1
|
Adida S, Taori S, Tirmizi Z, Bayley JC, Zinn PO, Flickinger JC, Burton SA, Choi S, Sefcik RK, Gerszten PC. Stereotactic body radiation therapy for spinal metastases from gastrointestinal primary cancers. J Neurooncol 2025:10.1007/s11060-025-05033-w. [PMID: 40227554 DOI: 10.1007/s11060-025-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Metastases from gastrointestinal (GI) primary cancers are considered relatively radioresistant. This study is one of the largest to evaluate outcomes following stereotactic body radiation therapy (SBRT) for GI cancer spinal metastases and supplements its findings with a review of the literature. METHODS A prospectively maintained single-institution database of spinal metastases treated with SBRT was analyzed. Seventy-five patients with 106 GI primary cancer spinal metastases were identified. The median single-fraction dose was 16 Gy (interquartile range (IQR): 14-16). Multi-fraction regimens ranged from 18 to 35 Gy over 2-5 fractions. RESULTS Median follow-up was 5 months (IQR: 1-13). Cumulative incidence rates of 3-, 6-, and 12-month local failure (LF) were 5%, 9%, and 10%, respectively. Rates of 12-month LF were 6% for gastroesophageal, 10% for hepatobiliary, and 13% for colorectal cancers. Multilevel tumors ≥ 2 vertebrae were associated with LF (p = 0.006, HR: 5.61, 95% CI: 1.61-19.5). Rates of 3-, 6-, and 12-month overall survival (OS) were 68%, 50%, and 41%, respectively. Multivariable analysis showed epidural disease associated with inferior OS (p = 0.037, HR: 1.75, 95% CI: 1.04-2.96). Complete or partial pain responses for 93 tumors (88%) presenting with pain were 60%, 51%, 32%, and 32% after 1, 3, 6, and 12 months, respectively. Ten vertebral compression fractures (9%) developed following treatment. Twelve radiation toxicities (11%) were observed, with no cases of neuropathy or myelopathy. CONCLUSIONS SBRT offers effective local tumor control and pain palliation with minimal toxicity for GI cancer spinal metastases, whose incidence is expected to rise with advances in screening and systemic therapies.
Collapse
Affiliation(s)
- Samuel Adida
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Suchet Taori
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Zayaan Tirmizi
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - James C Bayley
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - John C Flickinger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Steven A Burton
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Serah Choi
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Roberta K Sefcik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA.
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
2
|
Mesny E, Martz N, Stacoffe N, Clarençon F, Louis M, Mansouri N, Sirveaux F, Thureau S, Faivre JC. State-of-the-art of multidisciplinary approach of bone metastasis-directed therapy: review and challenging questions for preparation of a GEMO practice guidelines. Cancer Metastasis Rev 2025; 44:45. [PMID: 40220136 PMCID: PMC11993453 DOI: 10.1007/s10555-025-10262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Bone is a common secondary site of dissemination during the course of cancer. Bone metastases (BM) can be associated with skeletal-related events (SRE) such as disabling pain, hypercalcemia, and bone instability that leads to pathological fractures or spinal cord compression. SRE contribute to high morbidity as well as, mortality, and have a negative economic impact. Modern management of BM integrates focal treatments (such as radiotherapy, surgery, and interventional radiology), orthoses, and antiresorptive and systemic oncological treatment. The choice of a metastasis-directed therapy depends on the objective of the treatment, the patient characteristics, and the complete assessment of the bone lesion (pain, neurological risk, and instability). In the narrative review present herein, we aim to provide an updated summary of the literature, with description of the advantages and disadvantages of current and emerging strategies in the multimodal treatment of BM and, based on these data, an updated algorithm for the management of BM.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Radiation Oncology Department, Hospices Civils de Lyon, CHLS, Lyon, France.
| | - Nicolas Martz
- Radiation Oncology Department, Institut de Cancérologie de Lorraine-Alexis-Vautrin, Vandœuvre-Lès-Nancy, France
| | - Nicolas Stacoffe
- Radiology Department, Hospices Civils de Lyon, CHLS, Lyon, France
| | - Frédéric Clarençon
- Department of Interventional Neuroradiology, AP-HP La Pitié-Salpêtrière, Paris, France
| | | | | | | | - Sébastien Thureau
- Radiation Oncology Department and Litis Quantif, EA, 4108 Unity, Centre Henri Becquerel, Rouen, France
| | - Jean-Christophe Faivre
- Radiation Oncology Department, Institut de Cancérologie de Lorraine-Alexis-Vautrin, Vandœuvre-Lès-Nancy, France
| |
Collapse
|
3
|
Chen H, Ghia AJ, Maralani PJ, Bettegowda C, Boriani S, Dea N, Fisher CG, Gasbarrini A, Gokaslan ZL, Laufer I, Lazary A, Reynolds J, Verlaan JJ, Rhines LD, Sahgal A. Advanced Radiotherapy Technologies in Spine Tumors: What the Surgeon Needs to Know. Global Spine J 2025; 15:104S-119S. [PMID: 39801121 PMCID: PMC11726527 DOI: 10.1177/21925682241229665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
STUDY DESIGN Narrative review of existing literature. OBJECTIVES Significant technological advancements in radiotherapy planning and delivery have enabled new radiotherapy techniques for the management of spine tumors. The objective of this study was to provide a comprehensive summary of these treatment techniques for practicing spine surgeons. METHODS A narrative review of the existing literature on stereotactic body radiation therapy (SBRT) and particle beam therapy (PBT) for the treatment of spine tumors was performed. The characteristics, implementation and evidence supporting these strategies in the management of primary spinal neoplasms were summarized. RESULTS The clinical effectiveness of SBRT for the control and symptom palliation of metastatic spinal tumors are well demonstrated in multiple clinical trials. Risks such as fracture, radiculopathy and plexopathy exist after spine SBRT, necessitating an individualized approach in a well experienced multidisciplinary setting. SBRT should be considered a key component of a well-rounded treatment plan for metastatic spine tumors in combination with surgery, vertebral augmentation, and drug therapy, where indicated, to achieve optimal patient outcomes. Additionally, PBT and SBRT are also leading to promising results for primary spine tumors, though comparative effectiveness studies and prospective clinical trials are required to establish these modalities more formally as alternatives to conventionally fractionated photon radiotherapy. CONCLUSIONS SBRT and PBT are emerging as effective and well tolerated treatment options for primary and metastatic spine tumors. Additional investigation is needed to personalize these treatment options and further strengthen these approaches as key components in a multidisciplinary approach to the management of spinal neoplasms.
