1
|
Barth C, Nerland S, Jørgensen KN, Haatveit B, Wortinger LA, Melle I, Haukvik UK, Ueland T, Andreassen OA, Agartz I. Altered Sex Differences in Hippocampal Subfield Volumes in Schizophrenia. Schizophr Bull 2024; 50:107-119. [PMID: 37354490 PMCID: PMC10754184 DOI: 10.1093/schbul/sbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS The hippocampus is a heterogenous brain structure that differs between the sexes and has been implicated in the pathophysiology of psychiatric illnesses. Here, we explored sex and diagnostic group differences in hippocampal subfield volumes, in individuals with schizophrenia spectrum disorder (SZ), bipolar disorders (BD), and healthy controls (CTL). STUDY DESIGN One thousand and five hundred and twenty-one participants underwent T1-weighted magnetic resonance imaging (SZ, n = 452, mean age 30.7 ± 9.2 [SD] years, males 59.1%; BD, n = 316, 33.7 ± 11.4, 41.5%; CTL, n = 753, 34.1 ± 9.1, 55.6%). Total hippocampal, subfield, and intracranial volumes were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple regression models were fitted to examine sex-by-diagnostic (sub)group interactions in volume. In SZ and BD, separately, associations between volumes and clinical as well as cognitive measures were examined between the sexes using regression models. STUDY RESULTS Significant sex-by-group interactions were found for the total hippocampus, dentate gyrus, molecular layer, presubiculum, fimbria, hippocampal-amygdaloid transition area, and CA4, indicating a larger volumetric deficit in male patients relative to female patients when compared with same-sex CTL. Subgroup analyses revealed that this interaction was driven by males with schizophrenia. Effect sizes were overall small (partial η < 0.02). We found no significant sex differences in the associations between hippocampal volumes and clinical or cognitive measures in SZ and BD. CONCLUSIONS Using a well-powered sample, our findings indicate that the pattern of morphological sex differences in hippocampal subfields is altered in individuals with schizophrenia relative to CTL, due to higher volumetric deficits in males.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Kjetil N Jørgensen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Beathe Haatveit
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Unn K Haukvik
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
2
|
Rodríguez-Toscano E, Martínez K, Fraguas D, Janssen J, Pina-Camacho L, Arias B, Vieta E, Mezquida G, Amoretti S, Bernardo M, Castro-Fornieles J, Cuesta-Zorita MJ, Lobo A, González-Pinto A, Collado IC, Mané A, Arango C, Parellada M. Prefrontal abnormalities, executive dysfunction and symptoms severity are modulated by COMT Val 158Met polymorphism in first episode psychosis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2022; 15:74-87. [PMID: 35840287 DOI: 10.1016/j.rpsmen.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/06/2021] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Core dysfunctions proposed for psychotic disorders include prefrontal cortex (PFC) dopaminergic hypoactivity, executive function (EF) deficits and reduced gray matter in the PFC. The Val variant of COMT Val158Met polymorphism is associated with reduced dopaminergic signaling in the PFC. However, it is unclear how COMT Val158Met modulates PFC gray matter reduction, EF deficits and symptom severity at the time of the first psychotic episode. METHODS The effect of COMT on both EF performance and prefrontal volume (PFC-VOL) was tested in 158 first episode psychosis (FEP) patients and 141 healthy controls (HC) matched for age (range 9-35 years), sex, ethnicity, handedness and COMT Val158Met distribution. EF and PFC-VOL were compared between FEP and HC groups within each polymorphism status (Met/Met versus Val carriers) to assess whether COMT influenced diagnostic differences. Next, correlations between PFC-VOL and EF performance were computed, as well as between both variables and other clinical characteristics of interest (PANSS scores, PAS infancy and premorbid IQ) in the FEP sample. RESULTS COMT influenced the diagnostic differences mainly in PFC-VOL, but also in EF performance. FEP-Val carriers showed lower EF scores and reduced PFC-VOL compared to the HC group but also poorer EF performance than FEP Met/Met. Poorer EF performance was associated with smaller PFC-VOL, and both were related to increased severity of negative symptoms, poorer premorbid adjustment, and lower estimated premorbid IQ in FEP patients. CONCLUSIONS Our findings suggest that COMT Val158Met polymorphism might contribute to PFC-VOL reductions, executive dysfunctions and symptom severity in FEP patients.
