1
|
Zeng G, Lu J. Mycobacterium xenopi infection of the kidney and lymph nodes: A case report. Open Med (Wars) 2023; 18:20230646. [PMID: 36785766 PMCID: PMC9921912 DOI: 10.1515/med-2023-0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023] Open
Abstract
The incidence of nontuberculous mycobacterial (NTM) infection has been increasing globally. Further, it has been reported that early NTM infection diagnosis and treatment can considerably improve patient prognosis. However, traditional methods for detecting pathogenic microorganisms are associated with several limitations, and optimal treatment regimens for several NTM infections have not yet been established. Here, we report the case of a 22-year-old woman with renal and lymph node Mycobacterium xenopi infection. This patient presented with repeated fever and systemic lymphadenopathy events for more than 2 years, but the etiology of the disease was unclear. We performed metagenomic next-generation sequencing (mNGS) using tissue sections from the patient's left kidney and successfully identified M. xenopi. Thereafter, the patient's condition was effectively controlled via treatment with rifampicin, clarithromycin, and ethambutol hydrochloride (orally administered after hemodialysis). Further, this case showed that the clinical symptoms of NTM infection are atypical and highly occult, especially for extrapulmonary NTM infections, which are difficult to diagnose. Therefore, mNGS may be a powerful tool for diagnosing NTM infections. The combination therapy used showed efficacy and thus could serve as a reference treatment for kidney and lymph node M. xenopi infection.
Collapse
Affiliation(s)
- Guoyang Zeng
- Infectious Disease Department, Shifang People’s Hospital, Shifang 618400, Sichuan, China
| | - Jiajie Lu
- Infectious Disease Department, The Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Mycobacterium intracellulare subsp. chimaera from Cardio Surgery Heating-Cooling Units and from Clinical Samples in Israel Are Genetically Unrelated. Pathogens 2021; 10:pathogens10111392. [PMID: 34832548 PMCID: PMC8624631 DOI: 10.3390/pathogens10111392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens that cause illness primarily in the elderly, in the immunocompromised or in patients with underlying lung disease. Since 2013, a global outbreak of NTM infection related to heater-cooler units (HCU) used in cardio-thoracic surgery has been identified. This outbreak was caused by a single strain of Mycobacterium intracellulare subsp. chimaera. In order to estimate the prevalence of this outbreak strain in Israel, we sampled Mycobacterium intracellulare subsp. chimaera from several HCU machines in Israel, as well as from patients, sequenced their genomes and compared them to the outbreak strain. The presence of mixed mycobacteria species in the samples complicated the analysis of obtained sequences. By applying a metagenomic binning strategy, we were able to obtain, and characterize, genomes of single strains from the mixed samples. Mycobacterium intracellulare subsp. chimaera strains were compared to each other and to previously reported genomes from other countries. The strain causing the outbreak related to the HCU machines was identified in several such machines in Israel but not in any clinical sample.
Collapse
|
3
|
Meoli A, Deolmi M, Iannarella R, Esposito S. Non-Tuberculous Mycobacterial Diseases in Children. Pathogens 2020; 9:pathogens9070553. [PMID: 32660053 PMCID: PMC7400539 DOI: 10.3390/pathogens9070553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/19/2023] Open
Abstract
Non-tuberculous mycobacteria (NTMs) are ubiquitous and opportunistic emerging bacteria with the potential to colonize and eventually infect either immunocompromised or immunocompetent individuals. In the last three decades, the prevalence of disease caused by NTMs has increased in several countries. The increased prevalence of NTM infection can be explained by an ageing population with rising comorbidities, HIV infection, the common use of immunosuppressive drugs, and improved diagnostic methods. The aim of this review is to demonstrate the clinical relevance of NTMs in children, describing their features and manifestations, diagnostic tools, and therapeutic approaches. We collected data from the literature about NTM infections in young patients over the past five years (2014–2019) using the keywords “non-tuberculous”, “mycobacteria”, “paediatric”, “NTM”, “cystic fibrosis”, and “children”. Recent literature points out that NTMs are ubiquitous, with several species including both those that are pathogens for humans and those that are not. This means that, if a mycobacterium is isolated from a patient’s specimen, we have to distinguish between a simple colonization and an NTM-related disease. The start of treatment depends on many factors that are necessary to consider, such as clinical and imaging features, patient comorbidity and immunocompetence, drug adverse effects, and compliance with a very long therapy that can last many months. Due to the increasing prevalence and clinical relevance of NTMs, guidelines for their optimal management, especially in the presence of chronic underlying disease, are urgently needed.
Collapse
|
4
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
5
|
Lu M, Fitzgerald D, Karpelowsky J, Selvadurai H, Pandit C, Robinson P, Marais BJ. Surgery in nontuberculous mycobacteria pulmonary disease. Breathe (Sheff) 2018; 14:288-301. [PMID: 30519295 PMCID: PMC6269180 DOI: 10.1183/20734735.027218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Medical treatment of pulmonary nontuberculous mycobacteria (NTM) disease has highly variable outcomes. Despite the use of multiple antibiotics, sputum clearance is often difficult to achieve, especially in cases with macrolide resistant NTM infection. Immunocompromised patients and those with structural lung disease are at increased risk, although occurrence in immunocompetent patients without structural lung disease is well recognised. Most pulmonary NTM disease involves Mycobacterium avium complex (MAC), but with enhanced identification multiple species have now been recognised as opportunistic pathogens. The observed increase in NTM disease, especially infection with multidrug-resistant Mycobacterium abscessus complex, is probably multifactorial. Surgery has been used as adjuvant treatment in patients with 1) focal disease that can be removed or 2) bothersome symptoms despite medical treatment that can be ameliorated. Early post-surgical mortality is low, but long-term morbidity and mortality are highly dependent on the degree of lung involvement and the residual lung function, the potency of medical treatment and the type of surgical intervention. In conjunction with antibiotic therapy, reported post-surgical sputum clearance was excellent, although publication bias should be considered. Bronchopleural fistulae were problematic, especially in pneumonectomy cases. Study results support the use of minimal resection surgery, in a carefully selected subgroup of patients with focal disease or persistent symptoms. Educational aims To critically review the literature describing the use of surgery in the treatment of pulmonary disease caused by nontuberculous mycobacteria (NTM).To assess the outcomes and complications observed with different surgical approaches used in the treatment of pulmonary NTM disease.
Collapse
Affiliation(s)
- Mimi Lu
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Dominic Fitzgerald
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jonathan Karpelowsky
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Dept of Paediatric Surgery, The Children's Hospital at Westmead, Sydney, Australia
| | - Hiran Selvadurai
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Chetan Pandit
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul Robinson
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ben J Marais
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Dept of Infectious Diseases, The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|