1
|
Casasampere M, Ung J, Iñáñez A, Dufau C, Tsuboi K, Casas J, Tan SF, Feith DJ, Andrieu-Abadie N, Segui B, Loughran TP, Abad JL, Fabrias G. A fluorogenic substrate for the detection of lipid amidases in intact cells. J Lipid Res 2024; 65:100520. [PMID: 38369184 PMCID: PMC10956054 DOI: 10.1016/j.jlr.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 μM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 μM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 μM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.
Collapse
Affiliation(s)
- Mireia Casasampere
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Johnson Ung
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alejandro Iñáñez
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Josefina Casas
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Su-Fern Tan
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David J Feith
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Bruno Segui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France; Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - José Luis Abad
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Gemma Fabrias
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; CIBEREHD, Madrid, Spain; Spanish National Research Council (CSIC)'s Cancer Hub, Madrid, Spain.
| |
Collapse
|
2
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
3
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
4
|
Aseeri M, Abad JL, Delgado A, Fabriàs G, Triola G, Casas J. High-throughput discovery of novel small-molecule inhibitors of acid Ceramidase. J Enzyme Inhib Med Chem 2023; 38:343-348. [PMID: 36519337 PMCID: PMC9762759 DOI: 10.1080/14756366.2022.2150183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.
Collapse
Affiliation(s)
- Mazen Aseeri
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - José Luis Abad
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Antonio Delgado
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Gemma Fabriàs
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, Madrid, Spain
| | - Gemma Triola
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,CONTACT Gemma Triola
| | - Josefina Casas
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, Madrid, Spain,Josefina Casas Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| |
Collapse
|
5
|
Rida R, Hodeify R, Kreydiyyeh S. Adverse effect of FTY720P on colonic Na + /K + ATPase is mediated via ERK, p38MAPK, PKC, and PI3K. J Appl Toxicol 2023; 43:220-229. [PMID: 35946054 DOI: 10.1002/jat.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/17/2023]
Abstract
FTY720P, an analogue of sphingosine 1-phosphate, has emerged lately as a potential causative agent of inflammatory bowel disease, in which electrolytes movements driven by the sodium gradient established by the Na+ /K+ ATPase are altered. We showed previously in Caco-2 cells, a 50% FTY720P-induced decrease in the ATPase activity, mediated via S1PR2 and PGE2. This work aims at delineating the mechanism underlying PGE2 release and at investigating if the ATPase inhibition is due to changes in its abundance. The activity of the ATPase and the localization of a GFP-tagged Na+ /K+ -ATPase α1 -subunit were assessed in cells treated with 7.5 nM FTY720P. The involvement of ERK, p38 MAPK, PKC, and PI3K was studied in cells treated with 7.5 nM FTY720P or 1 nM PGE2 in presence of their inhibitors, or by determining changes in the protein expression of their activated phosphorylated forms. Imaging data showed ∼30% reduction in the GFP-tagged Na+ /K+ ATPase at the plasma membrane. Both FTY720P and PGE2 showed, respectively, 50% and 60% reduction in ATPase activity that disappeared when p38 MAPK, PKC, and PI3K were inhibited individually but not with ERK inhibition. The effect of FTY720P was imitated by PMA, an activator of PKC. Western blotting revealed inhibition of ERK by FTY720P. It was concluded that FTY720P, through activation of S1PR2, downregulates the Na+ /K+ ATPase by inhibiting ERK, which in turn activates p38 MAPK leading to the sequential activation of PKC and PI3K, PGE2 release, and a decrease in the Na+ /K+ ATPase activity and membrane abundance.