Collapse
Affiliation(s)
- Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Amol J Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pejman J Maralani
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefano Boriani
- Department of Spine Surgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Nicolas Dea
- Combined Neurosurgical and Orthopaedic Spine Program, University of British Columbia, Vancouver, BC, Canada
| | - Charles G Fisher
- Combined Neurosurgical and Orthopaedic Spine Program, University of British Columbia, Vancouver, BC, Canada
| | | | - Ziya L Gokaslan
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ilya Laufer
- Department of Neurological Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Aron Lazary
- National Center for Spinal Disorders, Budapest, Hungary
| | - Jeremy Reynolds
- Oxford Spinal Surgery Unit, Oxford University Hospitals, Oxford, UK
| | - Jorrit-Jan Verlaan
- Department of Orthopaedic Surgery, University of Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laurence D Rhines
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
4
|
Adida S, Taori S, Bhatia S, Kann MR, Burton SA, Flickinger JC, Olson AC, Sefcik RK, Zinn PO, Gerszten PC. A case series and review of stereotactic body radiation therapy for contiguous multilevel spine metastases. J Neurooncol 2025; 171:299-309. [PMID: 39527381 DOI: 10.1007/s11060-024-04863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE A majority of published series report on stereotactic body radiation therapy (SBRT) for 1-2 contiguous vertebral levels due to concerns regarding setup accuracy and radiation toxicity. This study evaluates patients with metastases spanning ≥ 3 contiguous levels treated with SBRT and augments its findings with a review of other studies investigating multilevel spine SBRT. METHODS Analysis of a prospectively collected database of 49 patients with 55 metastases spanning ≥ 3 contiguous vertebral levels treated with SBRT at a single institution (2002-2023) was performed. Outcomes identified included local failure (LF), pain response, overall survival, and toxicity. The median single-fraction prescription dose was 15 Gy (range: 8-18); multifractionated treatment utilized prescription doses of 18-30 Gy in 2-5 fractions. RESULTS Median follow-up was 7 months (range: 1-103). The 6-month, 1-year, and 2-year cumulative incidence rates of LF were 7%, 11%, and 11%, respectively. No prognostic factors were associated with LF. Pain was reported to improve or remain stable for 49 lesions (89%). Ten adverse radiation events (18%) were identified; pain flare (5%), dermatitis (4%), and vertebral compression fracture (VCF, 9%). The 3-month, 6-month, and 1-year cumulative incidence rates of VCF were 4%, 7%, and 7%, respectively. No instances of esophageal toxicity or myelopathy were observed. CONCLUSIONS This study of multilevel SBRT is one of the largest to investigate outcomes in this challenging clinical scenario. Spine SBRT confers low rates of LF and toxicity for patients with multilevel disease, which was previously considered a relative contraindication. Spine SBRT may be considered in this patient population instead of low-dose palliative RT.
Collapse
Affiliation(s)
- Samuel Adida
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Suchet Taori
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Shovan Bhatia
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Michael R Kann
- School of Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Steven A Burton
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - John C Flickinger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Adam C Olson
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Roberta K Sefcik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA
| | - Peter C Gerszten
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St Suite B-400, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Boreta L, Chhabra A, Theologis AA. Radiation Therapy for Primary and Metastatic Spine Tumors. J Am Acad Orthop Surg 2024; 32:823-832. [PMID: 38748899 DOI: 10.5435/jaaos-d-23-01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 09/07/2024] Open
Abstract
Radiation therapy plays an important role in the management of patients with primary and metastatic spine tumors. Technological innovations in the past decade have allowed for improved targeting, dose escalation, and precision of radiation therapy while concomitant improvements in surgical techniques have resulted in improved outcomes with reduced morbidity. Patients with cancer have increasingly complex oncologic needs, and multidisciplinary management is more essential than ever. This review will provide an overview of radiation principles, modern radiation techniques, management algorithms, and expected toxicities of common radiation treatments in the management of spine tumors.
