1
|
Chen M, Chiu T, Folkert MR, Timmerman R, Gu X, Lu W, Parsons D. Motion analysis comparing surface imaging and diaphragm tracking on kV projections for deep inspiration breath hold (DIBH). Phys Med 2024; 125:104495. [PMID: 39098107 DOI: 10.1016/j.ejmp.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Surface-guided imaging (SGI) is increasingly utilized to monitor patient motion during deep inspiration breath hold (DIBH) in radiotherapy. Understanding the association between surface and internal motion is crucial for effective monitoring. PURPOSE To investigate the relation between motion detected by SGI using surface-guided radiotherapy (SGRT) and internal motion measured through diaphragm tracking on kV projections acquired with DIBH for online CBCT. METHODS Both SGI and kV were simultaneously acquired for ten patients over a total of 200 breath holds (BH). Diaphragm tracking was performed using second-degree polynomial curve fitting on the derivative images for each kV projection and high-pass filtering at 1/30 Hz to remove rotational effects. The superior-inferior (SI) and anterior-posterior (AP) motions of SGI were then compared to kV tracking using various statistical measures. RESULTS The correlation (individuals' median: -0.07 to 0.73) was a suboptimal metric for the BH data. The median and 95th percentile absolute differences between SGI-SI and kV were 0.73 mm and 3.46 mm, respectively, during DIBH. For SGI-AP, the corresponding values were 0.55 mm and 2.80 mm. For inter-BH measurements, the contingency table based on a 3 mm threshold indicated surface/diaphragm motion agreement for SGI-SI/kV and SGI-AP/kV was 61 % and 56 %, respectively. CONCLUSION Both intra- and inter-BH measurements indicated a limited association between surface and diaphragm motion, with certain constraints noted due to kV tracking and DIBH data. These findings warrant further investigation into the association between surface and internal motion.
Collapse
Affiliation(s)
- Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsuicheng Chiu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael R Folkert
- Department of Radiation Oncology, Northwell Health Cancer Institute, New Hyde Park, NY 11042, USA
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuejun Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Capaldi DPI, Axente M, Yu AS, Prionas ND, Hirata E, Nano TF. A Couch Mounted Smartphone-based Motion Monitoring System for Radiation Therapy. Pract Radiat Oncol 2024; 14:161-170. [PMID: 38052299 DOI: 10.1016/j.prro.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Surface-guided radiation-therapy (SGRT) systems are being adopted into clinical practice for patient setup and motion monitoring. However, commercial systems remain cost prohibitive to resource-limited clinics around the world. Our aim is to develop and validate a smartphone-based application using LiDAR cameras (such as on recent Apple iOS devices) for facilitating SGRT in low-resource centers. The proposed SGRT application was tested at multiple institutions and validated using phantoms and volunteers against various commercial systems to demonstrate feasibility. METHODS AND MATERIALS An iOS application was developed in Xcode and written in Swift using the Augmented-Reality (AR) Kit and implemented on an Apple iPhone 13 Pro with a built-in LiDAR camera. The application contains multiple features: 1) visualization of both the camera and depth video feeds (at a ∼60Hz sample-frequency), 2) region-of-interest (ROI) selection over the patient's anatomy where motion is measured, 3) chart displaying the average motion over time in the ROI, and 4) saving/exporting the motion traces and surface map over the ROI for further analysis. The iOS application was tested to evaluate depth measurement accuracy for: 1) different angled surfaces, 2) different field-of-views over different distances, and 3) similarity to a commercially available SGRT systems (Vision RT AlignRT and Varian IDENTIFY) with motion phantoms and healthy volunteers across 3 institutions. Measurements were analyzed using linear-regressions and Bland-Altman analysis. RESULTS Compared with the clinical system measurements (reference), the iOS application showed excellent agreement for depth (r = 1.000, P < .0001; bias = -0.07±0.24 cm) and angle (r = 1.000, P < .0001; bias = 0.02±0.69°) measurements. For free-breathing traces, the iOS application was significantly correlated to phantom motion (institute 1: r = 0.99, P < .0001; bias =-0.003±0.03 cm; institute 2: r = 0.98, P < .0001; bias = -0.001±0.10 cm; institute 3: r = 0.97, P < .0001; bias = 0.04±0.06 cm) and healthy volunteer motion (institute 1: r = 0.98, P < .0001; bias = -0.008±0.06 cm; institute 2: r = 0.99, P < .0001; bias = -0.007±0.12 cm; institute 3: r = 0.99, P < .0001; bias = -0.001±0.04 cm). CONCLUSIONS The proposed approach using a smartphone-based application provides a low-cost platform that could improve access to surface-guided radiation therapy accounting for motion.
Collapse
Affiliation(s)
- Dante P I Capaldi
- San Francisco (UCSF) Comprehensive Cancer Center, University of California, San Francisco, California
| | - Marian Axente
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Amy S Yu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California
| | - Nicolas D Prionas
- San Francisco (UCSF) Comprehensive Cancer Center, University of California, San Francisco, California
| | - Emily Hirata
- San Francisco (UCSF) Comprehensive Cancer Center, University of California, San Francisco, California
| | - Tomi F Nano
- San Francisco (UCSF) Comprehensive Cancer Center, University of California, San Francisco, California.
| |
Collapse
|
3
|
Lu W, Hong LX, Yamada N, Berry SL, Song Y, Choi W, Cerviño LI, Tang X, Mechalakos JG, Romesser PB, Powell S, Li G. Comparison of setup accuracy of optical surface image versus orthogonal x-ray images for VMAT of the left breast using deep-inspiration breath-hold. J Appl Clin Med Phys 2023; 24:e14117. [PMID: 37535396 PMCID: PMC10691624 DOI: 10.1002/acm2.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
To compare the setup accuracy of optical surface image (OSI) versus orthogonal x-ray images (2DkV) using cone beam computed tomography (CBCT) as ground truth for radiotherapy of left breast cancer in deep-inspiration breath-hold (DIBH). Ten left breast DIBH patients treated with volumetric modulated arc therapy (VMAT) were studied retrospectively. OSI, 2DkV, and CBCT were acquired weekly at treatment setup. OSI, 2DkV, and CBCT were registered to planning CT or planning DRR based on a breast surface region of interest (ROI), bony anatomy (chestwall and sternum), and both bony anatomy and breast surface, respectively. These registrations provided couch shifts for each imaging system. The setup errors, or the difference in couch shifts between OSI and CBCT were compared to those between 2DkV and CBCT. A second OSI was acquired during last beam delivery to evaluate intrafraction motion. The median absolute setup errors were (0.21, 0.27, 0.23 cm, 0.6°, 1.3°, 1.0°) for OSI, and (0.26, 0.24, 0.18 cm, 0.9°, 1.0°, 0.6°) for 2DkV in vertical, longitudinal and lateral translations, and in rotation, roll and pitch, respectively. None of the setup errors was significantly different between OSI and 2DkV. For both systems, the systematic and random setup errors were ≤0.6 cm and ≤1.5° in all directions. Nevertheless, larger setup errors were observed in some sessions in both systems. There was no correlation between OSI and CBCT whereas there was modest correlation between 2DkV and CBCT. The intrafraction motion in DIBH detected by OSI was small with median absolute translations <0.2 cm, and rotations ≤0.4°. Though OSI showed comparable and small setup errors as 2DkV, it showed no correlation with CBCT. We concluded that to achieve accurate setup for both bony anatomy and breast surface, daily 2DkV can't be omitted following OSI for left breast patients treated with DIBH VMAT.
Collapse
Affiliation(s)
- Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Linda X. Hong
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Nelson Yamada
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Sean L. Berry
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Yulin Song
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Wookjin Choi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura I. Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaoli Tang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - James G. Mechalakos
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Paul B. Romesser
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Simon Powell
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Guang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
4
|
Damkjær SMS, Nielsen MMB, Jensen NKG. Carbon-fiber alternative to the commercial gating surrogate for the Varian Truebeam™. Acta Oncol 2023; 62:1178-1183. [PMID: 37850713 DOI: 10.1080/0284186x.2023.2270147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND In this study we present the Tracking Accessory 3 (TA3) as an alternative to the commercial gating block (GB) surrogate for the Varian Truebeam™ gating system (TGS). The TGS requires three visible reflectors to track the surrogate, presenting an opportunity for a surrogate to be made with less material and thus smaller dosimetric footprint than the commercial four reflector model. MATERIALS AND METHODS Relative dose and depth dose profiles below the TA3 and the GB were measured with radiosensitive film. Accuracy and reproducibility of the detected motion amplitude for three TA3s and one GB were determined using a respiratory phantom with surrogate to determine the camera's tracking volume. Clinical performance was evaluated prospectively in 10 breast cancer patients treated with deep inspiration breath hold monitored with TA3 and compared to previously published results. Non-parametric statistics were applied to test for significance. RESULTS AND CONCLUSIONS Surface doses were increased up to 94% and 187% for the TA3 and GB, respectively, compared to no surrogate. The surface area influenced by at least 25% increase in dose was 12 cm2 and 105 cm2 for the TA3 and GB, respectively. The water equivalent thickness of the surrogates was found to be 1 mm for the TA3 and 3 mm for GB. The difference in measured amplitude were <0.2 mm for TA3 compared to the GB. The TA3s and GB were detected at all extremes of the clinically relevant tracking volume of the TGS. Clinical performance showed no significant differences. The TA3 caused less surface dose increase compared to the commercial GB. In the tested range all surrogates measured motion amplitude within 0.2 mm of reference value, which is not a clinically relevant difference. The TA3 showed no significant differences in clinical performance to similarly positioned surrogates.