Collapse
Affiliation(s)
- Reem Rida
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Wang G, Zhang X, Zhou Z, Song C, Jin W, Zhang H, Wu W, Yi Y, Cui H, Zhang P, Liu X, Xu W, Shen X, Shen W, Wang X. Sphingosine 1-phosphate receptor 2 promotes the onset and progression of non-alcoholic fatty liver disease-related hepatocellular carcinoma through the PI3K/AKT/mTOR pathway. Discov Oncol 2023; 14:4. [PMID: 36631680 PMCID: PMC9834486 DOI: 10.1007/s12672-023-00611-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Recent studies have revealed an increase in the incidence rate of non-alcoholic fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC). Furthermore, the association of Sphingosine 1-phosphate receptor 2 (S1PR2) with various types of tumours is identified, and the metabolism of conjugated bile acids (CBAs) performs an essential function in the onset and development of HCC. However, the association of CBA and S1PR2 with NAFLD-HCC is unclear. METHODS The relationship between the expression of S1PR2 and the prognosis of patients suffering from NAFLD-HCC was investigated by bioinformatics techniques. Subsequently, the relationship between S1PR2 and the biological behaviours of HCC cell lines Huh 7 and HepG2 was explored by conducting molecular biology assays. Additionally, several in vivo animal experiments were carried out for the elucidation of the biological impacts of S1PR2 inhibitors on HCC cells. Finally, We used Glycodeoxycholic acid (GCDA) of CBA to explore the biological effects of CBA on HCC cell and its potential mechanism. RESULTS High S1PR2 expression was linked to poor prognosis of the NAFLD-HCC patients. According to cellular assay results, S1PR2 expression could affect the proliferation, invasion, migration, and apoptosis of Huh 7 and HepG2 cells, and was closely associated with the G1/G2 phase of the cell cycle. The experiments conducted in the In vivo conditions revealed that the overexpression of S1PR2 accelerated the growth of subcutaneous tumours. In addition, JTE-013, an antagonist of S1PR2, effectively inhibited the migration and proliferation of HCC cells. Furthermore, the bioinformatics analysis highlighted a correlation between S1PR2 and the PI3K/AKT/mTOR pathway. GCDA administration further enhanced the expression levels of p-AKT, p-mTOR, VEGF, SGK1, and PKCα. Moreover, both the presence and absence of GCDA did not reveal any significant change in the levels of S1PR2, p-AKT, p-mTOR, VEGF, SGK1, and PKCα proteins under S1PR2 knockdown, indicating that CBA may regulates the PI3K/AKT/mTOR pathway by mediating S1PR2 expression. CONCLUSION S1PR2 is a potential prognostic biomarker in NAFLD-HCC. In addition, We used GCDA in CBAs to treat HCC cell and found that the expression of S1PR2 was significantly increased, and the expression of PI3K/AKT/mTOR signalling pathway-related signal molecules was also significantly enhanced, indicating that GCDA may activate PI3K/AKT/mTOR signalling pathway by up-regulating the expression of S1PR2, and finally affect the activity of hepatocellular carcinoma cells. S1PR2 can be a candidate therapeutic target for NAFLD-HCC. Collectively, the findings of this research offer novel perspectives on the prevention and treatment of NAFLD-HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Chao Song
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Weixin Wu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiqiang Xu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
The altered lipidome of hepatocellular carcinoma. Semin Cancer Biol 2022; 86:445-456. [PMID: 35131480 DOI: 10.1016/j.semcancer.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.
Collapse
|
8
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
9
|
Zhang Z, Xia F, Yao L, Jiang B, Li X. circSSU72 Promotes Cell Proliferation, Migration and Invasion of Papillary Thyroid Carcinoma Cells by Targeting miR-451a/S1PR2 Axis. Front Cell Dev Biol 2022; 10:817028. [PMID: 35372340 PMCID: PMC8967131 DOI: 10.3389/fcell.2022.817028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Thyroid cancer is the most common endocrine malignancy with Papillary Thyroid Carcinoma (PTC) as the most common pathological type. Due to low mortality but a high incidence, PTC still causes a relatively heavy burden on financial costs, human health, and quality of life. Emerging researches have indicated that circular RNAs (circRNAs) play a significant regulatory role in various cancers, including PTC. However, the functions and mechanisms of circRNAs derived from SSU72 remain unknown.Method: The expression level of circRNAs derived from the exons of SSU72, miR-361–3p, miR-451a, and S1PR2 was evaluated by qRT-PCR assay or western blot assay. The interactions between circSSU72 (hsa_circ_0009294), miR-451a, and S1PR2 were verified by dual-luciferase reporter assay. Effects of circSSU72, miR-451a, and S1PR2 on cell proliferation, migration, and invasion were confirmed by colony formation assay, cell counting kit-8 (CCK-8), wound healing assay, and Transwell assays in vitro.Results: circSSU72 was upregulated in PTC; circSSU72 knockdown inhibited PTC cell proliferation, migration, and invasion. In addition, circSSU72 could negatively regulate miR-451a by functioning as a sponge. circSSU72 promoted PTC cell proliferation, migration, and invasion by targeting miR-451a in vitro. We further found that miR-451a inhibited PTC cell proliferation, migration, and invasion by regulating S1PR2. Overall, the circSSU72/miR-451a/S1PR2 axis might influence PTC cell proliferation, migration, and invasion.Conclusions: Overall, circSSU72 (hsa_circ_0009294)/miR-451a/S1PR2 axis may promote cell proliferation, migration, and invasion in PTC. Thus, circSSU72 may serve as a potential biomarker and therapeutic target for PTC.