Collapse
Affiliation(s)
- Lauren Boreta
- From the Department of Radiation Oncology, University California - San Francisco (UCSF), San Francisco, CA (Dr. Boreta), the Department of Radiation Oncology, New York Proton Center, New York City, NY (Dr. Chhabra), and the Department of Orthopaedic Surgery, University California - San Francisco (UCSF), San Francisco, CA (Dr. Theologis)
| | | | | |
Collapse
|
6
|
Alcorn S, Cortés ÁA, Bradfield L, Brennan M, Dennis K, Diaz DA, Doung YC, Elmore S, Hertan L, Johnstone C, Jones J, Larrier N, Lo SS, Nguyen QN, Tseng YD, Yerramilli D, Zaky S, Balboni T. External Beam Radiation Therapy for Palliation of Symptomatic Bone Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2024; 14:377-397. [PMID: 38788923 DOI: 10.1016/j.prro.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE This guideline provides evidence-based recommendations for palliative external beam radiation therapy (RT) in symptomatic bone metastases. METHODS The ASTRO convened a task force to address 5 key questions regarding palliative RT in symptomatic bone metastases. Based on a systematic review by the Agency for Health Research and Quality, recommendations using predefined consensus-building methodology were established; evidence quality and recommendation strength were also assessed. RESULTS For palliative RT for symptomatic bone metastases, RT is recommended for managing pain from bone metastases and spine metastases with or without spinal cord or cauda equina compression. Regarding other modalities with RT, for patients with spine metastases causing spinal cord or cauda equina compression, surgery and postoperative RT are conditionally recommended over RT alone. Furthermore, dexamethasone is recommended for spine metastases with spinal cord or cauda equina compression. Patients with nonspine bone metastases requiring surgery are recommended postoperative RT. Symptomatic bone metastases treated with conventional RT are recommended 800 cGy in 1 fraction (800 cGy/1 fx), 2000 cGy/5 fx, 2400 cGy/6 fx, or 3000 cGy/10 fx. Spinal cord or cauda equina compression in patients who are ineligible for surgery and receiving conventional RT are recommended 800 cGy/1 fx, 1600 cGy/2 fx, 2000 cGy/5 fx, or 3000 cGy/10 fx. Symptomatic bone metastases in selected patients with good performance status without surgery or neurologic symptoms/signs are conditionally recommended stereotactic body RT over conventional palliative RT. Spine bone metastases reirradiated with conventional RT are recommended 800 cGy/1 fx, 2000 cGy/5 fx, 2400 cGy/6 fx, or 2000 cGy/8 fx; nonspine bone metastases reirradiated with conventional RT are recommended 800 cGy/1 fx, 2000 cGy/5 fx, or 2400 cGy/6 fx. Determination of an optimal RT approach/regimen requires whole person assessment, including prognosis, previous RT dose if applicable, risks to normal tissues, quality of life, cost implications, and patient goals and values. Relatedly, for patient-centered optimization of treatment-related toxicities and quality of life, shared decision making is recommended. CONCLUSIONS Based on published data, the ASTRO task force's recommendations inform best clinical practices on palliative RT for symptomatic bone metastases.
Collapse
Affiliation(s)
- Sara Alcorn
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota.
| | - Ángel Artal Cortés
- Department of Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Lisa Bradfield
- American Society for Radiation Oncology, Arlington, Virginia
| | | | - Kristopher Dennis
- Division of Radiation Oncology, Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada
| | - Dayssy A Diaz
- Department of Radiation Oncology, Ohio State University, Columbus, Ohio
| | - Yee-Cheen Doung
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon
| | - Shekinah Elmore
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren Hertan
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Candice Johnstone
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joshua Jones
- Department of Radiation Oncology, Rochester Regional Health, Rochester, New York
| | - Nicole Larrier
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, University of Texas - MD Anderson Cancer Center, Houston, Texas
| | - Yolanda D Tseng
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Divya Yerramilli
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra Zaky
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tracy Balboni
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Palacio Giraldo A, Sohm D, Neugebauer J, Leone G, Bergovec M, Dammerer D. Stereotactic Radiosurgery in Metastatic Spine Disease-A Systemic Review of the Literature. Cancers (Basel) 2024; 16:2787. [PMID: 39199560 PMCID: PMC11352806 DOI: 10.3390/cancers16162787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND This study investigated the efficacy of stereotactic radiosurgery (SRS) in managing spinal metastasis. Traditionally, surgery was the primary approach, but SRS has emerged as a promising alternative. OBJECTIVE The study aims to evaluate the efficacy of stereotactic radiosurgery in the management of spinal metastasis in terms of local tumor control, patient survival, and quality of life, identifying both advantages and limitations of SRS. METHODS Through an extensive literature search in PubMed with cross-referencing, relevant full-text-available papers published between 2012 and 2022 in English or German were included. The search string used was "metastatic spine diseases AND SRS OR stereotactic radiosurgery". RESULTS There is growing evidence of SRS as a precise and effective treatment. SRS delivers high radiation doses while minimizing exposure to critical neural structures, offering benefits like pain relief, limited tumor growth, and a low complication rate, even for tumors resistant to traditional radiation therapies. SRS can be a primary treatment for certain metastatic cases, particularly those without spinal cord compression. CONCLUSIONS SRS appears to be a preferable option for oligometastasis and radioresistant lesions, assuming there are no contraindications. Further research is necessary to refine treatment protocols, determine optimal radiation dose and fractionation schemes, and assess the long-term effects of SRS on neural structures.