Collapse
|
5
|
Parsons D, Joo M, Iqbal Z, Godley A, Kim N, Spangler A, Albuquerque K, Sawant A, Zhao B, Gu X, Rahimi A. Stability and reproducibility comparisons between deep inspiration breath-hold techniques for left-sided breast cancer patients: A prospective study. J Appl Clin Med Phys 2023; 24:e13906. [PMID: 36691339 PMCID: PMC10161105 DOI: 10.1002/acm2.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Deep inspiration breath-hold (DIBH) is crucial in reducing the lung and cardiac dose for treatment of left-sided breast cancer. We compared the stability and reproducibility of two DIBH techniques: Active Breathing Coordinator (ABC) and VisionRT (VRT). MATERIALS AND METHODS We examined intra- and inter-fraction positional variation of the left lung. Eight left-sided breast cancer patients were monitored with electronic portal imaging during breath-hold (BH) at every fraction. For each patient, half of the fractions were treated using ABC and the other half with VRT, with an equal amount starting with either ABC or VRT. The lung in each portal image was delineated, and the variation of its area was evaluated. Intrafraction stability was evaluated as the mean coefficient of variation (CV) of the lung area for the supraclavicular (SCV) and left lateral (LLat) field over the course of treatment. Reproducibility was the CV for the first image of each fraction. Daily session time and total imaging monitor units (MU) used in patient positioning were recorded. RESULTS The mean intrafraction stability across all patients for the LLat field was 1.3 ± 0.7% and 1.5 ± 0.9% for VRT and ABC, respectively. Similarly, this was 1.5 ± 0.7% and 1.6 ± 0.8% for VRT and ABC, respectively, for the SCV field. The mean interfraction reproducibility for the LLat field was 11.0 ± 3.4% and 14.9 ± 6.0% for VRT and ABC, respectively. Similarly, this was 13.0 ± 2.5% and 14.8 ± 9% for VRT and ABC, respectively, for the SCV. No difference was observed in the number of verification images required for either technique. CONCLUSIONS The stability and reproducibility were found to be comparable between ABC and VRT. ABC can have larger interfractional variation with less feedback to the treating therapist compared to VRT as shown in the increase in geometric misses at the matchline.
Collapse
Affiliation(s)
- David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mindy Joo
- Department of Radiation Oncology, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zohaib Iqbal
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan Kim
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann Spangler
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bo Zhao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
All S, Zhao B, Montalvo S, Maxwell C, Johns C, Gu X, Rahimi A, Alluri P, Parsons D, Chiu T, Schroeder S, Kim DN. Feasibility and efficacy of active breathing coordinator assisted deep inspiration breath hold technique for treatment of locally advanced breast cancer. J Appl Clin Med Phys 2022; 24:e13893. [PMID: 36585853 PMCID: PMC9924105 DOI: 10.1002/acm2.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Active breathing coordinator (ABC)-assisted deep inspiration breath hold (DIBH) is an important organ sparing radiation therapy (RT) technique for left-sided breast cancer patients. Patients with advanced breast cancer undergoing chest wall and regional nodal irradiation often require a field matching technique. While field matching has been demonstrated to be safe and effective in free breathing patients, its safety and accuracy in DIBH/ABC use has not been previously reported. PURPOSE To report the accuracy, feasibility, and safety of field matching with ABC/DIBH for patients receiving breast/chest wall irradiation with nodal irradiation using a three-field technique. METHODS From December 2012 to May 2018, breast cancer patients undergoing ABC/DIBH-based RT at a single institution were reviewed. For each fraction, the amount of overlap/gap between the supraclavicular and the tangential field were measured and recorded. Patient characteristics, including acute and delayed skin toxicities, were analyzed. RESULTS A total of 202 patients utilized ABC/DIBH and 4973 fractions had gap/overlap measurements available for analysis. The average gap/overlap measured at junction was 0.28 mm ± 0.99 mm. A total of 72% of fractions had no measurable gap/overlap (0 mm), while 5.6% had an overlap and 22.7% a gap. There was no significant trend for worsening or improvement of gap/overlap measurements with increasing fraction number per patient. OSLD measurements were compared to the planned dose. The median dose 1 cm above the junction was 106% ± 7% of planned dose (range 94%-116%). One centimeter below the junction, the median dose was 114% ± 11% of planned dose (range 95%-131%). At the junction, the median dose was 106% ± 16.3% of planned dose (range 86%-131%). Acute skin toxicity was similar to historically reported values (grade 3, 5.4%, grade 4, 0%). CONCLUSION ABC-assisted DIBH is a safe and technically feasible method of delivering RT in the setting of complex matching field technique for breast and regional nodal treatments.
Collapse
Affiliation(s)
- Sean All
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bo Zhao
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Steven Montalvo
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | | | | | - Xuejun Gu
- Department of Radiation OncologyStanford UniversityPalo AltoCaliforniaUSA
| | - Asal Rahimi
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Prasanna Alluri
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - David Parsons
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Tsuicheng Chiu
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Samuel Schroeder
- UnityPoint Health Department of Radiation OncologyJohn Stoddard Cancer CenterDes MoinesIowaUSA
| | - D. Nathan Kim
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
7
|
Costin IC, Marcu LG. Factors impacting on patient setup analysis and error management during breast cancer radiotherapy. Crit Rev Oncol Hematol 2022; 178:103798. [PMID: 36031175 DOI: 10.1016/j.critrevonc.2022.103798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is required to deliver an accurate dose to the tumor while protecting surrounding normal tissues. Breast cancer radiotherapy involves a number of factors that can influence patient setup and error management, including the immobilization device used, the verification system and the patient's treatment position. The aim of this review is to compile and discuss the setup errors that occur due to the above-mentioned factors. In view of this, a systematic search of the scientific literature in the Medline/PubMed databases was performed over the 1990-2021 time period, with 93 articles found to be relevant for the study. To be accessible to all, this study not only aims to identify factors impacting on patient setup analysis, but also seeks to evaluate the role of each verification device, board immobilization and position in influencing these errors.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; "Dr. Gavril Curteanu" County Hospital, Oradea 410469, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
8
|
Lu W, Li G, Hong L, Yorke E, Tang X, Mechalakos JG, Zhang P, Cerviño LI, Powell S, Berry SL. Reproducibility of chestwall and heart position using surface-guided versus RPM-guided DIBH radiotherapy for left breast cancer. J Appl Clin Med Phys 2022; 24:e13755. [PMID: 35993318 PMCID: PMC9859984 DOI: 10.1002/acm2.13755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 08/26/2021] [Indexed: 01/27/2023] Open
Abstract
This study compared the reproducibility of chestwall and heart position using surface-guided versus RPM (real-time position management)-guided deep inspiration breath hold (DIBH) radiotherapy for left sided breast cancer. Forty DIBH patients under either surface-guided radiotherapy (SGRT) or RPM guidance were studied. For patients treated with tangential fields, reproducibility was measured as the displacements in central lung distance (CLD) and heart shadow to field edge distance (HFD) between pretreatment MV (megavoltage) images and planning DRRs (digitally reconstructed radiographs). For patients treated with volumetric modulated arc therapy (VMAT), sternum to isocenter (ISO) distance (StID), spine to rib edge distance (SpRD), and heart shadow to central axis (CAX) distance (HCD) between pretreatment kV images and planning DRRs were measured. These displacements were compared between SGRT and RPM-guided DIBH. In tangential patients, the mean absolute displacements of SGRT versus RPM guidance were 0.19 versus 0.23 cm in CLD, and 0.33 versus 0.62 cm in HFD. With respect to planning DRR, heart appeared closer to the field edge by 0.04 cm with surface imaging versus 0.62 cm with RPM. In VMAT patients, the displacements of surface imaging versus RPM guidance were 0.21 versus 0.15 cm in StID, 0.24 versus 0.19 cm in SpRD, and 0.72 versus 0.41 cm in HCD. Heart appeared 0.41 cm further away from CAX with surface imaging, whereas 0.10 cm closer to field CAX with RPM. None of the differences between surface imaging and RPM guidance was statistically significant. In conclusion, the displacements of chestwall were small and were comparable with SGRT- or RPM-guided DIBH. The position deviations of heart were larger than those of chestwall with SGRT or RPM. Although none of the differences between SGRT and RPM guidance were statistically significant, there was a trend that the position deviations of heart were smaller and more favorable with SGRT than with RPM guidance in tangential patients.