Collapse
|
10
|
Lin Z, Xu Q, Song X, Zeng Y, Zeng L, Zhao L, Xu J, Miao D, Chen Z, Yu F. Comprehensive Analysis Identified Mutation-Gene Signature Impacts the Prognosis Through Immune Function in Hepatocellular Carcinoma. Front Oncol 2022; 12:748557. [PMID: 35311113 PMCID: PMC8931204 DOI: 10.3389/fonc.2022.748557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a life-threatening and refractory malignancy with poor outcome. Genetic mutations are the hallmark of cancer. Thus far, there is no comprehensive prognostic model constructed by mutation-gene transcriptome in HCC. The prognostic value of mutation-gene signature in HCC remains elusive.MethodsRNA expression profiles and the corresponding clinical information were recruited from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was employed to establish gene signature. Kaplan–Meier curve and time-dependent receiver operating characteristic curve were implemented to evaluate the prognostic value. The Wilcoxon test was performed to analyze the expression of immune checkpoint genes, cell cycle genes, and tumor drug resistance genes in different risk groups. Finally, quantitative real-time PCR (qRT-RCR) and immunohistochemistry (IHC) were performed to validate the mRNA and protein expression between HCC and adjacent nontumorous tissues in an independent cohort.ResultsA prognostic model consisting of five mutated genes was established by LASSO Cox regression analysis. The prognostic model classified patients into high- and low-risk groups. Compared with the low‐risk group, patients in the high‐risk group had significantly worse survival results. The prognostic model can accurately predict the overall survival of HCC patients and predict overall survival more accurately when combined with stage. Furthermore, the immune checkpoint genes, cell cycle genes, and tumor drug resistance genes were higher expressed in the high-risk group compared in the low-risk group. In addition, the expression level of prognostic signature genes was validated in an independent sample cohort, which was consistent with RNA sequencing expression in the TCGA database.ConclusionThe prediction model of HCC constructed using mutation-related genes is of great significance for clinical decision making and the personalized treatment of patients with HCC.
Collapse
Affiliation(s)
- Zhuo Lin
- Laboratory Animal Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Miao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fujun Yu, ; Zhuoyan Chen,
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fujun Yu, ; Zhuoyan Chen,
| |
Collapse
|
11
|
Bai K, Ma Y, Li J. Circular RNA circ_0001955 promotes hepatocellular carcinoma tumorigenesis by up-regulating alkaline ceramidase 3 expression through microRNA-655-3p. Bioengineered 2022; 13:2099-2113. [PMID: 35034572 PMCID: PMC8973869 DOI: 10.1080/21655979.2021.2023797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The involvement of certain circular RNAs (circRNAs) in the development of hepatocellular carcinoma (HCC) has been reported. Herein, this study aimed to investigate the function and mechanism of circ_0001955 in HCC tumorigenesis. Expression of circ_0001955, miR-655-3p, and alkaline ceramidase 3 (ACER3) was evaluated by quantitative real-time PCR and Western blot. Cell counting kit-8, colony formation, transwell, tube formation, flow cytometry and tumor xenograft assays were adopted to perform in vitro and in vivo experiments. The direct interaction between miR-655-3p and circ_0001955 or ACER3 was verified using dual-luciferase reporter and RNA immunoprecipitation assays. Circ_0001955 was highly expression in HCC tissues and cells. Functionally, circ_0001955 deletion suppressed HCC tumorigenesis in vitro by suppressing cell growth, metastasis and angiogenesis. Mechanistically, circ_0001955 could competitively sponge miR-655-3p, which targeted ACER3. Besides that, miR-655-3p silencing abolished the anticancer action of circ_0001955 silencing on HCC cells. Moreover, miR-655-3p overexpression inhibited HCC cell oncogenic phenotypes mentioned above, which were attenuated by ACER3 up-regulation. Additionally, circ_0001955 knockdown also impeded HCC growth in a mouse model. In all, this study suggested a novel circ_0001955/miR-655-3p/ACER3 pathway in HCC progression.
Collapse
Affiliation(s)
- Kai Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yubo Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Healey RD, Saied EM, Cong X, Karsai G, Gabellier L, Saint-Paul J, Del Nero E, Jeannot S, Drapeau M, Fontanel S, Maurel D, Basu S, Leyrat C, Golebiowski J, Bossis G, Bechara C, Hornemann T, Arenz C, Granier S. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases. Angew Chem Int Ed Engl 2022; 61:e202109967. [PMID: 34668624 DOI: 10.1002/anie.202109967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.