Collapse
Affiliation(s)
- Adriana Palacio Giraldo
- Department for Orthopedics and Traumatology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- Division of Orthopaedics and Traumatology, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| | - David Sohm
- Department for Orthopedics and Traumatology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Johannes Neugebauer
- Department for Orthopedics and Traumatology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- Division of Orthopaedics and Traumatology, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| | - Gianpaolo Leone
- Department for Orthopedics and Traumatology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- Division of Orthopaedics and Traumatology, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| | - Marko Bergovec
- Department for Orthopedics and Traumatology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- Division of Orthopaedics and Traumatology, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| | - Dietmar Dammerer
- Department for Orthopedics and Traumatology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- Division of Orthopaedics and Traumatology, University Hospital Krems, Mitterweg 10, 3500 Krems, Austria
| |
Collapse
|
8
|
Chen H, Atenafu EG, Zeng KL, Chan A, Detsky J, Myrehaug S, Soliman H, Tseng CL, Sahgal A, Maralani PJ. Magnetic Resonance Imaging Frequency After Stereotactic Body Radiation Therapy for Spine Metastases. Int J Radiat Oncol Biol Phys 2024; 119:1413-1421. [PMID: 38373656 DOI: 10.1016/j.ijrobp.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) is increasingly being used to treat spine metastases. Current post-SBRT imaging surveillance strategies in this patient population may benefit from a more data-driven and personalized approach. The objective of this study was to develop risk-stratified post-SBRT magnetic resonance imaging (MRI) surveillance strategies using quantitative methods. METHODS AND MATERIALS Adult patients with bony spine metastases treated with SBRT between 2008 and 2021 and who had at least 2 follow-up spine MRIs were reviewed retrospectively. A recursive partitioning analysis model was developed to separate patients into different risk categories for post-SBRT progression anywhere within the spine. Imaging intervals were derived for each risk category using parametric survival regression based on multiple expected spine progression rates per scan. RESULTS A total of 446 patients and 1039 vertebral segments were included. Cumulative incidence of spine progression was 19.2% at 1 year, 26.7% at 2 years, and 35.3% at 4 years. The internally validated risk stratification model was able to divide patients into 3 risk categories based on epidural disease, paraspinal disease, and Spinal Instability Neoplastic Score category. The 4-year risk of spine progression was 23.4%, 39.0%, and 51.8%, respectively, for the low-, intermediate-, and high-risk groups. Using an expected per-scan spine progression rate of 3.75%, the low-risk group would require follow-up scans every 6.0 months (95% CI, 4.9-7.6) and the intermediate-risk group would require surveillance every 3.1 months (95% CI, 2.6-3.7). At an expected spine progression rate of 5%, the high-risk group would require surveillance every 1.3 months (95% CI, 1.1-1.6) during the first 13.2 months after SBRT and every 5.9 months thereafter (95% CI, 2.8-12.3). CONCLUSIONS Data-driven follow-up MRI surveillance intervals at a range of expected spine progression rates have been determined for patients at different risks of spine progression based on an internally validated, single-institution risk stratification model.
Collapse
Affiliation(s)
- Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada.
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario Canada
| | - K Liang Zeng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Aimee Chan
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Berk L. The effects of high-dose radiation therapy on bone: a scoping review. Radiat Oncol J 2024; 42:95-103. [PMID: 38946071 PMCID: PMC11215508 DOI: 10.3857/roj.2023.00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 07/02/2024] Open
Abstract
PURPOSE This scoping review presents the preclinical and clinical data on the effects of high-dose radiation therapy (RT) on bone structure and function. MATERIALS AND METHODS An extensive PubMed search was performed for the relevant questions. The data were then synthesized into a comprehensive summary of the available relevant in-vitro, preclinical and clinical literature. RESULTS In-vitro studies of high-dose RT on cell cultures show considerable damage in the viability and functional capacity of the primary cells of the bones; the osteoclasts, the osteoblasts, and the osteocytes. In-vivo animal models show that high-dose RT induces significant morphological changes to the bone, inhibits the ability of bone to repair damage, and increases the fragility of the bone. Clinical data show that there is an increasing risk over time of damage to the bone, such as fractures, after high-dose RT. CONCLUSION These findings suggest that there may be a limit to the safe dose for single-fraction RT, and the long-term consequences of high-dose RT for the patients must be considered.
Collapse
Affiliation(s)
- Lawrence Berk
- Winter Haven Hospital, Baycare Health System, Winter Haven, FL, USA
| |
Collapse
|
10
|
Burgess L, Nguyen E, Tseng CL, Guckenberger M, Lo SS, Zhang B, Nielsen M, Maralani P, Nguyen QN, Sahgal A. Practice and principles of stereotactic body radiation therapy for spine and non-spine bone metastases. Clin Transl Radiat Oncol 2024; 45:100716. [PMID: 38226025 PMCID: PMC10788412 DOI: 10.1016/j.ctro.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/23/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Radiotherapy is the dominant treatment modality for painful spine and non-spine bone metastases (NSBM). Historically, this was achieved with conventional low dose external beam radiotherapy, however, stereotactic body radiotherapy (SBRT) is increasingly applied for these indications. Meta-analyses and randomized clinical trials have demonstrated improved pain response and more durable tumor control with SBRT for spine metastases. However, in the setting of NSBM, there is limited evidence supporting global adoption and large scale randomized clinical trials are in need. SBRT is technically demanding requiring careful consideration of organ at risk tolerance, and strict adherence to technical requirements including immobilization, simulation, contouring and image-guidance procedures. Additional considerations include follow up practices after SBRT, with appropriate imaging playing a critical role in response assessment. Finally, there is renewed research into promising new technologies that may further refine the use of SBRT in both spinal and NSBM in the years to come.