Collapse
Affiliation(s)
- Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Guang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Linda Hong
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Ellen Yorke
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaoli Tang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - James G. Mechalakos
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Pengpeng Zhang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura I. Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Simon Powell
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Sean L. Berry
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
9
|
Li G. Advances and potential of optical surface imaging in radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac838f. [PMID: 35868290 PMCID: PMC10958463 DOI: 10.1088/1361-6560/ac838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the recent advancements and future potential of optical surface imaging (OSI) in clinical applications as a four-dimensional (4D) imaging modality for surface-guided radiotherapy (SGRT), including OSI systems, clinical SGRT applications, and OSI-based clinical research. The OSI is a non-ionizing radiation imaging modality, offering real-time 3D surface imaging with a large field of view (FOV), suitable for in-room interactive patient setup, and real-time motion monitoring at any couch rotation during radiotherapy. So far, most clinical SGRT applications have focused on treating superficial breast cancer or deep-seated brain cancer in rigid anatomy, because the skin surface can serve as tumor surrogates in these two clinical scenarios, and the procedures for breast treatments in free-breathing (FB) or at deep-inspiration breath-hold (DIBH), and for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) are well developed. When using the skin surface as a body-position surrogate, SGRT promises to replace the traditional tattoo/laser-based setup. However, this requires new SGRT procedures for all anatomical sites and new workflows from treatment simulation to delivery. SGRT studies in other anatomical sites have shown slightly higher accuracy and better performance than a tattoo/laser-based setup. In addition, radiographical image-guided radiotherapy (IGRT) is still necessary, especially for stereotactic body radiotherapy (SBRT). To go beyond the external body surface and infer an internal tumor motion, recent studies have shown the clinical potential of OSI-based spirometry to measure dynamic tidal volume as a tumor motion surrogate, and Cherenkov surface imaging to guide and assess treatment delivery. As OSI provides complete datasets of body position, deformation, and motion, it offers an opportunity to replace fiducial-based optical tracking systems. After all, SGRT has great potential for further clinical applications. In this review, OSI technology, applications, and potential are discussed since its first introduction to radiotherapy in 2005, including technical characterization, different commercial systems, and major clinical applications, including conventional SGRT on top of tattoo/laser-based alignment and new SGRT techniques attempting to replace tattoo/laser-based setup. The clinical research for OSI-based tumor tracking is reviewed, including OSI-based spirometry and OSI-guided tumor tracking models. Ongoing clinical research has created more SGRT opportunities for clinical applications beyond the current scope.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| |
Collapse
|
10
|
Zhao X, Covington EL, Popple RA. Analysis of a surface imaging system using a six degree-of-freedom couch. J Appl Clin Med Phys 2022; 23:e13697. [PMID: 35819973 PMCID: PMC9359042 DOI: 10.1002/acm2.13697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To validate surface imaging (SI)‐reported offsets using a six degree‐of‐freedom couch and an anthropomorphic phantom for commissioning and routine quality assurance of an SI system used for stereotactic radiosurgery (SRS). Methods An anthropomorphic phantom with a radiopaque ball bearing (BB) placed either anterior, midline, or posterior, was tracked with SI with a typical SRS region of interest. Couch motion in all six degrees of freedom was programmed and delivered on a linac. SI system logs were synchronized with linac trajectory logs. Ten random couch positions were selected at couch 0°, 45°, 90°, 270°, 315° with megavolt (MV) images taken to account for couch walkout. The SI residual error (ε), the difference between SI reported offset and MV or trajectory log position, was calculated. Residual errors were measured with and without one SI pod blocked. Results The median [range] of magnitude of translational ε was 0.13 [0.07, 0.21], 0.16 [0.11, 0.26], 0.61 [0.50, 0.68], 0.49 [0.42, 0.55], 0.55 [0.38, 0.72] mm for couch rotations of 0°, 45°, 90°, 270°, 315°, respectively, for the midline BB and no pod blocked. The range of all translational ε from all couch angles (with and without pod block) at different BB positions is [0.05, 0.96] mm. The absolute range of difference when changing BB position when no pod is blocked in median translational ε is [0.01, 0.40] mm with the maximum at BB posterior. The absolute range of difference when not changing BB positions with and without pod block in median translational ε is [0.01, 0.37] mm with the maximum at BB posterior and couch 315°. Conclusion SI system and linac trajectory log analysis can be used to assess SI system performance with automated couch motion to validate SI accuracy.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth L Covington
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Stowe HB, Andruska ND, Reynoso F, Thomas M, Bergom C. Heart Sparing Radiotherapy Techniques in Breast Cancer: A Focus on Deep Inspiration Breath Hold. BREAST CANCER: TARGETS AND THERAPY 2022; 14:175-186. [PMID: 35899145 PMCID: PMC9309321 DOI: 10.2147/bctt.s282799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Adjuvant radiation therapy is a critical component of breast cancer management. However, when breast cancer patients receive incidental radiation to the heart, there is an increased risk of cardiac disease and mortality. This is most common for patients with left-sided breast cancers and those receiving nodal irradiation as part of treatment. The overall risk of cardiac toxicity increases 4–16% with each Gray increase in mean heart radiation dose, with data suggesting that no lower limit exists which would eliminate cardiac risk entirely. Radiation techniques have improved over time, leading to lower cardiac radiation exposure than in the past. This decline is expected to reduce the incidence of radiation-induced heart dysfunction in patients. Deep inspiration breath hold (DIBH) is one such technique that was developed to reduce the risk of cardiac death and coronary events. DIBH is a non-invasive approach that capitalizes on the natural physiology of the respiratory cycle to increase the distance between the heart and the therapeutic target throughout the course of radiation therapy. DIBH has been shown to decrease the mean incidental radiation doses to the heart and left anterior descending coronary artery by approximately 20–70%. In this review, we summarize different techniques for DIBH and discuss recent data on this technique.
Collapse
Affiliation(s)
- Hayley B Stowe
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Neal D Andruska
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Francisco Reynoso
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Thomas
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Correspondence: Carmen Bergom, Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, Email
| |
Collapse
|
12
|
Zhou S, Li J, Zhu X, Du Y, Yu S, Wang M, Yao K, Wu H, Yue H. Initial clinical experience of surface guided stereotactic radiation therapy with open-face mask immobilization for improving setup accuracy: a retrospective study. Radiat Oncol 2022; 17:104. [PMID: 35659685 PMCID: PMC9167505 DOI: 10.1186/s13014-022-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose To propose a specific surface guided stereotactic radiotherapy (SRT) treatment procedure with open-face mask immobilization and evaluate the initial clinical experience in improving setup accuracy. Methods and materials The treatment records of 48 SRT patients with head lesions were retrospectively analyzed. For each patient, head immobilization was achieved with a double-shell open-face mask. The anterior shell was left open to expose the forehead, nose, eyes and cheekbones. The exposed facial area was used as region-of-interest for surface tracking by AlignRT (VisionRT Inc, UK). The posterior shell provided a sturdy and personalized headrest. Patient initial setup was guided by 6DoF real-time deltas (RTD) using the reference surface obtained from the skin contour delineated on the planning CT images. The endpoint of initial setup was 1 mm in translational RTD and 1 degree in rotational RTD. CBCT guidance was performed to derive the initial setup errors, and couch shifts for setup correction were applied prior to treatment delivery. CBCT couch shifts, AlignRT RTD values, repositioning rate and setup time were analyzed. Results The absolute values of median (maximal) CBCT couch shifts were 0.4 (1.3) mm in VRT, 0.1 (2.5) mm in LNG, 0.2 (1.6) mm in LAT, 0.1(1.2) degree in YAW, 0.2 (1.4) degree in PITCH and 0.1(1.3) degree in ROLL. The couch shifts and AlignRT RTD values exhibited highly agreement except in VRT and PITCH (p value < 0.01), of which the differences were as small as negligible. We did not find any case of patient repositioning that was due to out-of-tolerance setup errors, i.e., 3 mm and 2 degree. The surface guided setup time ranged from 52 to 174 s, and the mean and median time was 97.72 s and 94 s respectively. Conclusions The proposed surface guided SRT procedure with open-face mask immobilization is a step forward in improving patient comfort and positioning accuracy in the same process. Minimized initial setup errors and repositioning rate had been achieved with reasonably efficiency for routine clinical practice.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Junyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China. .,Institute of Medical Technology, Peking University Health Science Center, 38 Huayuan Road, Beijing, 100191, China.
| | - Songmao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Meijiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.,Institute of Medical Technology, Peking University Health Science Center, 38 Huayuan Road, Beijing, 100191, China
| | - Haizhen Yue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
13
|
Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, Padilla L, Pawlicki T, Remmes N, Smith K, Tang X, Tomé WA. AAPM task group report 302: Surface guided radiotherapy. Med Phys 2022; 49:e82-e112. [PMID: 35179229 PMCID: PMC9314008 DOI: 10.1002/mp.15532] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 02/05/2022] [Indexed: 11/06/2022] Open
Abstract
The clinical use of surface imaging has increased dramatically with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath-hold (DIBH) treatment, and frameless stereotactic radiosurgery (SRS). Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography (CT) simulation, including motion management are also discussed. Finally, developing clinical applications such as stereotactic body radiotherapy (SBRT) or proton radiotherapy are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing. Review current use of non-ionizing surface imaging functionality and commercially available systems. Summarize commissioning and on-going quality assurance (QA) requirements of surface image-guided systems, including implementation of risk or hazard assessment of surface guided radiotherapy as a part of a total quality management program (e.g., TG-100). Provide clinically relevant technical guidelines that include recommendations for the use of SGRT for general patient positioning, breast DIBH, and frameless brain SRS, including potential pitfalls to avoid when implementing this technology. Discuss emerging clinical applications of SGRT and associated QA implications based on evaluation of technology and risk assessment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hania A Al-Hallaq
- Department of Radiation & Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, 33173, USA
| | | | - Susan A Higgins
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Malin Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University, Lund, 221 00, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, 221 00, Sweden
| | - Laura Padilla
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd Pawlicki
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicholas Remmes
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Koren Smith
- IROC Rhode Island, University of Massachusetts Chan Medical School, Lincoln, RI, 02865, USA
| | | | - Wolfgang A Tomé
- Department of Radiation Oncology and Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
14
|
Li G, Lu W, O'Grady K, Yan I, Yorke E, Arriba LIC, Powell S, Hong L. A uniform and versatile surface‐guided radiotherapy procedure and workflow for high‐quality breast deep‐inspiration breath‐hold treatment in a multi‐center institution. J Appl Clin Med Phys 2022; 23:e13511. [PMID: 35049108 PMCID: PMC8906224 DOI: 10.1002/acm2.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/21/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose We share our experiences on uniformly implementing an effective and efficient SGRT procedure with a new clinical workflow for treating breast patients in deep‐inspiration breath‐hold (DIBH) among 9 clinical centers using 26 optical surface imaging (OSI) systems. Methods Our procedures have five major components: (1) acquiring both free‐breathing (FB) and DIBH computed tomography (CT) at simulation to quantify the rise of the anterior surface, (2) defining uniformly a large region of interest (ROI) to accommodate large variations in patient anatomy and treatment techniques, (3) performing two‐step setup in FB by first aligning the arm and chin to minimize breast deformation and reproduce local lymphnode positions and then aligning the ROI, (4) aligning the vertical shift precisely from FB to DIBH, and (5) capturing a new on‐site reference image at DIBH to separate residual setup errors from the DIBH motion monitoring uncertainties. Moreover, a new clinical workflow was developed for patient data preparation using 4 OSI offline workstations without interruption of SGRT treatment at 22 OSI online workstations. This procedure/workflow is suitable for all photon planning techniques, including 2‐field, 3‐field, 4‐field, partial breast irradiation (PBI), and volumetric‐modulated arc therapy (VMAT) with or without bolus. Results Since 2019, we have developed and applied the uniform breast SGRT DIBH procedure with optimized clinical workflow and ensured treatment accuracy among the nine clinics within our institution. About 150 breast DIBH patients are treated daily and two major upgrades are achieved smoothly throughout our institution, owing to the uniform and versatile procedure, adequate staff training, and efficient workflow with effective clinical supports and backup strategies. Conclusion The uniform and versatile breast SGRT DIBH procedure and workflow have been developed to ensure smooth and optimal clinical operations, simplify clinical staff training and clinical troubleshooting, and allow high‐quality SGRT delivery in a busy multi‐center institution.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Wei Lu
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Kyle O'Grady
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Iris Yan
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Ellen Yorke
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Laura I Cervino Arriba
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Simon Powell
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Linda Hong
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| |
Collapse
|
15
|
Salvestrini V, Iorio GC, Borghetti P, De Felice F, Greco C, Nardone V, Fiorentino A, Gregucci F, Desideri I. The impact of modern radiotherapy on long-term cardiac sequelae in breast cancer survivor: a focus on deep inspiration breath-hold (DIBH) technique. J Cancer Res Clin Oncol 2021; 148:409-417. [PMID: 34853887 DOI: 10.1007/s00432-021-03875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION One of the most feared side effects of radiotherapy (RT) in the setting of breast cancer (BC) patients is cardiac toxicity. This side effect can jeopardize the quality of life (QoL) of long-term survivors. The impact of modern techniques of RT such as deep inspiration breath hold (DIBH) have dramatically changed this setting. We report and discuss the results of the literature overview of this paper. MATERIALS AND METHODS Literature references were obtained with a PubMed query, hand searching, and clinicaltrials.gov. RESULTS We reported and discussed the toxicity of RT and the improvements due to the modern techniques in the setting of BC patients. CONCLUSIONS BC patients often have a long life expectancy, thus the RT should aim at limiting toxicities and at the same time maintaining the same high cure rates. Further studies are needed to evaluate the risk-benefit ratio to identify patients at higher risk and to tailor the treatment choices.