Collapse
Affiliation(s)
- Robert D Healey
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Essa M Saied
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Chemistry Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | | | - Julie Saint-Paul
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Elise Del Nero
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Sylvain Jeannot
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Marion Drapeau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Simon Fontanel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Damien Maurel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | | | - Cherine Bechara
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
- Institut Universitaire de France (IUF), Paris, France
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Christoph Arenz
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Sebastien Granier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| |
Collapse
|
13
|
Manifold Roles of Ceramide Metabolism in Non-Alcoholic Fatty Liver Disease and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:157-168. [DOI: 10.1007/978-981-19-0394-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Healey RD, Saied EM, Cong X, Karsai G, Gabellier L, Saint‐Paul J, Del Nero E, Jeannot S, Drapeau M, Fontanel S, Maurel D, Basu S, Leyrat C, Golebiowski J, Bossis G, Bechara C, Hornemann T, Arenz C, Granier S. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Robert D. Healey
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Essa M. Saied
- Institute for chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
- Chemistry Department Faculty of Science Suez Canal University 41522 Ismailia Egypt
| | - Xiaojing Cong
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Gergely Karsai
- Institute of Clinical Chemistry University Hospital Zurich University of Zurich Zurich 8091 Switzerland
| | | | - Julie Saint‐Paul
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Elise Del Nero
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Sylvain Jeannot
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Marion Drapeau
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Simon Fontanel
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Damien Maurel
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Shibom Basu
- EMBL Grenoble 71 Avenue des Martyrs, CS 90181 38042 Grenoble France
| | - Cedric Leyrat
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Jérôme Golebiowski
- Université Côte d'Azur CNRS Institut de Chimie de Nice UMR7272 Nice 06108 France
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology Daegu 711-873 South Korea
| | | | - Cherine Bechara
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
- Institut Universitaire de France (IUF) Paris France
| | - Thorsten Hornemann
- Institute of Clinical Chemistry University Hospital Zurich University of Zurich Zurich 8091 Switzerland
| | - Christoph Arenz
- Institute for chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | | |
Collapse
|
15
|
LINC01087 indicates a poor prognosis of glioma patients with preoperative MRI. Funct Integr Genomics 2021; 22:55-64. [PMID: 34817752 PMCID: PMC8770444 DOI: 10.1007/s10142-021-00812-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Long intergenic non-coding RNA 01,087 (LINC01087) has been concerned as an oncogene in breast cancer, while its mechanism in glioma has been little surveyed. Thus, we searched the prognostic value and functional action of LINC01087 in glioma. Glioma patients after preoperative MRI diagnosis were enrolled, and LINC01087, microRNA (miR)-1277-5p, and alkaline ceramidase 3 (ACER3) levels were tested in glioma cancer tissue. The correlation between LINC01087 expression and the survival of patients were analyzed. LINC01087, miR-1277-5p, and ACER3 levels in U251 cells were altered via transfection, and cell malignant phenotypes were monitored. The relationship between miR-1277-5p and LINC01087 or ACER3 was detected. The LINC01087 and ACER3 expression was in up-regulation and the miR-1277-5p expression was in down-regulation in clinical glioma samples. High expression of LINC01087 was associated with poor prognosis of glioma patients with preoperative MRI. LINC01087 silencing restrained tumor malignancy in glioma cells. Mechanistically, LINC01087 directly interacted with miR-1277-5p. ACER3 was a known target of miR-1277-5p. Moreover, rescue assays reveal that miR-1277-5p overexpression (or ACER3 overexpression) reversed the effects of LINC01087 upregulation (or miR-1277-5p upregulation) on glioma cells. LINC01087 has prognostic significance in glioma and silencing LINC01087 deters glioma development through elevating miR-1277-5p to reduce ACER3 expression.
Collapse
|
16
|
Faedo RR, da Silva G, da Silva RM, Ushida TR, da Silva RR, Lacchini R, Matos LL, Kowalski LP, Lopes NP, Leopoldino AM. Sphingolipids signature in plasma and tissue as diagnostic and prognostic tools in oral squamous cell carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159057. [PMID: 34655810 DOI: 10.1016/j.bbalip.2021.159057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/04/2021] [Indexed: 12/09/2022]
Abstract
Enzymes related to sphingolipids metabolism has been suggested as altered in oral squamous cell carcinoma (OSCC). However, clinical relevance of diverse sphingolipids in OSCC is not fully known. Here, we evaluated sphingolipidomics in plasma and tumor tissues as a tool for diagnosis/prognosis in OSCC patients. Plasma was obtained from 58 controls and 56 OSCC patients, and paired tumor and surgical margin tissues (n = 42). The levels of 28 sphingolipids molecules were obtained by mass spectrometry. Furthermore, sphingolipids were analyzed with clinical and pathological characteristics to search the potential for diagnosis and prognosis. Lower levels of 17 sphingolipids was found in the plasma of OSCC patients compared to controls while four were elevated in tumor tissues. C18:0 dyhidroceramide and C24:0 lactosylceramide in plasma were associated with perineural invasion, while tissue levels of ceramide and dyhidroceramide were associated with advanced tumor stage and perineural invasion. High plasma levels of C24:0 ceramide (HR = 0.10, p = 0.0036) and C24:1 glucosylceramide (HR = 6.62, p = 0.0023), and tissue levels of C24:0 dyhidroceramide (HR = 3.95, p = 0.032) were identified as independent prognostic factors. Moreover, we identified signatures composed by i) sphinganine-1-phosphate and C16 ceramide-1-phosphate in plasma with significant diagnostic accuracy, while ii) C24:0 ceramide, C24:0 dyhidroceramide, and C24:1 glucosylceramide plasma levels, and iii) C24:0 dyhidrosphingomyelin and C24:0 ceramide tissue levels showed value to predict survival in patients aged 60 years or older. We proposed the sphingolipids signatures in plasma and tumor tissues as biomarkers candidates to diagnosis and prognosis in OSCC.
