1
|
Basheer HA, Salman NM, Abdullah RM, Elsalem L, Afarinkia K. Metformin and glioma: Targeting metabolic dysregulation for enhanced therapeutic outcomes. Transl Oncol 2025; 53:102323. [PMID: 39970627 DOI: 10.1016/j.tranon.2025.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Glioma, a highly aggressive form of brain cancer, continues to pose significant therapeutic challenges in the field of medicine. Its invasive nature and resistance to traditional treatments make it particularly difficult to combat. This review examines the potential of metformin, a commonly prescribed antidiabetic medication, as a promising new treatment option for glioma. The potential of metformin to target crucial metabolic pathways in cancer cells presents an encouraging approach to improve therapeutic outcomes. The review explores the complexities of metabolic reprogramming in glioma and metformin's role in inhibiting these metabolic pathways. Preclinical studies demonstrate metformin's efficacy in reducing tumor growth and enhancing the sensitivity of glioma cells to chemotherapy and radiotherapy. Furthermore, clinical studies highlight metformin's potential in improving progression-free survival and overall survival rates in glioma patients. The review also addresses the synergistic effects of combining metformin with other therapeutic agents, such as temozolomide and radiotherapy, to overcome drug resistance and improve treatment efficacy. Despite the promising findings, the review acknowledges the need for further clinical trials to establish optimal dosing regimens, understand the molecular mechanisms underlying metformin's antitumor effects, and identify patient populations that would benefit the most from metformin-based therapies. Additionally, the potential side effects and the long-term impact of metformin on Glioma patients require careful evaluation. In conclusion, this review underscores the potential of metformin as a repurposed drug in glioma treatment, emphasizing its multifaceted role in targeting metabolic dysregulation. Metformin holds promise as part of a combination therapy approach to improve the therapeutic landscape of glioma and offers hope for better patient outcomes.
Collapse
Affiliation(s)
- Haneen A Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan.
| | - Nadeem M Salman
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Rami M Abdullah
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Lina Elsalem
- Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Kamyar Afarinkia
- School of Medicine and Biosciences, University of West London, London W5 5RF, UK
| |
Collapse
|
2
|
Zhang X, Wu X, Yao W, Wang YH. A tumor-suppressing role of TSPYL2 in thyroid cancer: Through interacting with SIRT1 and repressing SIRT1/AKT pathway. Exp Cell Res 2023; 432:113777. [PMID: 37696385 DOI: 10.1016/j.yexcr.2023.113777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Thyroid cancer is one of the most common endocrine cancers. Testis-specific protein, Y-encoded-like 2 (TSPYL2) belongs to the TSPY family. Studies show that TSPYL2 plays as a cancer suppressor in several cancers. However, the role of TSPYL2 in thyroid cancer remains elusive. In the present study, the expression of TSPYL2 in human central papillary thyroid cancer (PTC) tissues and corresponding para-cancer tissues was detected by qPCR and Western blot. The gain- and loss-of-function studies for TSPYL2 were performed in TPC-1 cells and IHH-4 cells. The results showed that TSPYL2 expression was decreased in PTC tissues, and the low TSPYL2 expression was associated with more lymph node metastasis. Moreover, the results showed that knockdown of TSPYL2 promoted proliferation and enhanced the ability of migration and invasion of TPC-1 cells and IHH-4 cells, while TSPYL2 overexpression reversed it. TSPYL2 overexpression arrested cell cycle. We found that TSPYL2 silencing suppressed cell apoptosis, while overexpression of TSPYL2 reversed it. Co-IP results illustrated that TSPYL2 interacted with SIRT1. Knockdown of TSPYL2 increased the association between SIRT1 and AKT. Moreover, TSPYL2 expression inhibited AKT activation by upregulating the AKT acetylation level. In vivo, tumor xenograft experiments indicated that TSPYL2 suppressed the tumorigenic ability of thyroid cancer cells. Western blot results suggested that knockdown of TSPYL2 enhanced the phosphorylation level of AKT, while TSPYL2 overexpression reversed it. Taken together, our study suggested TSPYL2 could be a tumor suppressor in thyroid cancer by regulating SIRT1/AKT pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Wei Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yi-Hui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
3
|
Shreenivas A, Janku F, Gouda MA, Chen HZ, George B, Kato S, Kurzrock R. ALK fusions in the pan-cancer setting: another tumor-agnostic target? NPJ Precis Oncol 2023; 7:101. [PMID: 37773318 PMCID: PMC10542332 DOI: 10.1038/s41698-023-00449-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations (activating mutations, amplifications, and fusions/rearrangements) occur in ~3.3% of cancers. ALK fusions/rearrangements are discerned in >50% of inflammatory myofibroblastic tumors (IMTs) and anaplastic large cell lymphomas (ALCLs), but only in ~0.2% of other cancers outside of non-small cell lung cancer (NSCLC), a rate that may be below the viability threshold of even large-scale treatment trials. Five ALK inhibitors -alectinib, brigatinib, ceritinb, crizotinib, and lorlatinib-are FDA approved for ALK-aberrant NSCLCs, and crizotinib is also approved for ALK-aberrant IMTs and ALCL, including in children. Herein, we review the pharmacologic tractability of ALK alterations, focusing beyond NSCLC. Importantly, the hallmark of approved indications is the presence of ALK fusions/rearrangements, and response rates of ~50-85%. Moreover, there are numerous reports of ALK inhibitor activity in multiple solid and hematologic tumors (e.g., histiocytosis, leiomyosarcoma, lymphoma, myeloma, and colorectal, neuroendocrine, ovarian, pancreatic, renal, and thyroid cancer) bearing ALK fusions/rearrangements. Many reports used crizotinib or alectinib, but each of the approved ALK inhibitors have shown activity. ALK inhibitor activity is also seen in neuroblastoma, which bear ALK mutations (rather than fusions/rearrangements), but response rates are lower (~10-20%). Current data suggests that ALK inhibitors have tissue-agnostic activity in neoplasms bearing ALK fusions/rearrangements.