Collapse
Affiliation(s)
- V Salvestrini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - G C Iorio
- Radiation Oncology, University of Turin, Turin, Italy
| | - P Borghetti
- Radiation Oncology, University and SpedaliCivili, Brescia, Italy
| | - F De Felice
- Radiation Oncology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - C Greco
- Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - V Nardone
- RadiationOncology, Ospedale del Mare, Viale della Metamorfosi, Naples, Italy
| | - A Fiorentino
- Radiation Oncology, General Regional Hospital "F. Miulli, Acquaviva delle Fonti, Bari, Italy
| | - F Gregucci
- Radiation Oncology, General Regional Hospital "F. Miulli, Acquaviva delle Fonti, Bari, Italy
| | - I Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
16
|
Damkjær SMS, Jensen NKG, Fog LS, Josipovic M. A novel surrogate for motion management in external beam radiotherapy of breast cancer patients. Acta Oncol 2021; 60:1432-1435. [PMID: 34238102 DOI: 10.1080/0284186x.2021.1949035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Nikolaj K. G. Jensen
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark
| | - Lotte S. Fog
- Alfred Health Radiation Oncology, Melbourne, Australia
| | - Mirjana Josipovic
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Target motion management in breast cancer radiation therapy. Radiol Oncol 2021; 55:393-408. [PMID: 34626533 PMCID: PMC8647788 DOI: 10.2478/raon-2021-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Background Over the last two decades, breast cancer remains the main cause of cancer deaths in women. To treat this type of cancer, radiation therapy (RT) has proved to be efficient. RT for breast cancer is, however, challenged by intrafractional motion caused by respiration. The problem is more severe for the left-sided breast cancer due to the proximity to the heart as an organ-at-risk. While particle therapy results in superior dose characteristics than conventional RT, due to the physics of particle interactions in the body, particle therapy is more sensitive to target motion. Conclusions This review highlights current and emerging strategies for the management of intrafractional target motion in breast cancer treatment with an emphasis on particle therapy, as a modern RT technique. There are major challenges associated with transferring real-time motion monitoring technologies from photon to particles beams. Surface imaging would be the dominant imaging modality for real-time intrafractional motion monitoring for breast cancer. The magnetic resonance imaging (MRI) guidance and ultra high dose rate (FLASH)-RT seem to be state-of-the-art approaches to deal with 4D RT for breast cancer.
Collapse
|
18
|
Lee SK, Huang S, Zhang L, Ballangrud AM, Aristophanous M, Cervino Arriba LI, Li G. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys 2021; 22:48-57. [PMID: 33792186 PMCID: PMC8130230 DOI: 10.1002/acm2.13241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the accuracy of surface‐guided radiotherapy (SGRT) in cranial patient setup by direct comparison between optical surface imaging (OSI) and cone‐beam computed tomography (CBCT), before applying SGRT‐only setup for conventional radiotherapy of brain and nasopharynx cancer. Methods and Materials Using CBCT as reference, SGRT setup accuracy was examined based on 269 patients (415 treatments) treated with frameless cranial stereotactic radiosurgery (SRS) during 2018‐2019. Patients were immobilized in customized head molds and open‐face masks and monitored using OSI during treatment. The facial skin area in planning CT was used as OSI region of interest (ROI) for automatic surface alignment and the skull was used as the landmark for automatic CBCT/CT registration. A 6 degrees of freedom (6DOF) couch was used. Immediately after CBCT setup, an OSI verification image was captured, recording the SGRT setup differences. These differences were analyzed in 6DOFs and as a function of isocenter positions away from the anterior surface to assess OSI‐ROI bias. The SGRT in‐room setup time was estimated and compared with CBCT and orthogonal 2D kilovoltage (2DkV) setups. Results The SGRT setup difference (magnitude) is found to be 1.0 ± 2.5 mm and 0.1˚±1.4˚ on average among 415 treatments and within 5 mm/3˚ with greater than 95% confidence level (P < 0.001). Outliers were observed for very‐posterior isocenters: 15 differences (3.6%) are >5.0mm and 9 (2.2%) are >3.0˚. The setup differences show minor correlations (|r| < 0.45) between translational and rotational DOFs and a minor increasing trend (<1.0 mm) in the anterior‐to‐posterior direction. The SGRT setup time is 0.8 ± 0.3 min, much shorter than CBCT (5 ± 2 min) and 2DkV (2 ± 1 min) setups. Conclusion This study demonstrates that SGRT has sufficient accuracy for fast in‐room patient setup and allows real‐time motion monitoring for beam holding during treatment, potentially useful to guide radiotherapy of brain and nasopharynx cancer with standard fractionation.
Collapse
Affiliation(s)
- Sang Kyu Lee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sheng Huang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lei Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ase M Ballangrud
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michalis Aristophanous
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura I Cervino Arriba
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
Ranger A, Dunlop A, Grimwood A, Durie E, Donovan E, Havilland J, Harris E, McNair H, Kirby AM. Voluntary versus ABC breath-hold in the context of VMAT for breast and locoregional lymph node radiotherapy including the internal mammary chain. Clin Transl Radiat Oncol 2021; 27:164-168. [PMID: 33681483 PMCID: PMC7918266 DOI: 10.1016/j.ctro.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/07/2021] [Accepted: 02/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Deep-inspiration breath-hold (DIBH) reduces radiation dose to the heart in patients undergoing locoregional breast radiotherapy. In the context of tangential irradiation of the breast/ chest wall, a voluntary breath hold (vDIBH) technique has been shown to be as reproducible as a machine-assisted breath hold technique using the active breathing co-ordinator (ABC™, Elekta, Crawley, UK, ABC_DIBH). This study compares set-up reproducibility for vDIBH versus ABC_DIBH in patients undergoing volumetric-modulated arc radiotherapy (VMAT) for breast cancer, both with and without wax bolus. METHOD Patients with breast cancer requiring pan regional lymph node VMAT +/- wax bolus in breath-hold were CT scanned in vDIBH and ABC_DIBH. Patients were randomised to receive one technique for fractions 1-7 and the other for fractions 8-15. Daily cone beam computed tomography (CBCT) was performed and registered to planning-CT using bony anatomy. Within-patient comparisons of mean daily chest wall position were made using a paired t-test. Population, systematic (∑) and random errors (α) were estimated. Intrafraction reproducibility was assessed by comparing chest wall position and diaphragm movement between consecutive breath holds on CBCT. RESULTS 16 patients were recruited. All completed treatment with both techniques (9 patients with wax bolus, 7 patients without). CBCT derived ∑ were 2.1-6.4 mm (ABC_DIBH) and 2.1-4.9 mm (vDIBH), α were 1.7-2.6 mm (ABC_DIBH) and 2.2-2.7 mm (vDIBH) and mean daily chest wall displacements (MD) were 0.0-1.5 mm (ABC_DIBH) and -0.1-1.6 vDIBH (all p non-significant). Chest wall and diaphragm position was equivalent between consecutive breath holds in ABC and vDIBH (median difference 1.0 mm and 0.8 mm respectively, non p significant) demonstrating equivalent intrafraction reproducibility. CONCLUSION This study demonstrates that a simple voluntary breath hold technique is feasible in combination with VMAT (+/- bolus) and is as reproducible as ABC_DIBH with VMAT for the irradiation of the breast and axillary and IMC lymph nodes in breast cancer patients.
Collapse
Affiliation(s)
- Alison Ranger
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Alex Dunlop
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Alex Grimwood
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Emily Durie
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Ellen Donovan
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Jo Havilland
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Emma Harris
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Helen McNair
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Anna M. Kirby
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| |
Collapse
|
20
|
Abubakar A, Zin HM. Characterisation of Time-of-Flight (ToF) imaging system for application in monitoring deep inspiration breath-hold radiotherapy (DIBH-RT). Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abc635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Abstract
The purpose of this study is to develop a method for characterisation of time-of-flight (ToF) imaging system for application in deep inspiration breath-hold radiotherapy (DIBH-RT). The performance of an Argos 3D P330 ToF camera (Bluetechnix, Austria) was studied for patient surface monitoring during DIBH-RT using a phantom to simulate the intra-patient and inter-patient stability of the camera. Patient setup error was also simulated by positioning the phantom at predefined shift positions (2, 5 and 10 mm) from the isocentre. The localisation accuracy of the phantom was measured using ToF imaging system and repeated using CBCT imaging alone (CBCT) and simultaneously using ToF imaging during CBCT imaging (ToF-CBCT). The mean and SD of the setup errors obtained from each of the imaging methods were calculated. Student t-test was used to compare the mean setup errors. Correlation and Bland-Altman analysis were also performed. The intra-and inter-patient stability of the camera were within 0.31 mm and 0.74 mm, respectively. The localisation accuracy in terms of the mean ±SD of the measured setup errors were 0.34 ± 0.98 mm, 0.12 ± 0.34 mm, and −0.24 ± 1.42 mm for ToF, CBCT and ToF-CBCT imaging, respectively. A strong correlation was seen between the phantom position and the measured position using ToF (r = 0.96), CBCT (r = 0.99) as well as ToF-CBCT (r = 0.92) imaging. The limits of agreement from Bland Altman analysis between the phantom position and ToF, CBCT and ToF-CBCT measured positions were −1.52, 2.31 mm, −0.55, 0.78 mm; and −3.03, 2.55 mm, respectively. The sensor shows good stability and high accuracy comparable to similar sensors in the market. The method developed is useful for characterisation of an optical surface imaging system for application in monitoring DIBH-RT.