Collapse
Affiliation(s)
- Raquel Roman Faedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Brazil
| | - Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Brazil
| | - Rodrigo Moreira da Silva
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Tatiane Resende Ushida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Brazil
| | - Ricardo Roberto da Silva
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Leandro Luongo Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas HCFMUSP, Faculdade de Medicina (LIM28), Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas HCFMUSP, Faculdade de Medicina (LIM28), Universidade de São Paulo, São Paulo, Brazil
| | - Noberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Brazil; CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
da Silva G, de Matos LL, Kowalski LP, Kulcsar M, Leopoldino AM. Profile of sphingolipid-related genes and its association with prognosis highlights sphingolipid metabolism in oral cancer. Cancer Biomark 2021; 32:49-63. [PMID: 34092610 DOI: 10.3233/cbm-203100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sphingolipids are bioactive lipids that play a role in cancer development. However, the clinical role of sphingolipid (SPL)-related genes in oral cancer (OC) remains not fully understood. OBJECTIVE This study, aimed to examine the mRNA expression of 14 sphingolipid-related genes in oral cancer patients and their implication with clinicopathological features and prognosis. METHODS qPCR analysis was performed in 50 OC tissues and their matched surgical margins. Next, Kaplan-Meier, Cox regression, and Receiver operating characteristics (ROC) analysis were applied to evaluate the impact of sphingolipid-related genes expression on the prognosis of OC. RESULTS The genes SET, ACER3, SK1 and S1PR5 were predominantly up-regulated, while ABCG2, S1PR1, ABCB1 and SPNS2 were down-regulated in OC patients. Analyzing the Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) data, which are predominantly composed of OC samples, these genes displayed a similar profile. In OC patients, high levels of SK1 were associated with lymph node metastasis, extracapsular invasion, desmoplasia, locoregional relapse, and disease status. Low levels of SPNS2 were associated with lymph node metastasis, perineural invasion, and disease status. Furthermore, OC and HNSC patients with higher SK1 expression demonstrated shorter disease-free survival (p= 0.0037; p= 0.0087), whereas those with lower SPNS2 expression exhibited shorter overall survival (p= 0.051; p= 0.0012). High levels of ACER3 and low levels of S1PR1 were associated with shorter disease-free and overall survival in HNSC patients. CONCLUSION Several sphingolipid-related genes are deregulated in OC at the mRNA level and are associated with clinicopathological features and presented potencial for the prediction of poor prognosis in OC patients.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Leandro Luongo de Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil.,Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil
| | - Luiz Paulo Kowalski
- Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil.,Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, SP, Brazil
| | - Marco Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil
| | - Andreia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
18
|
Ceramide Metabolism Enzymes-Therapeutic Targets against Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070729. [PMID: 34357010 PMCID: PMC8303233 DOI: 10.3390/medicina57070729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Collapse
|
19
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
20
|
Bielsa N, Casasampere M, Aseeri M, Casas J, Delgado A, Abad JL, Fabriàs G. Discovery of deoxyceramide analogs as highly selective ACER3 inhibitors in live cells. Eur J Med Chem 2021; 216:113296. [PMID: 33677352 DOI: 10.1016/j.ejmech.2021.113296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Acid (AC), neutral (NC) and alkaline ceramidase 3 (ACER3) are the most ubiquitous ceramidases and their therapeutic interest as targets in cancer diseases has been well sustained. This supports the importance of discovering potent and specific inhibitors for further use in combination therapies. Although several ceramidase inhibitors have been reported, most of them target AC and a few focus on NC. In contrast, well characterized ACER3 inhibitors are lacking. Here we report on the synthesis and screening of two series of 1-deoxy(dihydro)ceramide analogs on the three enzymes. Activity was determined using fluorogenic substrates in recombinant human NC (rhNC) and both lysates and intact cells enriched in each enzyme. None of the molecules elicited a remarkable AC inhibitory activity in either experimental setup, while using rhNC, several compounds of both series were active as non-competitive inhibitors with Ki values between 1 and 5 μM. However, a dramatic loss of potency occurred in NC-enriched cell lysates and no activity was elicited in intact cells. Interestingly, several compounds of Series 2 inhibited ACER3 dose-dependently in both cell lysates and intact cells with IC50's around 20 μM. In agreement with their activity in live cells, they provoked a significant increase in the amounts of ceramides. Overall, this study identifies highly selective ACER3 activity blockers in intact cells, opening the door to further medicinal chemistry efforts aimed at developing more potent and specific compounds.