Collapse
Affiliation(s)
- Laura Burgess
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric Nguyen
- Department of Radiation Oncology, Walker Family Cancer Centre, St. Catharines, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, United States
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Nielsen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, MD Anderson Cancer Centre, University of Texas, Houston, TX, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Patel PP, Cao Y, Chen X, LeCompte MC, Kleinberg L, Khan M, McNutt T, Bydon A, Kebaish K, Theodore N, Larry Lo SF, Lee SH, Lubelski D, Redmond KJ. Oncologic and Functional Outcomes After Stereotactic Body Radiation Therapy for High-Grade Malignant Spinal Cord Compression. Adv Radiat Oncol 2024; 9:101327. [PMID: 38260225 PMCID: PMC10801652 DOI: 10.1016/j.adro.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/21/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Although surgical decompression is the gold standard for metastatic epidural spinal cord compression (MESCC) from solid tumors, not all patients are candidates or undergo successful surgical Bilsky downgrading. We report oncologic and functional outcomes for patients treated with stereotactic body radiation therapy (SBRT) to high-grade MESCC. Methods and Materials Patients with Bilsky grade 2 to 3 MESCC from solid tumor metastases treated with SBRT at a single institution from 2009 to 2020 were retrospectively reviewed. Patients who received upfront surgery before SBRT were included only if postsurgical Bilsky grade remained ≥2. Neurologic examinations, magnetic resonance imaging, pain assessments, and analgesic usage were assessed every 3 to 4 months post-SBRT. Cumulative incidence of local recurrence was calculated with death as a competing risk, and overall survival was estimated by Kaplan-Meier. Results One hundred forty-three patients were included. The cumulative incidence of local recurrence was 5.1%, 7.5%, and 14.1% at 6, 12, and 24 months, respectively. At first post-SBRT imaging, 16.2% of patients with initial Bilsky grade 2 improved to grade 1, and 53.8% of patients were stable. Five of 13 patients (38.4%) with initial Bilsky grade 3 improved to grade 1 to 2. Pain response at 3 and 6 months post-SBRT was complete in 45.4% and 55.7%, partial in 26.9% and 13.1%, stable in 24.1% and 27.9%, and worse in 3.7% and 3.3% of patients, respectively. At 3 and 6 months after SBRT, 17.8% and 25.0% of patients had improved ambulatory status and 79.7% and 72.4% had stable status. Conclusions We report the largest series to date of patients with high-grade MESCC treated with SBRT. The excellent local control and functional outcomes suggest SBRT is a reasonable approach in inoperable patients or cases unable to be successfully surgically downgraded.
Collapse
Affiliation(s)
- Palak P. Patel
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yilin Cao
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Xuguang Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael C. LeCompte
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Majid Khan
- Department of Radiology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Khaled Kebaish
- Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Sheng-fu Larry Lo
- Department of Neurosurgery, Zucker School of Medicine at Hoftstra, Manhasset, New York
| | - Sang H. Lee
- Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Díaz Silvera CM, Azinovic I, Bolle SLE, Pérez Cobos M, Matute R. Role of radiotherapy in the management of spine metastases. Rev Esp Cir Ortop Traumatol (Engl Ed) 2023; 67:542-551. [PMID: 37245636 DOI: 10.1016/j.recot.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023] Open
Abstract
Spine metastases are a common cause of pain in the oncologic patient which can generate functional limitation, in addition to complications derived from spinal cord compression, radicular compression and fractures. A complex approach to these metastases is required due to the risk of permanent sequelae. With the increase in survival rates due to new emerging treatments, the possibilities of presenting vertebral metastases are increasing, therefore, the management of these lesions should be aimed at pain relief and maintenance of ambulation. Radiotherapy has a fundamental role in the management of these lesions, and technological advances in recent years have made it possible to improve the quality and intentionality of the treatments, going from having a palliative intent to proposing treatments that improve local control. In this article we describe how the stereotactic body radiotherapy (SBRT) technique, in selected patients, can improve local control and its value in oligometastatic patients and after surgery.
