possibility of piR‐1245 in gastric juice as a potential marker to judge for diagnosis and prognosis of gastric cancer. Methods Gastric juice was collected from 66 GC patients and 66 healthy individuals. Quantitative real‐time reverse transcriptase polymerase chain reaction (qRT‐PCR) was employed to measure the levels of piR‐1245 expression. Then, the pattern of piR‐1245 expression in gastric juice was determined between GC patients and healthy individuals. A receiver operating characteristic (ROC) curve was constructed for distinguishing GC from healthy individuals. Results Gastric juice piR‐1245 levels in GC were higher than those of controls (P < .0001). The value of area under ROC (AUC) was 0.885 (sensitivity, 90.9%; specificity, 74.2%; 95% confidence interval, 0.8286 to 0.9414). High gastric juice piR‐1245 expression was signally correlated with tumor size (P = .013) and TNM stage (P = .001). GC patients with high piR‐1245 expression in gastric juice exerted a poorer overall survival (OS) (P = .0152) and progression‐free survival (PFS) (P = .013). COX regression analysis verified that gastric juice piR‐1245 expression was an independent prognostic risk variable for OS (P < .05). Conclusions The current study suggested that piR‐1245 in gastric juice had the potential to be a useful biomarker for GC detection and prognosis prediction.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianhong Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Aifeng Meng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lihong Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Min Wang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Hong Fan
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
15
|
Wei J, Wang J, Gao X, Qi F. Identification of differentially expressed circRNAs and a novel hsa_circ_0000144 that promote tumor growth in gastric cancer. Cancer Cell Int 2019; 19:268. [PMID: 31636511 PMCID: PMC6794874 DOI: 10.1186/s12935-019-0975-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Circular RNAs (circRNAs) are involved in regulating tumor pathogenesis. The mechanism of circRNAs in gastric cancer (GC) is still unknown. Our study aimed to identify differentially expressed circRNAs and assess a novel circRNA (hsa_circ_0000144) in the proliferation, migration, and invasion in GC. Methods Gene ontology (GO) enrichment and analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, pathway network, and the ceRNA regulatory network of hsa_circ_0000144 targeting miRNAs and mRNAs were performed with the help of bioinformatics using R language and Perl software. hsa_circ_0000144 expression and circRNA knockdown in GC cell lines were detected using quantitative PCR (qPCR) in vitro. Cell proliferation, migration, and invasion after circRNA knockdown were measured using the cell counting kit-8 assay and Transwell assay. Results The circRNA expression profile GSE78092 downloaded from the Gene Expression Omnibus database included three GC patients and three normal tissues. Thirty-two differentially expressed circRNAs comprised six upregulated circRNAs and 26 downregulated circRNAs. In particular, the ErbB signaling pathway, neurotrophin signaling pathway, cellular senescence, and pathways in bladder cancer and GC played the most important roles in the pathway network. The expression of hsa_circ_0000144 was upregulated in GC cell lines. Hsa_circ_0000144 knockdown suppressed tumor growth in vitro. Conclusions Hsa_circ_0000144 promotes GC cell proliferation, migration, and invasion, and the ceRNA regulatory network of hsa_circ_0000144 targeting miRNAs and mRNAs might be biomarkers for GC diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Jianming Wei
- 1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinmiao Wang
- 2Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xibo Gao
- 3Department of Dermatology, Tianjin Children's Hospital, Tianjin, China
| | - Feng Qi
- 1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Wang X, Chen X, Zhou H, Qian Y, Han N, Tian X, Pan L, Li Y. The Long Noncoding RNA, LINC01555, Promotes Invasion and Metastasis of Colorectal Cancer by Activating the Neuropeptide, Neuromedin U. Med Sci Monit 2019; 25:4014-4024. [PMID: 31144675 PMCID: PMC6559001 DOI: 10.12659/msm.916508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to investigate the role of the long noncoding RNA (lncRNA), LINC01555, on the migration and invasion of colorectal cancer (CRC) cells, its expression in CRC tissue, and its interaction with the neuropeptide, neuromedin U (NmU). Material/Methods LINC01555 expression in SW620 and HCT116 CRC cells, and NCM460 normal colorectal cells, and 48 resection specimens containing CRC and adjacent normal tissue, was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cox regression analysis was used to assess the relationship between LINC01555 expression and patient survival. The effects of LINC01555 expression on CRC cell proliferation, migration, and invasion were assessed using the cell counting kit-8 (CCK-8) assay, the colony formation assay, and the transwell assay. Functional studies determined the interaction between LINC01555 and NmU in the development of CRC. Results The Cancer Genome Atlas (TCGA) dataset showed that LINC01555 was highly expressed in CRC tissue when compared with adjacent normal colorectal tissue. LINC01555 expression was positively correlated with tumor stage, but negatively correlated with disease-free survival (DFS) and overall survival (OS) and was an independent risk factor for CRC. The receiver operating characteristic (ROC) curve analysis showed the diagnostic specificity of LINC01555 in CRC. Knockdown of LINC01555 inhibited cell proliferation, migration, and invasion of CRC cells. Functional studies showed that knockdown of NmU reduced cell migration and invasion of CRC cells that overexpressed LINC01555. Conclusions Increased expression of LINC01555 was found in CRC tissues and promoted the invasion of CRC cells by upregulating the expression of NmU.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Xiang Chen