Collapse
Affiliation(s)
- Núria Bielsa
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Mazen Aseeri
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, 28029, Madrid, Spain
| | - Antonio Delgado
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC). Faculty of Pharmacy. University of Barcelona (UB). Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - José Luis Abad
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Alkaline ceramidase family: The first two decades. Cell Signal 2020; 78:109860. [PMID: 33271224 DOI: 10.1016/j.cellsig.2020.109860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Ceramidases are a group of enzymes that catalyze the hydrolysis of ceramide, dihydroceramide, and phytoceramide into sphingosine (SPH), dihydrosphingosine (DHS), and phytosphingosine (PHS), respectively, along with a free fatty acid. Ceramidases are classified into the acid, neutral, and alkaline ceramidase subtypes according to the pH optima for their catalytic activity. YPC1 and YDC1 were the first alkaline ceramidase genes to be identified and cloned from the yeast Saccharomyces cerevisiae two decades ago. Subsequently, alkaline ceramidase genes were identified from other species, including one Drosophila melanogaster ACER gene (Dacer), one Arabidopsis thaliana ACER gene (AtACER), three Mus musculus ACER genes (Acer1, Acer2, and Acer3), and three Homo sapiens ACER genes (ACER1, ACER2, and ACER3). The protein products of these genes constitute a large protein family, termed the alkaline ceramidase (ACER) family. All the biochemically characterized members of the ACER family are integral membrane proteins with seven transmembrane segments in the Golgi complex or endoplasmic reticulum, and they each have unique substrate specificity. An increasing number of studies suggest that the ACER family has diverse roles in regulating sphingolipid metabolism and biological processes. Here we discuss the discovery of the ACER family, the biochemical properties, structures, and catalytic mechanisms of its members, and its role in regulating sphingolipid metabolism and biological processes in yeast, insects, plants, and mammals.
Collapse
|
22
|
Petti L, Rizzo G, Rubbino F, Elangovan S, Colombo P, Restelli S, Piontini A, Arena V, Carvello M, Romano B, Cavalleri T, Anselmo A, Ungaro F, D'Alessio S, Spinelli A, Stifter S, Grizzi F, Sgambato A, Danese S, Laghi L, Malesci A, Vetrano S. Unveiling role of sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer. J Exp Clin Cancer Res 2020; 39:253. [PMID: 33225975 PMCID: PMC7682101 DOI: 10.1186/s13046-020-01740-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap. METHODS We screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2-/-) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2-/-Lgr5-EGFP- mice. RESULTS S1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2-/- mice compared to S1PR2+/+ controls. Loss of S1PR2 impaired mucosal regeneration, ultimately promoting the expansion of intestinal stem cells. Whereas its overexpression attenuated cell cycle progression, it reduced the phosphorylation of AKT and augmented the levels of PTEN. CONCLUSIONS In normal colonic crypts, S1PR2 gains expression along with intestinal epithelial cells differentiation, but not in intestinal stem cells, and contrasts intestinal tumorigenesis by promoting epithelial differentiation, preventing the expansion of stem cells and braking their malignant transformation. Targeting of S1PR2 may be of therapeutic benefit for CRC expressing high Lgr5.
Collapse
Affiliation(s)
- Luciana Petti
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Giulia Rizzo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Federica Rubbino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Sudharshan Elangovan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical, and Research Center-IRCCS, Milan, Italy
| | - Silvia Restelli
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Andrea Piontini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Tommaso Cavalleri
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Sanja Stifter
- Department of Pathology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Alessandro Sgambato
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Stefania Vetrano
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy.