Collapse
Affiliation(s)
- Elisa Rodríguez-Toscano
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Experimental Psychology, Cognitive Psychology and Speech & Language Therapy Immunology, Faculty of Psychology, Universidad Complutense Madrid, Spain.
| | - Kenia Martínez
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber del Area de Salud Mental (CIBERSAM), Spain
| | - David Fraguas
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber del Area de Salud Mental (CIBERSAM), Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber del Area de Salud Mental (CIBERSAM), Spain
| | - Laura Pina-Camacho
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber del Area de Salud Mental (CIBERSAM), Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Bárbara Arias
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - Eduard Vieta
- Ciber del Area de Salud Mental (CIBERSAM), Spain; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Gisela Mezquida
- Ciber del Area de Salud Mental (CIBERSAM), Spain; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute, Spain; Department of Medicine, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Silvia Amoretti
- Ciber del Area de Salud Mental (CIBERSAM), Spain; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute, Spain; Department of Medicine, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Miguel Bernardo
- Ciber del Area de Salud Mental (CIBERSAM), Spain; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute, Spain; Department of Medicine, Institut de Neurociències, Universitat de Barcelona, Spain; August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Spain
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, Clínic Institute of Neurosciences, Hospital Clínic de Barcelona, 2017SGR881, University of Barcelona, CIBERSAM, IDIBAPS, Barcelona, Spain
| | - Manuel Jesús Cuesta-Zorita
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Antonio Lobo
- Department of Medicine and Psychiatry, Zaragoza University, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, CIBERSAM, Madrid, Spain
| | - Ana González-Pinto
- Ciber del Area de Salud Mental (CIBERSAM), Spain; Department of Psychiatry, Araba University Hospital, Bioaraba Research Institute, Department of Neurociences, University of the Basque Country, Vitoria, Spain
| | - Iluminada Corripio Collado
- Department of Psychiatry, Sant Pau Hospital, Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Anna Mané
- Ciber del Area de Salud Mental (CIBERSAM), Spain; Hospital del Mar Medical Research Institute (IMIM), Spain; Autonomous University of Barcelona, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber del Area de Salud Mental (CIBERSAM), Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber del Area de Salud Mental (CIBERSAM), Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
3
|
Rodríguez-Toscano E, Martínez K, Fraguas D, Janssen J, Pina-Camacho L, Arias B, Vieta E, Mezquida G, Amoretti S, Bernardo M, Castro-Fornieles J, Cuesta-Zorita MJ, Lobo A, González-Pinto A, Collado IC, Mané A, Arango C, Parellada M. Prefrontal abnormalities, executive dysfunction and symptoms severity are modulated by COMT Val158Met polymorphism in first episode psychosis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021. [DOI: 10.1016/j.rpsm.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
5
|
Lee ES, Youn H, Hyung WSW, Suh S, Han CE, Eo JS, Jeong HG. The effects of cerebral amyloidopathy on regional glucose metabolism in older adults with depression and mild cognitive impairment while performing memory tasks. Eur J Neurosci 2021; 54:6663-6672. [PMID: 34528336 DOI: 10.1111/ejn.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
Co-occurring depression and mild cognitive impairment (MCI) in older adults are important because they have a high risk of conversion to dementia. In the present study, task-related F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) was used to analyse older adults with concomitant depression and MCI. We recruited 20 older adults with simultaneous depression and MCI and 10 older adults with normal cognition (NC). The Verbal Paired Associates test and digit span test were used for the task-related FDG-PET. The 20 older adults with depression and MCI were classified into two groups based on the F-18 florbetaben PET results: depressed MCI patients with (LLD-MCI-A[+]; n = 11) and without amyloid accumulation (LLD-MCI-A[-]; n = 9). Reduced regional cerebral glucose metabolism (rCMglc) in the left superior frontal region was observed in the LLD-MCI-A(-) group compared with the NC group. Analyses of the NC and LLD-MCI-A(+) groups showed significantly decreased rCMglc in the right inferior parietal and left middle frontal regions in the LLD-MCI-A(+) group. rCMglc in the left precuneus was lower in the LLD-MCI-A(+) group than in the LLD-MCI-A(-) group. Significant correlations between the rCMglc in the right inferior parietal/left precuneus regions and memory task scores were observed based on correlation analyses of NC and LLD-MCI-A(+) groups. The findings in the present study indicate the presence of amyloid accumulation influences glucose metabolism in depressed elderly subjects with MCI while performing cognitive tasks. Task-related FDG-PET examinations may help differentiate MCI associated with depression from comorbid depression in patients with prodromal Alzheimer's disease.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | | | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Seoul, South Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea.,Korea University Research Institute of Mental Health, Seoul, South Korea
| |
Collapse
|
6
|
Kelly S, Guimond S, Lyall A, Stone WS, Shenton ME, Keshavan M, Seidman LJ. Neural correlates of cognitive deficits across developmental phases of schizophrenia. Neurobiol Dis 2019; 131:104353. [PMID: 30582983 DOI: 10.1016/j.nbd.2018.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is associated with cognitive deficits across all stages of the illness (i.e., high risk, first episode, early and chronic phases). Identifying the underlying neurobiological mechanisms of these deficits is an important area of scientific inquiry. Here, we selectively review evidence regarding the pattern of deficits across the developmental trajectory of schizophrenia using the five cognitive domains identified by the Research Domain Criteria (RDoC) initiative. We also report associated findings from neuroimaging studies. We suggest that most cognitive domains are affected across the developmental trajectory, with corresponding brain structural and/or functional differences. The idea of a common mechanism driving these deficits is discussed, along with implications for cognitive treatment in schizophrenia.