Collapse
|
21
|
Covington EL, Stanley DN, Fiveash JB, Thomas EM, Marcrom SR, Bredel M, Willey CD, Riley KO, Popple RA. Surface guided imaging during stereotactic radiosurgery with automated delivery. J Appl Clin Med Phys 2020; 21:90-95. [PMID: 33095971 PMCID: PMC7769383 DOI: 10.1002/acm2.13066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE To report on the use of surface guided imaging during frameless intracranial stereotactic radiotherapy with automated delivery via HyperArcTM (Varian Medical Systems, Palo Alto, CA). METHODS All patients received intracranial radiotherapy with HyperArcTM and were monitored for intrafraction motion by the AlignRT® (VisionRT, London, UK) surface imaging (SI) system. Immobilization was with the EncompassTM (Qfix, Avondale, PA) aquaplast mask device. AlignRT® log files were correlated with trajectory log files to correlate treatment parameters with SI reported offsets. SI reported offsets were correlated with gantry angle and analyzed for performance issues at non-zero couch angles and during camera-pod blockage during gantry motion. Demographics in the treatment management system were used to identify race and determine if differences in SI reported offsets are due to skin tone settings. RESULTS A total of 981 fractions were monitored over 14 months and 819 were analyzed. The median AlignRT® reported motion from beginning to the end of treatment was 0.24 mm. The median offset before beam on at non-zero couch angles was 0.55 mm. During gantry motion when camera pods are blocked, the median magnitude was below 1 mm. Median magnitude of offsets at non-zero couch angles was not found to be significantly different for patients stratified by race. CONCLUSIONS Surface image guidance is a viable alternative to scheduled mid-treatment imaging for monitoring intrafraction motion during stereotactic radiosurgery with automated delivery.
Collapse
Affiliation(s)
- Elizabeth L Covington
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Dennis N Stanley
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - John B Fiveash
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Evan M Thomas
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Samuel R Marcrom
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Marcus Bredel
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Kristen O Riley
- Department of Neurosurgery, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama - Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver. Clin Oncol (R Coll Radiol) 2020; 32:792-804. [PMID: 33036840 DOI: 10.1016/j.clon.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022]
Abstract
Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy.
Collapse
|
23
|
Leong B, Padilla L. Impact of use of optical surface imaging on initial patient setup for stereotactic body radiotherapy treatments. J Appl Clin Med Phys 2020; 20:149-158. [PMID: 31833639 PMCID: PMC6909112 DOI: 10.1002/acm2.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To evaluate the effectiveness of surface image guidance (SG) for pre‐imaging setup of stereotactic body radiotherapy (SBRT) patients, and to investigate the impact of SG reference surface selection on this process. Methods and materials 284 SBRT fractions (SG‐SBRT = 113, non‐SG‐SBRT = 171) were retrospectively evaluated. Differences between initial (pre‐imaging) and treatment couch positions were extracted from the record‐and‐verify system and compared for the two groups. Rotational setup discrepancies were also computed. The utility of orthogonal kVs in reducing CBCT shifts in the SG‐SBRT/non‐SG‐SBRT groups was also calculated. Additionally, the number of CBCTs acquired for setup was recorded and the average for each cohort was compared. These data served to evaluate the effectiveness of surface imaging in pre‐imaging patient positioning and its potential impact on the necessity of including orthogonal kVs for setup. Since reference surface selection can affect SG setup, daily surface reproducibility was estimated by comparing camera‐acquired surface references (VRT surface) at each fraction to the external surface of the planning CT (DICOM surface) and to the VRT surface from the previous fraction. Results The reduction in all initial‐to‐treatment translation/rotation differences when using SG‐SBRT was statistically significant (Rank‐Sum test, α = 0.05). Orthogonal kV imaging kept CBCT shifts below reimaging thresholds in 19%/51% of fractions for SG‐SBRT/non‐SG‐SBRT cohorts. Differences in average number of CBCTs acquired were not statistically significant. The reference surface study found no statistically significant differences between the use of DICOM or VRT surfaces. Conclusions SG‐SBRT improved pre‐imaging treatment setup compared to in‐room laser localization alone. It decreased the necessity of orthogonal kV imaging prior to CBCT but did not affect the average number of CBCTs acquired for setup. The selection of reference surface did not have a significant impact on initial patient positioning.
Collapse
Affiliation(s)
- Brian Leong
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Laura Padilla
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Romera-Martínez I, Muñoz-Montplet C, Jurado-Bruggeman D, Onsès-Segarra A, Fuentes-Raspall R, Buxó M, Vilanova JC. A Novel Device for Deep-Inspiration Breath Hold (DIBH): Results from a Single-Institution Phase 2 Clinical Trial for Patients with Left-Sided Breast Cancer. Pract Radiat Oncol 2020; 10:e290-e297. [PMID: 32068155 DOI: 10.1016/j.prro.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE To validate a novel device developed at our institution for deep inspiration breath hold (DIBH) within a phase 2 clinical trial for left-sided breast cancer and to evaluate the dosimetric benefits of its use. METHODS AND MATERIALS The device uses an external mechanical reference for guiding the patient to the desired breath level and gives acoustic and visual feedback to the patient and the radiation therapists, respectively. A phase 2 clinical trial was performed for its validation. The thoracic amplitude was used as a surrogate of the inspiration level. The stability, repeatability, reproducibility, and reliability of DIBH using the device were analyzed. The dosimetric parameters of the heart, the left anterior descending coronary artery, the ipsilateral lung, the contralateral breast, and the target coverage using free breathing and DIBH were compared. RESULTS Thirty-eight patients were included in the analysis. The maximum population value of stability and repeatability were 1.7 mm and 3.3 mm, respectively. The reproducibility mean value was 1.7 mm, and population systematic and random errors were 0.3 mm and 0.9 mm, respectively. The reliability was 98.9%. Statistically significant dose reductions were found for the heart, the left anterior descending coronary artery, and the ipsilateral lung dosimetric parameters in DIBH, without losing dose coverage to the planning target volumes. CONCLUSIONS The validation of the device within the phase 2 clinical trial demonstrates that it offers reliable, stable, repeatable, and reproducible breast cancer treatments in DIBH with its dosimetric benefits.
Collapse
Affiliation(s)
- Ingrid Romera-Martínez
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain.
| | - Carles Muñoz-Montplet
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain
| | - Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Albert Onsès-Segarra
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Rafael Fuentes-Raspall
- Radiation Oncology Department, Institut Català d'Oncologia, Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute, Parc Hospitalari Martí i Julià, Salt, Spain
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institut de Diagnòstic per la Imatge, Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
25
|
Pandeli C, Smyth LML, David S, See AW. Dose reduction to organs at risk with deep-inspiration breath-hold during right breast radiotherapy: a treatment planning study. Radiat Oncol 2019; 14:223. [PMID: 31822293 PMCID: PMC6905024 DOI: 10.1186/s13014-019-1430-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023] Open
Abstract
Background The addition of regional nodal radiation (RNI) to whole breast irradiation for high risk breast cancer improves metastases free survival and new data suggests it contributes additional benefit to overall survival. Deep inspiration breath hold (DIBH) has been shown to reduce cardiac and pulmonary dose in the context of left-sided disease treated with or without RNI, yet few studies have investigated its utility for right-breast cancer. This study investigates the potential advantages of DIBH in local and locoregional radiotherapy for right-sided breast cancer. Methods Free-breathing (FB) and DIBH computed tomography datasets were obtained from twenty patients who previously underwent radiotherapy for left-sided breast cancer. Ten patients were retrospectively planned for whole right breast only irradiation and ten patients were planned for irradiation to the whole breast plus ipsilateral supra-clavicular (SC) nodes, with and without irradiation of the ipsilateral internal mammary nodes (IMN). Dose-volume metrics for the clinical target volume, lungs, heart, left anterior descending artery, right coronary artery (RCA) and liver were recorded. Differences between FB and DIBH plans were analysed using Wilcoxon signed-rank tests, with P < 0.05 considered statistically significant. Results DIBH increased the average total lung volume compared to FB in both breast only and breast plus RNI cohorts (P = 0.001). For the breast only group, there was no significant improvement in any ipsilateral lung dose-volume metric between FB and DIBH. However, for the breast plus RNI group, there was an improvement in ipsilateral lung mean dose (18.9 ± 3.2 Gy to 15.9 ± 2.3 Gy, P = 0.002) and V20Gy (45.3 ± 13.3% to 32.9 ± 9.4%, P = 0.002). In addition, DIBH significantly reduced the maximum dose to the RCA for RNI (11.6 ± 7.2 Gy to 5.6 ± 2.9 Gy, P = 0.03). Significant reductions in the liver V20Gy and maximum dose were observed in all cohorts during DIBH compared to FB. Conclusions DIBH is a promising approach for right-breast radiotherapy with considerable sparing of normal tissue, particularly when the ipsilateral IMNs are also irradiated.
Collapse
Affiliation(s)
- Chloe Pandeli
- Icon Cancer Centre, Level 4, The Epworth Centre, 32 Erin Street, Richmond, Victoria, 3121, Australia.
| | - Lloyd M L Smyth
- Icon Cancer Centre, Level 4, The Epworth Centre, 32 Erin Street, Richmond, Victoria, 3121, Australia
| | - Steven David
- Icon Cancer Centre, Mulgrave, Victoria, 3170, Australia
| | - Andrew W See
- Icon Cancer Centre, Level 4, The Epworth Centre, 32 Erin Street, Richmond, Victoria, 3121, Australia
| |
Collapse
|
26
|
Zhao H, Williams N, Poppe M, Sarkar V, Wang B, Rassiah-Szegedi P, Huang YJ, Kokeny K, Gaffney D, Salter B. Comparison of surface guidance and target matching for image-guided accelerated partial breast irradiation (APBI). Med Phys 2019; 46:4717-4724. [PMID: 31509632 DOI: 10.1002/mp.13816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE We investigate the feasibility of surface guided radiation therapy (SGRT) for accelerated partial breast irradiation (APBI) by comparing it with in-room, fan beam kV computed tomography on rails (CTOR) imaging of the targeted region. The uniqueness of our study is that all patients have multiple daily CTOR scans to compare corresponding SGRT AlignRT (VisionRT, United Kingdom) images to. METHODS/MATERIALS Twelve patients receiving APBI were enrolled in this study. Before each treatment fraction, after patients were setup on tattoos, SGRT was performed using AlignRT, and then target matching was performance using CTOR. The average and maximum difference in shifts between SGRT and CTOR were calculated and analyzed for each patient, so as the correlation between surgical cavity size and shift difference. RESULTS Our study showed that SGRT agreed well with CTOR for patients with small surgical cavity volume changes (<10%). There were nine patients who had a ≥5 mm maximum shift difference between SGRT and CTOR along any direction, and in two patients the difference was more than 10 mm (one patient with surgical cavity change 44.3% and one patient with 27 cc cavity volume decrease). All patients, except one, had a mean shift difference < 5 mm along any direction. CONCLUSION For the patients studied here, SGRT appears to be a reasonable and potentially valuable image guidance approach for APBI for patients who experience small changes in surgical cavity volume (<10%) between CT simulation and treatment. However, there is potential for larger alignment errors (up to 11 mm) when using SGRT for patients who experience larger surgical cavity changes.