| |
Collapse
|
23
|
Casasampere M, Izquierdo E, Casas J, Abad JL, Liu X, Xu R, Mao C, Chang YT, Delgado A, Fabrias G. Click and count: specific detection of acid ceramidase activity in live cells. Chem Sci 2020; 11:13044-13051. [PMID: 34094488 PMCID: PMC8163297 DOI: 10.1039/d0sc03166f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023] Open
Abstract
The use of intact cells in medical research offers a number of advantages over employing cell-free systems. In diagnostics, cells isolated from liquid biopsies can be directly used, speeding up the time of analysis and diminishing the risk of protein degradation by sample manipulation. In drug discovery, studies in live cells take into account aspects neglected in cell-free systems, such as uptake, metabolization, and subcellular concentration by compartmentalization of potential drug candidates. Therefore, probes for studies in cellulo are of paramount importance. Acid ceramidase (AC) is a lysosomal enzyme that hydrolyses ceramides into sphingoid bases and fatty acids. The essential role of this enzyme in the outburst and progress of several diseases, some of them still incurable, is well sustained. Despite the great clinical relevance of AC as a biomarker and therapeutic target, the specific monitoring of AC activity in live cells has remained elusive due to the concomitant existence of neutral and alkaline ceramidases. In this work, we report that 1-deoxydihydroceramides are exclusively hydrolysed by AC. Using N-octanoyl-18-azidodeoxysphinganine as a probe and a BODIPY-substituted bicyclononyne, we show the click-reliant predominant staining of lysosomes, with extra-lysosomal labeling also occurring in some cells. Importantly, using pharmacological and genetic tools together with high resolution mass spectrometry, we demonstrate that both lysosomal and extra-lysosomal staining are AC-dependent. These findings are translated into the specific flow cytometry monitoring of AC activity in intact cells, which fills an important gap in the field of diseases linked to altered AC activity.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18 08034-Barcelona Spain
| | - Eduardo Izquierdo
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18 08034-Barcelona Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18 08034-Barcelona Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII 28029 Madrid Spain
| | - José Luís Abad
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18 08034-Barcelona Spain
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Korea
| | - Ruijuan Xu
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook Room 9M-0834, MART Building, 100 Nicolls Road, Stony Brook NY 11794 USA
| | - Cungui Mao
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook Room 9M-0834, MART Building, 100 Nicolls Road, Stony Brook NY 11794 USA
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Korea
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS) Pohang Gyeongbuk 37673 Korea
| | - Antonio Delgado
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18 08034-Barcelona Spain
- Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Faculty of Pharmacy, University of Barcelona Avda. Joan XXIII s/n 08028 Barcelona Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18 08034-Barcelona Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII 28029 Madrid Spain
| |
Collapse
|
24
|
Chen Z, Hu M. The apoM-S1P axis in hepatic diseases. Clin Chim Acta 2020; 511:235-242. [PMID: 33096030 DOI: 10.1016/j.cca.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Liver dysfunction is always accompanied by lipid metabolism dysfunction. Apolipoprotein M (apoM), a member of the apolipoprotein family, is primarily expressed and secreted from the liver. apoM is the main chaperone of sphingosine-1-phosphate (S1P), a small signalling molecule associated with numerous physiologic and pathophysiologic processes. In addition to transport, apoM also influences the biologic effects of S1P. Most recently, numerous studies have investigated the potential role of the apoM-S1P axis in a variety of hepatic diseases. These include liver fibrosis, viral hepatitis B and C infection, hepatobiliary disease, non-alcoholic and alcoholic steatohepatitis, acute liver injury and hepatocellular carcinoma. In this review, the roles of apoM and S1P in the development of hepatic diseases are summarized, and novel insights into the diagnosis and treatment of hepatic diseases are discussed.
Collapse
Affiliation(s)
- Zhiyang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, PR China.
| |
Collapse
|
25
|
Yang G, Zhou L, Xu Q, Meng F, Wan Y, Meng X, Wang L, Zhang L. LncRNA KCNQ1OT1 inhibits the radiosensitivity and promotes the tumorigenesis of hepatocellular carcinoma via the miR-146a-5p/ACER3 axis. Cell Cycle 2020; 19:2519-2529. [PMID: 32936716 PMCID: PMC7553536 DOI: 10.1080/15384101.2020.1809259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death, and radiotherapy is currently one of the main treatments. Long non-coding RNAs (lncRNAs) are associated with the radiosensitivity and tumorigenesis of HCC. However, the role and molecular mechanism of potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) in HCC are still unclear. The relative expression of KCNQ1OT1, microRNA-146a-5p (miR-146a-5p) and alkaline ceramidase 3 (ACER3) was quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Clonogenic assay was used to assess the radiosensitivity of cells. Cell apoptosis and metastasis were evaluated by flow cytometry and transwell assays, respectively. The protein levels of apoptosis markers, metastasis markers and ACER3 were detected by western blot (WB) analysis. The relationship between miR-146a-5p and KCNQ1OT1 or ACER3 was determined by dual-luciferase reporter assay. Additionally, animal experiments were carried out to explore the effect of KCNQ1OT1 silencing on HCC tumor growth in vivo. KCNQ1OT1 was highly expressed in HCC, and its knockdown hindered the proliferation and metastasis, while increased the radiosensitivity and apoptosis of HCC cells. MiR-146a-5p could interact with KCNQ1OT1, and its inhibition reversed the effects of silenced-KCNQ1OT1 on the radiosensitivity and tumorigenesis of HCC cells. Besides, ACER3 was a target of miR-146a-5p, and its overexpression inversed the effects of miR-146a-5p mimic on the radiosensitivity and tumorigenesis of HCC cells. The expression of ACER3 was regulated by KCNQ1OT1 and miR-146a-5p. Furthermore, KCNQ1OT1 also could reduce the growth of HCC by regulating the miR-146a-5p/ACER3 axis in vivo. Our study suggested that KCNQ1OT1 improved ACER3 expression to regulate the radiosensitivity and tumorigenesis of HCC through sponging miR-146a-5p, indicating that KCNQ1OT1 might be a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijing Zhou