Collapse
Affiliation(s)
- C M Díaz Silvera
- Oncología Radioterápica. Fundación Jiménez Díaz. Madrid, España.
| | - I Azinovic
- Oncología Radioterápica. Fundación Jiménez Díaz. Madrid, España
| | - S L E Bolle
- Oncología radioterápica. Centro de Protonterapia. Quironsalud. Madrid, España
| | - M Pérez Cobos
- Oncología Radioterápica. Fundación Jiménez Díaz. Madrid, España
| | - R Matute
- Oncología radioterápica. Centro de Protonterapia. Quironsalud. Madrid, España
| |
Collapse
|
13
|
Díaz Silvera CM, Azinovic I, Bolle SLE, Pérez Cobos M, Matute R. [Translated article] Role of radiotherapy in the management of spine metastases. Rev Esp Cir Ortop Traumatol (Engl Ed) 2023; 67:S542-S551. [PMID: 37541346 DOI: 10.1016/j.recot.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/23/2023] [Indexed: 08/06/2023] Open
Abstract
Spine metastases are a common cause of pain in the oncologic patient which can generate functional limitation, in addition to complications derived from spinal cord compression, radicular compression and fractures. A complex approach to these metastases is required due to the risk of permanent sequelae. With the increase in survival rates due to new emerging treatments, the possibilities of presenting vertebral metastases are increasing, therefore, the management of these lesions should be aimed at pain relief and maintenance of ambulation. Radiotherapy has a fundamental role in the management of these lesions, and technological advances in recent years have made it possible to improve the quality and intentionality of the treatments, going from having a palliative intent to proposing treatments that improve local control. In this article, we describe how the stereotactic body radiotherapy (SBRT) technique, in selected patients, can improve local control and its value in oligometastatic patients and after surgery.
Collapse
Affiliation(s)
| | - I Azinovic
- Oncología Radioterápica, Fundación Jiménez Díaz, Madrid, Spain
| | - S L E Bolle
- Oncología Radioterápica, Centro de Protonterapia, Quironsalud, Madrid, Spain
| | - M Pérez Cobos
- Oncología Radioterápica, Fundación Jiménez Díaz, Madrid, Spain
| | - R Matute
- Oncología Radioterápica, Centro de Protonterapia, Quironsalud, Madrid, Spain
| |
Collapse
|
14
|
Lee J, Kim JA, An TJ, Lee H, Han EJ, Sa YJ, Kim HR, Park CK, Kim TJ, Lim JU. Optimal timing for local ablative treatment of bone oligometastases in non-small cell lung cancer. J Bone Oncol 2023; 42:100496. [PMID: 37589036 PMCID: PMC10425942 DOI: 10.1016/j.jbo.2023.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Oligometastases is a term commonly used to describe a disease state characterized by a limited number of distant metastases, and represents a transient phase between localized and widespread systemic diseases. This subgroup of stage IV cancer has increased in clinical importance due to the possibility of curative rather than palliative treatment. Among advanced lung cancer patients, 30-40% show bone metastases, and can show complications such as pathological fractures. Many prospective studies have shown efficacy of localized treatment in oligometastatic non-small cell lung cancer (NSCLC) in improving progression-free survival and overall survival. Compared to metastases in other organs, bone metastases are unique in terms of tumor microenvironment and clinical outcomes. Radiotherapy is the most frequently used treatment modality for local ablative treatment for both primary and metastatic lesions. Stereotactic body radiation therapy demonstrated more rapid and effective pain control compared to conventional 3D conformal radiotherapy. Radiotherapy improved outcomes in terms of time-to-skeletal related events skeletal-related events (SRE), hospitalization for SRE, pain relief, and overall survival in patients with bone metastases. Decision on timing of local ablative treatment depends on patient's overall clinical status, treatment goals, potential side effects of each approach, and expected initial responses to systemic anti-cancer treatment.
Collapse
Affiliation(s)
- Jayoung Lee
- Department of Radiation Oncology, The Catholic University of Korea, Yeouido St. Mary's Hospital, Seoul 150-713, Republic of Korea
| | - Jung A. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
- Outpatient Department of Respiratory Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Hyochun Lee
- Department of Radiation Oncology, The Catholic University of Korea, St. Vincent's Hospital, Republic of Korea
| | - Eun Ji Han
- Division of Nuclear Medicine, Department of Radiology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Young Jo Sa
- Department of Thoracic and Cardiovascular Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Hyo Rim Kim
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| |
Collapse
|
15
|
Moore-Palhares D, Sahgal A, Zeng KL, Myrehaug S, Tseng CL, Detsky J, Chen H, Ruschin M, Atenafu EG, Wilson J, Larouche J, da Costa L, Maralani PJ, Soliman H. 30 Gy in 4 Stereotactic Body Radiotherapy Fractions for Complex Spinal Metastases: Mature Outcomes Supporting This Novel Regimen. Neurosurgery 2023; 93:813-823. [PMID: 37074052 DOI: 10.1227/neu.0000000000002498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We designed a 30 Gy in 4 fractions stereotactic body radiotherapy protocol, as an alternative option to our standard 2-fraction approach, for primarily large volume, multilevel, or previously radiated spinal metastases. We report imaging-based outcomes of this novel fractionation scheme. METHODS The institutional database was reviewed to identify all patients who underwent 30 Gy/4 fractions from 2010 to 2021. Primary outcomes were magnetic resonance-based vertebral compression fracture (VCF) and local failure per treated vertebral segment. RESULTS We reviewed 245 treated segments in 116 patients. The median age was 64 years (range, 24-90). The median number of consecutive segments within the treatment volume was 2 (range, 1-6), and the clinical target volume (CTV) was 126.2 cc (range, 10.4-863.5). Fifty-four percent had received at least 1 previous course of radiotherapy, and 31% had previous spine surgery at the treated segment. The baseline Spinal Instability Neoplastic Score was stable, potentially unstable, and unstable for 41.6%, 51.8%, and 6.5% of segments, respectively. The cumulative incidence of local failure was 10.7% (95% CI 7.1-15.2) at 1 year and 16% (95% CI 11.5-21.2) at 2 years. The cumulative incidence of VCF was 7.3% (95% CI 4.4-11.2) at 1 year and 11.2% (95% CI 7.5-15.8) at 2 years. On multivariate analysis, age ≥68 years ( P = .038), CTV volume ≥72 cc ( P = .021), and no previous surgery ( P = .021) predicted an increased risk of VCF. The risk of VCF for CTV volumes <72 cc/≥72 cc was 1.8%/14.6% at 2 years. No case of radiation-induced myelopathy was observed. Five percent of patients developed plexopathy. CONCLUSION 30 Gy in 4 fractions was safe and efficacious despite the population being at increased risk of toxicity. The lower risk of VCF in previously stabilized segments highlights the potential for a multimodal treatment approach for complex metastases, especially for those with a CTV volume of ≥72 cc.