Collapse
Affiliation(s)
- Hui Zhao
- University of Utah, Salt Lake City, UT, 84112, USA
| | - Ned Williams
- San Antonio Military Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX, 78234, USA
| | | | | | - Brian Wang
- University of Louisville, 2301 S 3rd St, Louisville, KY, 40292, USA
| | | | | | | | | | - Bill Salter
- University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
27
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
28
|
Kost S, Guo B, Xia P, Shah C. Assessment of Setup Accuracy Using Anatomical Landmarks for Breast and Chest Wall Irradiation With Surface Guided Radiation Therapy. Pract Radiat Oncol 2019; 9:239-247. [DOI: 10.1016/j.prro.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
29
|
Chen H, Chen M, Lu W, Zhao B, Jiang S, Zhou L, Kim N, Spangler A, Rahimi A, Zhen X, Gu X. Deep-learning based surface region selection for deep inspiration breath hold (DIBH) monitoring in left breast cancer radiotherapy. Phys Med Biol 2018; 63:245013. [DOI: 10.1088/1361-6560/aaf0d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Claridge Mackonis ER, Estoesta RP, Carroll S. In-vivo dosimetry comparison of supraclavicular junction dose for breast and chest-wall patients with and without deep inspiration breath hold (DIBH). Phys Med 2018; 54:15-20. [DOI: 10.1016/j.ejmp.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/14/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022] Open
|
31
|
Vuong W, Garg R, Bourgeois DJ, Yu S, Sehgal V, Daroui P. Dosimetric comparison of deep-inspiration breath-hold and free-breathing treatment delivery techniques for left-sided breast cancer using 3D surface tracking. Med Dosim 2018; 44:193-198. [PMID: 30078605 DOI: 10.1016/j.meddos.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023]
Abstract
INTRODUCTION While radiation therapy has been shown to increase local control and overall survival for breast cancer, late cardiac toxicity remains a concern. Morbidity and mortality have been shown to increase proportionally to the mean heart dose. Deep inspiration breath-hold (DIBH) can reduce heart dose compared to free-breathing (FB) by increasing the heart-to-chest wall distance, especially in left-sided breast cancer. We present our clinical experience with DIBH in left breast and chest-wall irradiation using 3D optical surface tracking. MATERIALS & METHODS 29 patients were treated with DIBH using a surface tracking system that provides a real time 3D surface image of the patient. Comparisons of maximum and mean heart dose, heart-chest wall separation, and the percentage of lung volume that receives 20 or more Gy (V20) between the DIBH and hypothetical FB treatment plans were conducted with the Student's t-test. Correlation coefficients were also calculated for heart-chest wall separation, heart volume, and lung volume. RESULTS Comparing DIBH and FB plans showed a decrease in mean and maximum heart doses in all patients. Individual mean heart doses decreased by an average of 1.12 Gy, and the average mean heart dose for DIBH plans was significantly lower than corresponding FB plans (1.02 vs. 2.12 Gy; p < 0.0001). Maximum heart dose decreased by an average of 11.88 Gy and was significantly lower in DIBH versus FB plans (28.33 vs. 43.7 Gy; p = 0.0001). The average difference in heart to chest-wall separation between DIBH and FB images was 2.41 cm. DIBH left lung volume and measured increases in volume on inspiration inversely correlated with maximum heart dose (R = 0.39) and left lung V20 (R = 0.32). CONCLUSIONS DIBH with 3D surface tracking can significantly benefit patients with left sided disease by limiting the mean and maximum heart dose. DIBH appears to viably reduce heart dose for left-breast cancer patients and thus potentially reduce long-term complications without prolonging treatment delivery.
Collapse
Affiliation(s)
- Winston Vuong
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, IR, USA
| | - Rupen Garg
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, IR, USA
| | | | - Suhong Yu
- Department of Radiation Oncology, Boston Medical Center
| | - Varun Sehgal
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, IR, USA
| | - Parima Daroui
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, IR, USA.
| |
Collapse
|
32
|
Xiao A, Crosby J, Malin M, Kang H, Washington M, Hasan Y, Chmura SJ, Al-Hallaq HA. Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 2018; 19:205-213. [PMID: 29935001 PMCID: PMC6036385 DOI: 10.1002/acm2.12368] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose We calculated setup margins for whole breast radiotherapy during voluntary deep‐inspiration breath‐hold (vDIBH) using real‐time surface imaging (SI). Methods and Materials Patients (n = 58) with a 27‐to‐31 split between right‐ and left‐sided cancers were analyzed. Treatment beams were gated using AlignRT by registering the whole breast region‐of‐interest to the surface generated from the simulation CT scan. AlignRT recorded (three‐dimensional) 3D displacements and the beam‐on‐state every 0.3 s. Means and standard deviations of the displacements during vDIBH for each fraction were used to calculate setup margins. Intra‐DIBH stability and the intrafraction reproducibility were estimated from the medians of the 5th to 95th percentile range of the translations in each breath‐hold and fraction, respectively. Results A total of 7269 breath‐holds were detected over 1305 fractions in which a median dose of 200 cGy was delivered. Each fraction was monitored for 5.95 ± 2.44 min. Calculated setup margins were 4.8 mm (A/P), 4.9 mm (S/I), and 6.4 mm (L/R). The intra‐DIBH stability and the intrafraction reproducibility were ≤0.7 mm and ≤2.2 mm, respectively. The isotropic margin according to SI (9.2 mm) was comparable to other institutions’ calculations that relied on x‐ray imaging and/or spirometry for patients with left‐sided cancer (9.8–11.0 mm). Likewise, intra‐DIBH variability and intrafraction reproducibility of breast surface measured with SI agreed with spirometry‐based positioning to within 1.2 and 0.36 mm, respectively. Conclusions We demonstrated that intra‐DIBH variability, intrafraction reproducibility, and setup margins are similar to those reported by peer studies who utilized spirometry‐based positioning.
Collapse
Affiliation(s)
- Annie Xiao
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jennie Crosby
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Martha Malin
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Hyejoo Kang
- Department of Radiation Oncology, Loyola Medicine, Maywood, IL, USA
| | - Maxine Washington
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Yasmin Hasan
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Hania A Al-Hallaq
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Fassi A, Ivaldi GB, de Fatis PT, Liotta M, Meaglia I, Porcu P, Regolo L, Riboldi M, Baroni G. Target position reproducibility in left-breast irradiation with deep inspiration breath-hold using multiple optical surface control points. J Appl Clin Med Phys 2018; 19:35-43. [PMID: 29740971 PMCID: PMC6036357 DOI: 10.1002/acm2.12321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to investigate the use of 3D optical localization of multiple surface control points for deep inspiration breath-hold (DIBH) guidance in left-breast radiotherapy treatments. Ten left-breast cancer patients underwent whole-breast DIBH radiotherapy controlled by the Real-time Position Management (RPM) system. The reproducibility of the tumor bed (i.e., target) was assessed by the position of implanted clips, acquired through in-room kV imaging. Six to eight passive fiducials were positioned on the patients' thoraco-abdominal surface and localized intrafractionally by means of an infrared 3D optical tracking system. The point-based registration between treatment and planning fiducials coordinates was applied to estimate the interfraction variations in patients' breathing baseline and to improve target reproducibility. The RPM-based DIBH control resulted in a 3D error in target reproducibility of 5.8 ± 3.4 mm (median value ± interquartile range) across all patients. The reproducibility errors proved correlated with the interfraction baseline variations, which reached 7.7 mm for the single patient. The contribution of surface fiducials registration allowed a statistically significant reduction (p < 0.05) in target localization errors, measuring 3.4 ± 1.7 mm in 3D. The 3D optical monitoring of multiple surface control points may help to optimize the use of the RPM system for improving target reproducibility in left-breast DIBH irradiation, providing insights on breathing baseline variations and increasing the robustness of external surrogates for DIBH guidance.
Collapse
Affiliation(s)
- Aurora Fassi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Giovanni B Ivaldi
- Department of Radiation Oncology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | - Marco Liotta
- Division of Medical Physics, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Ilaria Meaglia
- Department of Radiation Oncology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrizia Porcu
- Department of Radiation Oncology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Lea Regolo
- Division of Breast Surgery, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Marco Riboldi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.,Bioengineering Unit, Clinical Division, CNAO Foundation, Pavia, Italy
| |
Collapse
|
34
|
Bergom C, Currey A, Desai N, Tai A, Strauss JB. Deep Inspiration Breath Hold: Techniques and Advantages for Cardiac Sparing During Breast Cancer Irradiation. Front Oncol 2018; 8:87. [PMID: 29670854 PMCID: PMC5893752 DOI: 10.3389/fonc.2018.00087] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022] Open
Abstract
Historically, heart dose from left-sided breast radiotherapy has been associated with a risk of cardiac injury. Data suggests that there is not a threshold for the deleterious effects from radiation on the heart. Over the past several years, advances in radiation delivery techniques have reduced cardiac morbidity due to treatment. Deep inspiration breath hold (DIBH) is a technique that takes advantage of a more favorable position of the heart during inspiration to minimize heart doses over a course of radiation therapy. In the accompanying review article, we outline several methods used to deliver treatment with DIBH, quantify the benefits of DIBH treatment, discuss considerations for patient selection, and identify challenges associated with DIBH techniques.