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qinhong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiankui Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,CONTACT Lin Wang ; Lei Zhang
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
26
|
Duarte C, Akkaoui J, Yamada C, Ho A, Mao C, Movila A. Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration. Cells 2020; 9:cells9061379. [PMID: 32498325 PMCID: PMC7349419 DOI: 10.3390/cells9061379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases—named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3—have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer’s disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| | - Juliet Akkaoui
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Chiaki Yamada
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Anny Ho
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Cungui Mao
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA;
- Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Alexandru Movila
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| |
Collapse
|
27
|
Simon J, Ouro A, Ala-Ibanibo L, Presa N, Delgado TC, Martínez-Chantar ML. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int J Mol Sci 2019; 21:40. [PMID: 31861664 PMCID: PMC6982102 DOI: 10.3390/ijms21010040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the main causes of chronic liver disease worldwide. NAFLD comprises a group of conditions characterized by the accumulation of hepatic lipids that can eventually lead to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), the fifth most common cancer type with a poor survival rate. In this context, several works have pointed out perturbations in lipid metabolism and, particularly, changes in bioactive sphingolipids, as a hallmark of NAFLD and derived HCC. In the present work, we have reviewed existing literature about sphingolipids and the development of NAFLD and NAFLD-derived HCC. During metabolic syndrome, considered a risk factor for steatosis development, an increase in ceramide and sphigosine-1-phosphate (S1P) have been reported. Likewise, other reports have highlighted that increased sphingomyelin and ceramide content is observed during steatosis and NASH. Ceramide also plays a role in liver fibrosis and cirrhosis, acting synergistically with S1P. Finally, during HCC, metabolic fluxes are redirected to reduce cellular ceramide levels whilst increasing S1P to support tumor growth.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Lolia Ala-Ibanibo
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
| | - Teresa Cardoso Delgado
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| |
Collapse
|
28
|
Decreased IL-6 induces sensitivity of hepatocellular carcinoma cells to sorafenib. Pathol Res Pract 2019; 215:152565. [DOI: 10.1016/j.prp.2019.152565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
|
29
|
Jiang YY, Zheng SJ. Progress in research of sphingolipids in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:2109-2114. [DOI: 10.11569/wcjd.v26.i36.2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ying-Ying Jiang
- Complicated Liver Disease and Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Su-Jun Zheng
- Complicated Liver Disease and Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
30
|
Yao J, Zhang X, Li J, Zhao D, Gao B, Zhou H, Gao S, Zhang L. Silencing TRIP13 inhibits cell growth and metastasis of hepatocellular carcinoma by activating of TGF-β1/smad3. Cancer Cell Int 2018; 18:208. [PMID: 30564064 PMCID: PMC6296061 DOI: 10.1186/s12935-018-0704-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Background TRIP13 is highly expressed in several cancers and is closely connected with cancer progression. However, its roles on the growth and metastasis of hepatocellular carcinoma (HCC), and the underlying mechanism are still unclear. Methods Combining bioinformatics with previous studies, the correlation between TRIP13 and HCC was predicted. TRIP13 expressions from 52 HCC patients and several cell lines were determined. The effects of silencing TRIP13 on cell viability, apoptosis, migration and invasion were respectively detected using CCK-8, flow cytometry and Transwell. qRT-PCR and western blot were performed to reveal associated mechanism. A HCC model was established in BALB/c-nu mice by transplanting HepG2 cells. TRIP13 protein expression and apoptosis in mice tissues were accordingly detected by Immunohistochemistry and TUNEL. Results High expression of TRIP13 in HCC affected the survival rate and it was enriched in RNA degradation and fatty acid metabolism according to bioinformatics and prediction from previous literature. Increased expression of TRIP13 in HCC patient tissues was associated with the progression of HCC. Silencing TRIP13 inhibited cell viability, migration and invasion, and induced cell apoptosis. TRIP13 knockdown also suppressed the formation of tumor in vivo. Meanwhile, silencing TRIP13 decreased the expressions of Ki67 and MMP-2 and increased the expressions of TIMP-2, active-caspase-3 and TGF-β1/smad3 signaling- related genes. Conclusions Silencing TRIP13 acts as a tumor suppresser of HCC to repress cell growth and metastasis in vitro and in vivo, and such a phenomenon possibly involved activation of TGF-β1/smad3 signaling.
Collapse
Affiliation(s)
- Jianning Yao
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Xuexiu Zhang
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Jiaheng Li
- 2Reproductive Medicine Department, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Dongyao Zhao
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Bing Gao
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Haining Zhou
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Shilin Gao
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Lianfeng Zhang
- 1Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan China
| |
Collapse
|