Collapse
Affiliation(s)
- Sinead Kelly
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synthia Guimond
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William S Stone
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Matcheri Keshavan
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Larry J Seidman
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Park JH, Hong JS, Kim SM, Min KJ, Chung US, Han DH. Effects of Amisulpride Adjunctive Therapy on Working Memory and Brain Metabolism in the Frontal Cortex of Patients with Schizophrenia: A Preliminary Positron Emission Tomography/Computerized Tomography Investigation. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:250-260. [PMID: 30905125 PMCID: PMC6478094 DOI: 10.9758/cpn.2019.17.2.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/07/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
Objective Dopamine plays a significant role in working memory by acting as a key neuromodulator between brain networks. Additionally, treatment of patients with schizophrenia using amisulpride, a pure dopamine class 2/3 receptor antagonist, improves their clinical symptoms with fewer side effects. We hypothesized that patients with schizophrenia treated with amisulpride and aripiprazole show increased working memory and glucose metabolism compared with those treated with cognitive behavioral therapy (CBT) and aripiprazole instead. Methods Sixteen patients with schizophrenia (eight in the amisulpride group [aripiprazole+amisulpride] and eight in the CBT group [aripiprazole+CBT]) and 15 age- and sex-matched healthy control subjects were recruited for a 12-week-long prospective trial. An [18F]-fluorodeoxyglucose-positron emission tomography/computerized tomography scanner was used to acquire the images. Results After 12 weeks of treatment, the amisulpride group showed greater improvement in the Letter-Number Span scores than the CBT group. Additionally, although brain metabolism in the left middle frontal gyrus, left occipital lingual gyrus, and right inferior parietal lobe was increased in all patients with schizophrenia, the amisulpride group exhibited a greater increase in metabolism in both the right superior frontal gyrus and right frontal precentral gyrus than the CBT group. Conclusion This study suggests that a small dose of amisulpride improves the general psychopathology, working memory performance, and brain glucose metabolism of patients with schizophrenia treated with aripiprazole.
Collapse
Affiliation(s)
- Jeong Ha Park
- Department of Psychiatry, Chung-Ang University Hospital
| | - Ji Son Hong
- Department of Psychiatry, Chung-Ang University Hospital
| | - Sun Mi Kim
- Department of Psychiatry, Chung-Ang University Hospital
| | | | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University Children's
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital
| |
Collapse
|
8
|
Abstract
The key regulatory enzymes of glycogenolysis are phosphorylase kinase, a hetero-oligomer with four different types of subunits, and glycogen phosphorylase, a homodimer. Both enzymes are activated by phosphorylation and small ligands, and both enzymes have distinct isoforms that are predominantly expressed in muscle, liver, or brain; however, whole-transcriptome high-throughput sequencing analyses show that in brain both of these enzymes are likely composed of subunit isoforms representing all three tissues. This Minireview examines the regulatory properties of the isoforms of these two enzymes expressed in the three tissues, focusing on their potential regulatory similarities and differences. Additionally, the activity, structure, and regulation of the remaining enzyme necessary for glycogenolysis, glycogen-debranching enzyme, are also reviewed.
Collapse
Affiliation(s)
- Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421
| | - Joseph D Fontes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421.