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Haihua Zhou
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Yun Qian
- Department of Gastroenterology Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Ning Han
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Xiaoqing Tian
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Linlin Pan
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Yingchun Li
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Medical School of Nantong University, Taizhou, Jiangsu, China (mainland)
| |
Collapse
|
18
|
Wan W, Hou Y, Wang K, Cheng Y, Pu X, Ye X. The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis 2019; 10:248. [PMID: 30867411 PMCID: PMC6416354 DOI: 10.1038/s41419-019-1440-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023]
Abstract
LXR-623 (WAY-252623), a liver X receptor agonist, reduces atherosclerotic plaque progression and remarkably inhibits the proliferation of glioblastoma cells, owing to its brain-penetrant ability. However, the role of LXR-623 against the proliferation of other cancer cells and the underlying mechanism remain unknown. Long non-coding RNAs (lncRNAs) serve as novel and crucial regulators that participate in cancer tumorigenesis and diverse biological processes. Here, we report a previously uncharacterized mechanism underlying lncRNA-mediated exocytosis of LXR-623 via the phosphatase and tensin homolog (PTEN)/protein kinase B (AKT)/p53 axis to suppress the proliferation of cancer cells in vitro. We found that LXR-623 significantly inhibited the proliferation and induced apoptosis and cell cycle arrest at S phase in breast cancer cells in a concentration- and time-dependent manner. Experiments using a xenograft mouse model revealed the inhibitory effects of LXR-623 on tumor growth. We used lncRNA microarray to investigate the potential genes regulated by LXR-623. As a result, LINC01125 was found to be significantly upregulated in the cells treated with LXR-623. Gain- and loss-of-function assays were conducted to investigate the anti-proliferation role of LINC01125. LINC01125 knockdown resulted in the inhibition of the cytotoxic effect of LXR-623; in contrast, LINC01125 overexpression significantly enhanced the effect of LXR-623. LXR-623 and LINC01125-mediated anti-growth regulation is, at least in part, associated with the participation of the PTEN/AKT/mouse double minute 2 homolog (MDM2)/p53 pathway. In addition, SF1670, a specific PTEN inhibitor with prolonged intracellular retention, may strongly block the anti-proliferation effect induced by LXR-623 and LINC01125 overexpression. Chromatin immunoprecipitation (ChIP) assay results suggest that p53 binds to the promoter of LINC01125 to strengthen the expression of the PTEN/AKT pathway. Taken together, our findings suggest that LXR-623 possesses significant antitumor activity in breast cancer cells that is partly mediated through the upregulation in LINC01125 expression and enhancement in apoptosis via the PTEN/AKT/MDM2/p53 pathway.
Collapse
Affiliation(s)
- Weijun Wan
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Yongying Hou
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Wang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Cheng
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Pu
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiufeng Ye
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J, Xu Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 2019; 18:20. [PMID: 30717751 PMCID: PMC6360801 DOI: 10.1186/s12943-018-0935-5] [Citation(s) in RCA: 592] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CircRNA has emerged as a new non-coding RNA that plays crucial roles in tumour initiation and development. 'MiRNA sponge' is the most reported role played by circRNAs in many tumours. The AKT/mTOR axis is a classic signalling pathway in cancers that sustains energy homeostasis through energy production activities, such as the Warburg effect, and blocks catabolic activities, such as autophagy. Additionally, the AKT/mTOR axis exerts a positive effect on EMT, which promotes tumour metastasis. METHODS We detected higher circNRIP1 expression in gastric cancer by performing RNA-seq analysis. We verified the tumour promotor role of circNRIP1 in gastric cancer cells through a series of biological function assays. We then used a pull-down assay and dual-luciferase reporter assay to identify the downstream miR-149-5p of circNRIP1. Western blot analysis and immunofluorescence assays were performed to demonstrate that the circNRIP1-miR-149-5p-AKT1/mTOR axis is responsible for the altered metabolism in GC cells and promotes GC development. We then adopted a co-culture system to trace circNRIP1 transmission via exosomal communication and RIP experiments to determine that quaking regulates circNRIP1 expression. Finally, we confirmed the tumour suppressor role of microRNA-133a-3p in vivo in PDX mouse models. RESULTS We discovered that knockdown of circNRIP1 successfully blocked proliferation, migration, invasion and the expression level of AKT1 in GC cells. MiR-149-5p inhibition phenocopied the overexpression of circNRIP1 in GC cells, and overexpression of miR-149-5p blocked the malignant behaviours of circNRIP1. Moreover, it was proven that circNRIP1 can be transmitted by exosomal communication between GC cells, and exosomal circNRIP1 promoted tumour metastasis in vivo. We also demonstrated that quaking can promote circNRIP1 transcription. In the final step, the tumour promotor role of circNRIP1 was verified in PDX models. CONCLUSIONS We proved that circNRIP1 sponges miR-149-5p to affect the expression level of AKT1 and eventually acts as a tumour promotor in GC.
Collapse
Affiliation(s)
- Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Haixiao Wang
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Jiacheng Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zheng Chen
- Department of Surgical Oncology, University of Miami, Miami, USA
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China.
- Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|