Collapse
Affiliation(s)
- Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - K Liang Zeng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto , Ontario , Canada
| | - Jeff Wilson
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto , Ontario , Canada
| | - Jeremie Larouche
- Division of Orthopedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Leodante da Costa
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| |
Collapse
|
16
|
Damante MA, Gibbs D, Dibs K, Palmer JD, Raval R, Scharschmidt T, Chakravarti A, Bourekas E, Boulter D, Thomas E, Grecula J, Beyer S, Xu D, Nimjee S, Youssef P, Lonser R, Blakaj DM, Elder JB. Neoadjuvant Arterial Embolization of Spine Metastases Associated With Improved Local Control in Patients Receiving Surgical Decompression and Stereotactic Body Radiotherapy. Neurosurgery 2023; 93:320-329. [PMID: 36861971 DOI: 10.1227/neu.0000000000002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/16/2022] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Spine metastases often cause significant pain, instability, and/or neurological morbidity. Local control (LC) of spine metastases has been augmented with advances in systemic therapies, radiation, and surgical technique. Prior reports suggest an association between preoperative arterial embolization and improved LC and palliative pain control. OBJECTIVE To further elucidate the role of neoadjuvant embolization on LC of spine metastases and the potential for improved pain control in patients receiving surgery and stereotactic body radiotherapy (SBRT). METHOD A retrospective single-center review between 2012 and 2020 identified 117 patients with spinal metastases from various solid tumor malignancies managed with surgery and adjuvant SBRT with or without preoperative spinal arterial embolization. Demographic information, radiographic studies, treatment characteristics, Karnofsky Performance Score, Defensive Veterans Pain Rating Scale, and mean daily doses of analgesic medications were reviewed. LC was assessed using magnetic resonance imaging obtained at a median 3-month interval and defined as progression at the surgically treated vertebral level. RESULTS Of 117 patients, 47 (40.2%) underwent preoperative embolization, followed by surgery and SBRT and 70 (59.8%) underwent surgery and SBRT alone. Within the embolization cohort, the median LC was 14.2 months compared with 6.3 months among the nonembolization cohort ( P = .0434). Receiver operating characteristic analysis suggests ≥82.5% embolization predicted significantly improved LC (area under the curve = 0.808; P < .0001). Defensive Veterans Pain Rating Scale mean and maximum scores significantly decreased immediately after embolization ( P < .001). CONCLUSION Preoperative embolization was associated with improved LC and pain control suggesting a novel role for its use. Additional prospective study is warranted.
Collapse
Affiliation(s)
- Mark A Damante
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - David Gibbs
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Khaled Dibs
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Raju Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas Scharschmidt
- Department of Orthopaedic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Eric Bourekas
- Division of Neuroradiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel Boulter
- Division of Neuroradiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Evan Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John Grecula
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sasha Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - David Xu
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Shahid Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Patrick Youssef
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Russell Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - J Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
17
|
Amdur RJ, Yu JB. PRO's Top 20 Downloads of 2022. Pract Radiat Oncol 2023; 13:273-275. [PMID: 37391234 DOI: 10.1016/j.prro.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Affiliation(s)
- Robert J Amdur
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida.
| | - James B Yu
- Connecticut Radiation Oncology, St. Francis Cancer Center, Hartford, Connecticut
| |
Collapse
|
18
|
Ramadan S, Arifin AJ, Nguyen TK. The Role of Post-Operative Radiotherapy for Non-Spine Bone Metastases (NSBMs). Cancers (Basel) 2023; 15:3315. [PMID: 37444424 DOI: 10.3390/cancers15133315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Non-spine bone metastases (NSBMs) can cause significant morbidity and deterioration in the quality of life of cancer patients. This paper reviews the role of post-operative radiotherapy (PORT) in the management of NSBMs and provides suggestions for clinical practice based on the best available evidence. We identified six retrospective studies and several reviews that examined PORT for NSBMs. These studies suggest that PORT reduces local recurrence rates and provides effective pain relief. Based on the literature, PORT was typically delivered as 20 Gy in 5 fractions or 30 Gy in 10 fractions within 5 weeks of surgery. Complete coverage of the surgical hardware is an important consideration when designing an appropriate radiation plan and leads to improved local control. Furthermore, the integration of PORT in a multidisciplinary team with input from radiation oncologists and orthopedic surgeons is beneficial. A multimodal approach including PORT should be considered for an NSBM that requires surgery. However, phase III studies are needed to answer many remaining questions and optimize the management of NSBMs.