Collapse
Affiliation(s)
- Aditya Shreenivas
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
| | | | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Zi Chen
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Ben George
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
- University of Nebraska, Omaha, NE, USA.
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue, France.
| |
Collapse
|
4
|
Azab MA. Expression of Anaplastic Lymphoma Kinase (ALK) in glioma and possible clinical correlations. A retrospective institutional study. Cancer Treat Res Commun 2023; 36:100703. [PMID: 37271069 DOI: 10.1016/j.ctarc.2023.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Glioblastoma is considered the most aggressive primary brain tumor. Recurrence after treatment is a significant problem with a failed response to optimal treatment. The recurrence of GBM is linked to different cellular and molecular pathways. Nationwide, in Egypt, astrocytic tumors are the most commonly diagnosed CNS tumor. Anaplastic Lymphoma Kinase (ALK CD246) is an enzymatic protein (RTK) belonging to the insulin receptors superfamily. METHODS This is a retrospective study including sixty cases of astrocytic tumors (males = 40, mean age = 31.5), (females = 20, mean age = 37.77) obtained through collecting archived paraffin blocks of astrocytic tumor from the Pathology Department, Cairo University Faculty of Medicine during the period from January 2015 till January 2019. All cases were evaluated for ALK expression trying to find any clinical correlations with the clinical data. RESULTS Correlations were made using a scatterplot matrix correlogram. There was a significant correlation between tumor recurrence and ALK expression (r = 0.8, P < 0.01), and incidence of postoperative seizures (r = 0.8, P < 0.05), and between mean age and score tumor (r = 0.8, P < 0.05). CONCLUSION Expression of ALK was found to be abundant among high-grade gliomas and tumor recurrence rate was higher in ALK-positive patients. Further studies are needed to evaluate the potential use of ALK as a prognostic marker in cases of GBM.
Collapse
Affiliation(s)
- Mohammed A Azab
- Department of Neurosurgery, Cairo University Faculty of Medicine, Cairo, Egypt.
| |
Collapse
|
5
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Lodi R, Bartolini S, Brandes AA. Glioblastoma: Emerging Treatments and Novel Trial Designs. Cancers (Basel) 2021; 13:cancers13153750. [PMID: 34359651 PMCID: PMC8345198 DOI: 10.3390/cancers13153750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nowadays, very few systemic agents have shown clinical activity in patients with glioblastoma, making the research of novel therapeutic approaches a critical issue. Fortunately, the availability of novel compounds is increasing thanks to better biological knowledge of the disease. In this review we want to investigate more promising ongoing clinical trials in both primary and recurrent GBM. Furthermore, a great interest of the present work is focused on novel trial design strategies. Abstract Management of glioblastoma is a clinical challenge since very few systemic treatments have shown clinical efficacy in recurrent disease. Thanks to an increased knowledge of the biological and molecular mechanisms related to disease progression and growth, promising novel treatment strategies are emerging. The expanding availability of innovative compounds requires the design of a new generation of clinical trials, testing experimental compounds in a short time and tailoring the sample cohort based on molecular and clinical behaviors. In this review, we focused our attention on the assessment of promising novel treatment approaches, discussing novel trial design and possible future fields of development in this setting.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
- Correspondence: ; Tel.: +39-0516225697
| | - Enrico Franceschi
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 40139 Bologna, Italy;
| | - Stefania Bartolini
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alba Ariela Brandes
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| |
Collapse
|
6
|
Kim JH. Prognostic and predictive markers in glioblastoma and ALK overexpression. J Pathol Transl Med 2021; 55:236-237. [PMID: 34015889 PMCID: PMC8141965 DOI: 10.4132/jptm.2021.04.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jang-Hee Kim
- Departments of Pathology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|