| |
Collapse
|
9
|
Pinacho R, Vila E, Prades R, Tarragó T, Castro E, Ferrer I, Ramos B. The glial phosphorylase of glycogen isoform is reduced in the dorsolateral prefrontal cortex in chronic schizophrenia. Schizophr Res 2016; 177:37-43. [PMID: 27156240 DOI: 10.1016/j.schres.2016.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Reduced glutamatergic activity and energy metabolism in the dorsolateral prefrontal cortex (DLPFC) have been described in schizophrenia. Glycogenolysis in astrocytes is responsible for providing neurons with lactate as a transient energy supply helping to couple glutamatergic neurotransmission and glucose utilization in the brain. This mechanism could be disrupted in schizophrenia. The aim of this study was to explore whether the protein levels of the astrocyte isoform of glycogen phosphorylase (PYGM), key enzyme of glycogenolysis, and the isoform A of Ras-related C3 botulinum toxin substrate 1 (RAC1), a kinase that regulates PYGM activity, are altered in the postmortem DLPFC of chronic schizophrenia patients (n=23) and matched controls (n=23). We also aimed to test NMDAR blockade effect on these proteins in the mouse cortex and cortical astrocytes and antipsychotic treatments in rats. Here we report a reduction in PYGM and RAC1 protein levels in the DLPFC in schizophrenia. We found that treatment with the NMDAR antagonist dizocilpine in mice as a model of psychosis increased PYGM and reduced RAC1 protein levels. The same result was observed in rat cortical astroglial-enriched cultures. 21-day haloperidol treatment increased PYGM levels in rats. These results show that PYGM and RAC1 are altered in the DLPFC in chronic schizophrenia and are controlled by NMDA signalling in the rodent cortex and cortical astrocytes suggesting an altered NMDA-dependent glycogenolysis in astrocytes in schizophrenia. Together, this study provides evidence of a NMDA-dependent transient local energy deficit in neuron-glia crosstalk in schizophrenia, contributing to energy deficits of the disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Elia Vila
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Elena Castro
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED, Feixa Llarga s/n, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain.
| |
Collapse
|
10
|
Nikiforuk A, Popik P. The effects of acute and repeated administration of ketamine on attentional performance in the five-choice serial reaction time task in rats. Eur Neuropsychopharmacol 2014; 24:1381-93. [PMID: 24846536 DOI: 10.1016/j.euroneuro.2014.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/27/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
Ketamine, the non-competitive antagonist of the N-methyl-d-aspartate receptors, is used in clinical and preclinical studies to produce schizophrenia-like cognitive impairments. However, the impact of ketamine on attentional functions remains poorly characterised. In the present study, we further examine the effects of ketamine on attentional processes assessed in the five-choice serial reaction time task (5-CSRTT) in rats. The applied schedules of ketamine administration have been previously demonstrated to evoke frontal-dependent set-shifting impairments. Rats were trained to reach a stable baseline performance. Afterwards, animals received a single injection of ketamine (0, 3 and 10 mg/kg, IP) 45 min before the 5-CSRTT session (experiment 1). In experiment 2, ketamine (0 and 30 mg/kg, IP) was administered after the daily test session for 10 consecutive days. The rats' performance was assessed at 22 h following ketamine administration and for 4 days after the last dose. Acute and repeated administration of ketamine disrupted rats performance on the 5-CSRTT. Reduced speed of responding and an increased number of omissions were noted in the absence of reduced food motivation. The within-session pattern of responding differed between rats treated acutely and repeatedly with ketamine. Specifically, repeated drug administration evoked an increase in omissions toward the end of the session, and this effect was not secondary to the reduced motivation. Ketamine affected performance during the withdrawal period only when testing with variable inter-trial intervals. The repeated administration of ketamine can impair rats' ability to sustain attention over the course of session, suggesting some utility for modelling attentional disturbances.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| |
Collapse
|
11
|
Dynamic functional imaging of brain glucose utilization using fPET-FDG. Neuroimage 2014; 100:192-9. [PMID: 24936683 DOI: 10.1016/j.neuroimage.2014.06.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 11/23/2022] Open
Abstract
Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[(18)F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.
Collapse
|
12
|
Suazo V, Díez Á, Montes C, Molina V. Structural correlates of cognitive deficit and elevated gamma noise power in schizophrenia. Psychiatry Clin Neurosci 2014; 68:206-15. [PMID: 24313632 DOI: 10.1111/pcn.12120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/05/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
AIMS The aim of this study was to assess the relation between cognition, gray matter (GM) volumes and gamma noise power (amount of background oscillatory activity in the gamma band) in schizophrenia. METHODS We explored the relation between cognitive performance and regional GM volumes using voxel-based morphometry (VBM), in order to discover if the association between gamma noise power (an electroencephalography measurement of background activity in the gamma band) and cognition is observed through structural deficits related to the disease. Noise power, magnetic resonance imaging and cognitive assessments were obtained in 17 drug-free paranoid patients with schizophrenia and 13 healthy controls. RESULTS In comparison with controls, patients showed GM deficits at posterior cingulate (bilateral),left inferior parietal (supramarginal gyrus) and left inferior dorsolateral prefrontal regions. Patients exhibited a direct association between performance in working memory and right temporal (superior and inferior gyri) GM densities. They also displayed a negative association between right anterior cerebellum volume and gamma noise power at the frontal midline (Fz) site. CONCLUSION A structural deficit in the cerebellum may be involved in gamma activity disorganization in schizophrenia. Temporal structural deficits may relate to cognitive dysfunction in this illness.