Collapse
Affiliation(s)
- Sherif Ramadan
- Department of Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Andrew J Arifin
- Department of Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Timothy K Nguyen
- Department of Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada
| |
Collapse
|
19
|
Cruz-Lim EM, Cereno RE, Cañal JP, Vega G, Inocencio E, Mou B. Challenges to Improving Access to Stereotactic Body Radiation Therapy and Radiosurgery in the Philippines: A Case Study for Lower-Middle Income Countries. Int J Radiat Oncol Biol Phys 2023; 116:430-438. [PMID: 37179092 DOI: 10.1016/j.ijrobp.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Ella Mae Cruz-Lim
- Department of Radiation Oncology, Zamboanga City Medical Center, Zamboanga City, Philippines; Department of Radiation Oncology, BC Cancer Kelowna, Kelowna, Canada.
| | - Reno Eufemon Cereno
- Department of Radiation Oncology, BC Cancer Kelowna, Kelowna, Canada; Department of Radiation Oncology, Manila Doctors Hospital, Manila, Philippines
| | - Johanna Patricia Cañal
- Division of Radiation Oncology, Department of Radiology, Philippine General Hospital, Manila, Philippines
| | - Gaudencio Vega
- Department of Radiation Oncology, The Medical City, Manila, Philippines
| | - Elrick Inocencio
- Division of Radiation Oncology, Department of Radiology, Philippine General Hospital, Manila, Philippines
| | - Benjamin Mou
- Department of Radiation Oncology, BC Cancer Kelowna, Kelowna, Canada
| |
Collapse
|
20
|
Nguyen EK, Ruschin M, Zhang B, Soliman H, Myrehaug S, Detsky J, Chen H, Sahgal A, Tseng CL. Stereotactic body radiotherapy for spine metastases: a review of 24 Gy in 2 daily fractions. J Neurooncol 2023; 163:15-27. [PMID: 37155133 DOI: 10.1007/s11060-023-04327-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) has proven to be a highly effective treatment for selected patients with spinal metastases. Randomized evidence shows improvements in complete pain response rates and local control with lower retreatment rates favoring SBRT, compared to conventional external beam radiotherapy (cEBRT). While there are several reported dose-fractionation schemes for spine SBRT, 24 Gy in 2 fractions has emerged with Level 1 evidence providing an excellent balance between minimizing treatment toxicity while respecting patient convenience and financial strain. METHODS We provide an overview of the 24 Gy in 2 SBRT fraction regimen for spine metastases, which was developed at the University of Toronto and tested in an international Phase 2/3 randomized controlled trial. RESULTS The literature summarizing global experience with 24 Gy in 2 SBRT fractions suggests 1-year local control rates ranging from 83-93.9%, and 1-year rates of vertebral compression fracture ranging from 5.4-22%. Reirradiation of spine metastases that failed prior cEBRT is also feasible with 24 Gy in 2 fractions, and 1-year local control rates range from 72-86%. Post-operative spine SBRT data are limited but do support the use of 24 Gy in 2 fractions with reported 1-year local control rates ranging from 70-84%. Typically, the rates of plexopathy, radiculopathy and myositis are under 5% in those series reporting mature follow up, with no cases of radiation myelopathy (RM) reported in the de novo setting when the spinal cord avoidance structure is limited to 17 Gy in 2 fractions. However, re-irradiation RM has been observed following 2 fraction SBRT. More recently, 2-fraction dose escalation with 28 Gy, with a higher dose constraint to the critical neural tissues, has been reported suggesting improved rates of local control. This regimen may be important in those patients with radioresistant histologies, high grade epidural disease, and/or paraspinal disease. CONCLUSION The dose-fractionation of 24 Gy in 2 fractions is well-supported by published literature and is an ideal starting point for centers looking to establish a spine SBRT program.
Collapse
Affiliation(s)
- Eric K Nguyen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
21
|
Guckenberger M, Dahele M, Ong WL, Sahgal A. Stereotactic Body Radiation Therapy for Spinal Metastases: Benefits and Limitations. Semin Radiat Oncol 2023; 33:159-171. [PMID: 36990633 DOI: 10.1016/j.semradonc.2022.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Progress in biological cancer characterization, targeted systemic therapies and multimodality treatment strategies have shifted the goals of radiotherapy for spinal metastases from short-term palliation to long-term symptom control and prevention of compilations. This article gives an overview of the spine stereotactic body radiotherapy (SBRT) methodology and clinical results of SBRT in cancer patients with painful vertebral metastases, metastatic spinal cord compression, oligometastatic disease and in a reirradiation situation. Outcomes after dose-intensified SBRT are compared with results of conventional radiotherapy and patient selection criteria will be discussed. Though rates of severe toxicity after spinal SBRT are low, strategies to minimize the risk of vertebral compression fracture, radiation induced myelopathy, plexopathy and myositis are summarized, to optimize the use of SBRT in multidisciplinary management of vertebral metastases.
Collapse
|