Collapse
Affiliation(s)
- Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Adam Currey
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nina Desai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan B Strauss
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
35
|
Doebrich M, Downie J, Lehmann J. Continuous breath-hold assessment during breast radiotherapy using portal imaging. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 5:64-68. [PMID: 33458371 PMCID: PMC7807561 DOI: 10.1016/j.phro.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/10/2018] [Accepted: 02/22/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Marcus Doebrich
- Radiation Oncology Department, Calvary Mater Newcastle, Newcastle, Australia.,The University of Newcastle, Newcastle, Australia
| | - Janine Downie
- Radiation Oncology Department, Calvary Mater Newcastle, Newcastle, Australia.,The University of Newcastle, Newcastle, Australia
| | - Joerg Lehmann
- Radiation Oncology Department, Calvary Mater Newcastle, Newcastle, Australia.,The University of Newcastle, Newcastle, Australia.,The University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Lin H, Liu T, Shi C, Petillion S, Kindts I, Weltens C, Depuydt T, Song Y, Saleh Z, Xu XG, Tang X. Feasibility study of individualized optimal positioning selection for left-sided whole breast radiotherapy: DIBH or prone. J Appl Clin Med Phys 2018; 19:218-229. [PMID: 29436168 PMCID: PMC5849849 DOI: 10.1002/acm2.12283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
The deep inspiration breath hold (DIBH) and prone (P) position are two common heart-sparing techniques for external-beam radiation treatment of left-sided breast cancer patients. Clinicians select the position that is deemed to be better for tissue sparing based on their experience. This approach, however, is not always optimum and consistent. In response to this, we develop a quantitative tool that predicts the optimal positioning for the sake of organs at risk (OAR) sparing. Sixteen left-sided breast cancer patients were considered in the study, each received CT scans in the supine free breathing, supine DIBH, and prone positions. Treatment plans were generated for all positions. A patient was classified as DIBH or P using two different criteria: if that position yielded (1) lower heart dose, or (2) lower weighted OAR dose. Ten anatomical features were extracted from each patient's data, followed by the principal component analysis. Sequential forward feature selection was implemented to identify features that give the best classification performance. Nine statistical models were then applied to predict the optimal positioning and were evaluated using stratified k-fold cross-validation, predictive accuracy and receiver operating characteristic (AUROC). For heart toxicity-based classification, the support vector machine with radial basis function kernel yielded the highest accuracy (0.88) and AUROC (0.80). For OAR overall toxicities-based classification, the quadratic discriminant analysis achieved the highest accuracy (0.90) and AUROC (0.84). For heart toxicity-based classification, Breast volume and the distance between Heart and Breast were the most frequently selected features. For OAR overall toxicities-based classification, Heart volume, Breast volume and the distance between ipsilateral lung and breast were frequently selected. Given the patient data considered in this study, the proposed statistical model is feasible to provide predictions for DIBH and prone position selection as well as indicate important clinical features that affect the position selection.
Collapse
Affiliation(s)
- Hui Lin
- Nuclear Engineering and Engineering PhysicsRensselaer Polytechnic InstituteTroyUSA
| | - Tianyu Liu
- Nuclear Engineering and Engineering PhysicsRensselaer Polytechnic InstituteTroyUSA
| | - Chengyu Shi
- Department of Medical PhysicsMemorial Sloan‐Kettering Cancer CenterNew YorkUSA
| | - Saskia Petillion
- Department of Radiation OncologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Isabelle Kindts
- Department of Radiation OncologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Caroline Weltens
- Department of Radiation OncologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Tom Depuydt
- Department of Radiation OncologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Yulin Song
- Department of Medical PhysicsMemorial Sloan‐Kettering Cancer CenterNew YorkUSA
| | - Ziad Saleh
- Department of Medical PhysicsMemorial Sloan‐Kettering Cancer CenterNew YorkUSA
| | - Xie George Xu
- Nuclear Engineering and Engineering PhysicsRensselaer Polytechnic InstituteTroyUSA
| | - Xiaoli Tang
- Department of Medical PhysicsMemorial Sloan‐Kettering Cancer CenterNew YorkUSA
| |
Collapse
|
37
|
Kügele M, Edvardsson A, Berg L, Alkner S, Andersson Ljus C, Ceberg S. Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. J Appl Clin Med Phys 2017; 19:25-38. [PMID: 29139223 PMCID: PMC5768000 DOI: 10.1002/acm2.12214] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/26/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate potential dose reductions to the heart, left anterior descending coronary artery (LAD), and ipsilateral lung for left‐sided breast cancer using visually guided deep inspiration breath‐hold (DIBH) with the optical surface scanning system Catalyst™, and how these potential dosimetric benefits are affected by intrafractional motion in between breath holds. For both DIBH and free breathing (FB), treatment plans were created for 20 tangential and 20 locoregional left‐sided breast cancer patients. During DIBH treatment, beam‐on was triggered by a region of interest on the xiphoid process using a 3 mm gating window. Using a novel nonrigid algorithm, the Catalyst™ system allows for simultaneous real‐time tracking of the isocenter position, which was used to calculate the intrafractional DIBH isocenter reproducibility. The 50% and 90% cumulative probabilities and maximum values of the intrafractional DIBH isocenter reproducibility were calculated and to obtain the dosimetric effect isocenter shifts corresponding to these values were performed in the treatment planning system. For both tangential and locoregional treatment, the dose to the heart, LAD and ipsilateral lung was significantly reduced for DIBH compared to FB. The intrafractional DIBH isocenter reproducibility was very good for the majority of the treatment sessions, with median values of approximately 1 mm in all three translational directions. However, for a few treatment sessions, intrafractional DIBH isocenter reproducibility of up to 5 mm was observed, which resulted in large dosimetric effects on the target volume and organs at risk. Hence, it is of importance to set tolerance levels on the intrafractional isocenter motion and not only perform DIBH based on the xiphoid process.
Collapse
Affiliation(s)
- Malin Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of clinical sciences, Lund University, Lund, Sweden
| | - Anneli Edvardsson
- Medical Radiation Physics, Department of clinical sciences, Lund University, Lund, Sweden
| | - Lovisa Berg
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sara Alkner
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Carina Andersson Ljus
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sofie Ceberg
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of clinical sciences, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Zagar TM, Kaidar-Person O, Tang X, Jones EE, Matney J, Das SK, Green RL, Sheikh A, Khandani AH, McCartney WH, Oldan JD, Wong TZ, Marks LB. Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study. Int J Radiat Oncol Biol Phys 2017; 97:903-909. [DOI: 10.1016/j.ijrobp.2016.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
|
39
|
Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. Int J Radiat Oncol Biol Phys 2015; 94:478-92. [PMID: 26867877 DOI: 10.1016/j.ijrobp.2015.11.049] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/03/2015] [Accepted: 11/29/2015] [Indexed: 01/06/2023]
Abstract
Several recent developments in linear accelerator-based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effects in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.
Collapse
|
40
|
Abstract
Breast cancer treatments have evolved over the past decades, although several widely used treatments have adverse cardiac effects. Radiotherapy generally improves the survival of women with breast cancer, although its deleterious cardiovascular effects pose competing risks of morbidity and/or mortality. In the past, radiation-associated cardiovascular disease was a phenomenon considered to take more than a decade to manifest, but newer research suggests that this latency is much shorter. Knowledge of coronary anatomy relative to the distribution of the delivered radiation dose has improved over time, and as a result, techniques have enabled this risk to be decreased. Studies continue to be performed to better understand, prevent and mitigate against radiation-associated cardiovascular disease. Treatments such as anthracyclines, which are a mainstay of chemotherapy for breast cancer, and newer targeted agents such as trastuzumab both have established risks of cardiotoxicity, which can limit their effectiveness and result in increased morbidity and/or mortality. Interest in whether β-blockers, statins and/or angiotensin-converting enzyme (ACE)-inhibitors might have therapeutic and/or preventative effects in these patients is currently increasing. This Review summarizes the incidence, risks and effects of treatment-induced cardiovascular disease in patients with breast cancer and describes strategies that might be used to minimize this risk.
Collapse
|
41
|
How Important Is a Reproducible Breath Hold for Deep Inspiration Breath Hold Breast Radiation Therapy? Int J Radiat Oncol Biol Phys 2015; 93:901-7. [PMID: 26530760 DOI: 10.1016/j.ijrobp.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/28/2015] [Accepted: 06/03/2015] [Indexed: 11/23/2022]
Abstract
PURPOSE Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but it does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. METHODS AND MATERIALS Twenty-five patients who underwent free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: FB, DIBH, FB_DIBH (the DIBH plans were copied to the FB images and recalculated, and image registration was based on breast tissue), and P_DIBH (a partial BH with the heart shifted midway between the FB and DIBH positions). The FB_DIBH plans give a "worst-case" scenario for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Kolmogorov-Smirnov tests were used to compare the dose metrics. RESULTS The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB_DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (P≥.10). The mean heart dose differed between FB_DIBH and FB by <2 Gy for all cases, and the maximum heart dose differed by <2 Gy for 21 cases. The P_DIBH plans showed significantly lower mean heart dose than FB (P<.01). The mean heart doses for the P_DIBH plans were <FB for 22 cases, the maximum dose was <FB for 18 cases. CONCLUSIONS A DIBH plan delivered to a FB patient setup with surface imaging will yield dosimetry similar to that of a plan created and delivered FB. A DIBH plan delivered with even a partial BH can give reduced heart dose compared with FB techniques.
Collapse
|
42
|
Tanguturi SK, Lyatskaya Y, Chen Y, Catalano PJ, Chen MH, Yeo WP, Marques A, Truong L, Yeh M, Orlina L, Wong JS, Punglia RS, Bellon JR. Prospective assessment of deep inspiration breath-hold using 3-dimensional surface tracking for irradiation of left-sided breast cancer. Pract Radiat Oncol 2015; 5:358-65. [PMID: 26231594 DOI: 10.1016/j.prro.2015.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Deep inspiration breath hold (DIBH) is used to decrease cardiac irradiation during radiation therapy (RT) for breast cancer. The patients most likely to benefit and the impact on treatment time remain largely unknown. We sought to identify predictors for the use of DIBH and to quantify differences in dosimetry and treatment time using a prospective registry. METHODS AND MATERIALS A total of 150 patients with left breast cancer were enrolled. All patients were simulated with both free breathing (FB) and DIBH. RT was delivered by either modality. Alternate scans were planned with use of deformable registration to include identical RT volumes. DIBH patients were monitored by a real-time surface tracking system, AlignRT (Vision RT, Ltd, London, United Kingdom). Baseline characteristics and treatment times were compared by Fisher exact test and Wilcoxon rank sum test. Dosimetric endpoints were analyzed by Wilcoxon signed rank test, and linear regression identified predictors for change in mean heart dose (∆MHD). RESULTS We treated 38 patients with FB and 110 with DIBH. FB patients were older, more likely to have heart and lung disease, and less likely to receive chemotherapy or immediate reconstruction (all P < .05). Treatment times were not significantly different, but DIBH patients had greater variability in times (P = .0002). Of 146 evaluable patients, DIBH resulted in >20 cGy improvement in MHD in 107 patients but a >20 cGy increase in MHD in 14. Both MHD and lung V20 were significantly lower in DIBH than in paired FB plans. On multivariate analysis, younger age (4.18 cGy per year; P < .0001), higher body mass index (6.06 cGy/kg/m(2); P = .0018), and greater change in lung volumes (130 cGy/L; P = .003) were associated with greater ∆MHD. CONCLUSIONS DIBH improves cardiac dosimetry without significantly impacting treatment time in most patients. Greater inspiratory lung volumes augment this benefit. Because the improvement with DIBH was not uniform, patients should be scanned with both FB and DIBH.
Collapse
Affiliation(s)
| | - Yulia Lyatskaya
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Yuhui Chen
- Department of Biostatistics and Computational Biology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Paul J Catalano
- Department of Biostatistics and Computational Biology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ming Hui Chen
- Department of Cardiology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wee-Pin Yeo
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Alex Marques
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Linh Truong
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Mary Yeh
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Lawrence Orlina
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Julia S Wong
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Rinaa S Punglia
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jennifer R Bellon
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
43
|
Tang X, Cullip T, Dooley J, Zagar T, Jones E, Chang S, Zhu X, Lian J, Marks L. Dosimetric effect due to the motion during deep inspiration breath hold for left-sided breast cancer radiotherapy. J Appl Clin Med Phys 2015; 16:91-99. [PMID: 26219001 PMCID: PMC5690002 DOI: 10.1120/jacmp.v16i4.5358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/02/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023] Open
Abstract
Deep inspiration breath-hold (DIBH) radiotherapy for left-sided breast cancer can reduce cardiac exposure and internal motion. We modified our in-house treatment planning system (TPS) to retrospectively analyze breath-hold motion log files to calculate the dosimetric effect of the motion during breath hold. Thirty left-sided supine DIBH breast patients treated using AlignRT were studied. Breath-hold motion was recorded — three translational and three rotational displacements of the treatment surface — the Real Time Deltas (RTD). The corresponding delivered dose was estimated using the beam-on portions of the RTDs. Each motion was used to calculate dose, and the final estimated dose was the equally weighted average of the multiple resultant doses. Ten of thirty patients had internal mammary nodes (IMN) purposefully included in the tangential fields, and we evaluated the percentage of IMN covered by 40 Gy. The planned and delivered heart mean dose, lungs V20 (volume of the lungs receiving > 20 Gy), percentage of IMN covered by 40 Gy, and IMN mean dose were compared. The averaged mean and standard deviation of the beam-on portions of the absolute RTDs were 0.81 ± 1.29 mm, 0.68 ± 0.85mm, 0.76 ± 0.85 mm, 0.96° ± 0.49°, 0.93° ± 0.43°, and 1.03° ± 0.50°, for vertical, longitudinal, lateral, yaw, roll, and pitch, respectively. The averaged planned and delivered mean heart dose were 99 and 101 cGy. Lungs V20 were 6.59% and 6.74%. IMN 40 Gy coverage was 83% and 77%, and mean IMN dose was 4642 and 4518 cGy. The averaged mean motion during DIBH was smaller than 1 mm and 1°, which reflects the relative reproducibility of the patient breath hold. On average, the mean heart dose and lungs V20 were reasonably close to what have been planned. IMN 40 Gy coverage might be modestly reduced for certain cases.
Collapse
|
44
|
Yang W, McKenzie EM, Burnison M, Shiao S, Mirhadi A, Hakimian B, Reznik R, Tuli R, Sandler H, Fraass BA. Clinical experience using a video-guided spirometry system for deep inhalation breath-hold radiotherapy of left-sided breast cancer. J Appl Clin Med Phys 2015; 16:5218. [PMID: 26103193 PMCID: PMC5690070 DOI: 10.1120/jacmp.v16i2.5218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/01/2014] [Accepted: 10/27/2014] [Indexed: 12/25/2022] Open
Abstract
The purpose was to report clinical experience of a video-guided spirometry system in applying deep inhalation breath-hold (DIBH) radiotherapy for left-sided breast cancer, and to study the systematic and random uncertainties, intra- and interfraction motion and impact on cardiac dose associated with DIBH. The data from 28 left-sided breast cancer patients treated with spirometer-guided DIBH radiation were studied. Dosimetric comparisons between free-breathing (FB) and DIBH plans were performed. The distance between the heart and chest wall measured on the digitally reconstructed radiographs (DRR) and MV portal images, dDRR(DIBH) and dport(DIBH), respectively, was compared as a measure of DIBH setup uncertainty. The difference (Δd) between dDRR(DIBH) and dport(DIBH) was defined as the systematic uncertainty. The standard deviation of Δd for each patient was defined as the random uncertainty. MV cine images during radiation were acquired. Affine registrations of the cine images acquired during one fraction and multiple fractions were performed to study the intra- and interfraction motion of the chest wall. The median chest wall motion was used as the metric for intra- and interfraction analysis. Breast motions in superior-inferior (SI) direction and "AP" (defined on the DRR or MV portal image as the direction perpendicular to the SI direction) are reported. Systematic and random uncertainties of 3.8 mm and 2mm, respectively, were found for this spirometer-guided DIBH treatment. MV cine analysis showed that intrafraction chest wall motions during DIBH were 0.3mm in "AP" and 0.6 mm in SI. The interfraction chest wall motions were 3.6 mm in "AP" and 3.4 mm in SI. Utilization of DIBH with this spirometry system led to a statistically significant reduction of cardiac dose relative to FB treatment. The DIBH using video-guided spirometry provided reproducible cardiac sparing with minimal intra- and interfraction chest wall motion, and thus is a valuable adjunct to modern breast treatment techniques.
Collapse
Affiliation(s)
- Wensha Yang
- Cedars Sinai Medical Center Department of Radiation Oncology.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mittauer KE, Deraniyagala R, Li JG, Lu B, Liu C, Samant SS, Lightsey JL, Yan G. Monitoring ABC-assisted deep inspiration breath hold for left-sided breast radiotherapy with an optical tracking system. Med Phys 2014; 42:134-43. [DOI: 10.1118/1.4903511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Wiant DB, Wentworth S, Maurer JM, Vanderstraeten CL, Terrell JA, Sintay BJ. Surface imaging-based analysis of intrafraction motion for breast radiotherapy patients. J Appl Clin Med Phys 2014; 15:4957. [PMID: 25493520 PMCID: PMC5711123 DOI: 10.1120/jacmp.v15i6.4957] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/01/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
Breast treatments are becoming increasingly complex as the use of modulated and partial breast therapies becomes more prevalent. These methods are predicated on accurate and precise positioning for treatment. However, the ability to quantify intrafraction motion has been limited by the excessive dose that would result from continuous X‐ray imaging throughout treatment. Recently, surface imaging has offered the opportunity to obtain 3D measurements of patient position throughout breast treatments without radiation exposure. Thirty free‐breathing breast patients were monitored with surface imaging for 831 monitoring sessions. Mean translations and rotations were calculated over each minute, each session, and over all sessions combined. The percentage of each session that the root mean squares (RMS) of the linear translations were outside of defined tolerances was determined for each patient. Correlations between mean translations per minute and time, and between standard deviation per minute and time, were evaluated using Pearson's r value. The mean RMS translation averaged over all patients was 2.39mm±1.88mm. The patients spent an average of 34%, 17%, 9%, and 5% of the monitoring time outside of 2 mm, 3 mm, 4 mm, and 5 mm RMS tolerances, respectively. The RMS values averaged over all patients were 2.71mm±1.83mm, 2.76±2.27, and 2.98mm±2.30mm over the 5th, 10th, and 15th minutes of monitoring, respectively. The RMS values (r=0.73,p=0) and standard deviations (r=0.88,p=0) over all patients showed strong significant correlations with time. We see that the majority of patients' treatment time is spent within 5 mm of the isocenter and that patient position drifts with increasing treatment time. Treatment length should be considered in the planning process. An 8 mm margin on a target volume would account for 2 SDs of motion for a treatment up to 15 minutes in length. PACS numbers: 87.53.Jw, 87.53.Kn, 87.56.Da, 87.63.L‐
Collapse
Affiliation(s)
- David B Wiant
- Department of Radiation Oncology, Cone Health Cancer Center.
| | | | | | | | | | | |
Collapse
|
47
|
Rong Y, Walston S, Welliver MX, Chakravarti A, Quick AM. Improving intra-fractional target position accuracy using a 3D surface surrogate for left breast irradiation using the respiratory-gated deep-inspiration breath-hold technique. PLoS One 2014; 9:e97933. [PMID: 24853144 PMCID: PMC4031138 DOI: 10.1371/journal.pone.0097933] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the use of 3D optical surface imaging as a surrogate for respiratory gated deep-inspiration breath-hold (DIBH) for left breast irradiation. Material and Methods Patients with left-sided breast cancer treated with lumpectomy or mastectomy were selected as candidates for DIBH treatment for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH computed tomography (CT) simulation scans to determine dosimetric benefits from DIBH. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB and DIBH CT scans were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired during treatment for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results Reduction in heart dose can be achieved using DIBH for left breast/chest wall radiation. RPM was shown to have inferior correlation with the actual target position, as determined by the MV Cine imaging. Therefore, RPM alone may not be an adequate surrogate in defining the breath-hold level. Alternatively, the AlignRT surface imaging demonstrated a superior correlation with the actual target positioning during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommended threshold of ±3 mm and 5 mm, respectively. Conclusion The RPM system alone may not be sufficient for the required level of accuracy in left-sided breast/CW DIBH treatments. The 3D surface imaging can be used to ensure patient setup and monitor inter- and intra- fractional motions. Furthermore, the target position accuracy during DIBH treatment can be improved by AlignRT as a superior surrogate, in addition to the RPM system.
Collapse
Affiliation(s)
- Yi Rong
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, Ohio, United States of America
- * E-mail:
| | - Steve Walston
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, Ohio, United States of America
| | - Meng Xu Welliver
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, Ohio, United States of America
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, Ohio, United States of America
| | - Allison M. Quick
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, Ohio, United States of America
| |
Collapse
|