Collapse
Affiliation(s)
- Vanessa Suazo
- Neuroscience Institute of Castilla y León, School of Psychology, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
13
|
Daya R, Bhandari J, Hui P, Tian Y, Farncombe T, Mishra R. Effects of MK-801 treatment across several pre-clinical analyses including a novel assessment of brain metabolic function utilizing PET and CT fused imaging in live rats. Neuropharmacology 2014; 77:325-33. [DOI: 10.1016/j.neuropharm.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
|
14
|
Altamura AC, Bertoldo A, Marotta G, Paoli RA, Caletti E, Dragogna F, Buoli M, Baglivo V, Mauri MC, Brambilla P. White matter metabolism differentiates schizophrenia and bipolar disorder: a preliminary PET study. Psychiatry Res 2013; 214:410-4. [PMID: 24144506 DOI: 10.1016/j.pscychresns.2013.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Fluorodeoxyglucose-F18 positron emission tomography studies (FDG-PET) have shown similar corticolimbic metabolic dysregulation in bipolar disorder and schizophrenia, with hypoactive prefrontal cortex coupled with hyperactive anterior limbic areas. However, it is not clear whether white matter metabolism connecting these regions is differently affected in the two disorders. Twenty-six patients with schizophrenia (mean age ± S.D.=30.23 ± 9.7 year-old; 19 males; mean weight ± S.D.=71 ± 3 kg) and 26 patients with bipolar disorder (mean age ± S.D.=48.73 ± 13 year-old; 18 males; mean weight ± S.D.=75 ± 15 kg) underwent an FDG-PET scan. Normalized datasets the two groups of patients were compared on a voxel-by-voxel basis using a two-sample t statistic test as implemented in SPM8, and adding age as covariate. Group differences were assessed applying a threshold of p<0.0005. White matter metabolic rates significantly differed between schizophrenia and bipolar disorder, whereas no differences were shown for cortical activity. This is the first FDG-PET, to our best knowledge, directly comparing subjects with schizophrenia to those with bipolar disorder. It reports decreased activity in the center of large fronto-temporal and cerebellar white matter tracts in patients with schizophrenia in respect to those with bipolar disorder. This feature may characterize and differentiate the regional brain metabolism of the two illnesses.
Collapse
Affiliation(s)
- Alfredo Carlo Altamura
- Department of Neurosciences, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience processing system in schizophrenia. Neuron 2013; 79:814-28. [PMID: 23972602 PMCID: PMC3752973 DOI: 10.1016/j.neuron.2013.06.027] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
For effective information processing, two large-scale distributed neural networks appear to be critical: a multimodal executive system anchored on the dorsolateral prefrontal cortex (DLPFC) and a salience system anchored on the anterior insula. Aberrant interaction among distributed networks is a feature of psychiatric disorders such as schizophrenia. We used whole-brain Granger causal modeling using resting fMRI and observed a significant failure of both the feedforward and reciprocal influence between the insula and the DLPFC in schizophrenia. Further, a significant failure of directed influence from bilateral visual cortices to the insula was also seen in patients. These findings provide compelling evidence for a breakdown of the salience-execution loop in the clinical expression of psychosis. In addition, this offers a parsimonious explanation for the often-observed “frontal inefficiency,” the failure to recruit prefrontal system when salient or novel information becomes available in patients with schizophrenia. A salience-executive loop emerges on fMRI whole-brain Granger causal analysis At rest, DLPFC has inhibitory Granger influence on the salience network In schizophrenia, the salience-executive interaction is diminished Visual cortex fails to influence the salience network in schizophrenia
Collapse
Affiliation(s)
- Lena Palaniyappan
- Centre for Translational Neuroimaging in Mental Health, Division of Psychiatry, University of Nottingham, Nottingham NG7 2TU, UK.
| | | | | | | | | |
Collapse
|
16
|
Ira E, Zanoni M, Ruggeri M, Dazzan P, Tosato S. COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 2013; 38:366-80. [PMID: 23527885 PMCID: PMC3819150 DOI: 10.1503/jpn.120178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Endophenotypes in genetic psychiatry may increase our understanding of the molecular mechanisms underlying disease risk and its manifestations. We sought to investigate the link between neuropsychological impairments and brain structural abnormalities associated with the COMT Val(158)Met polymorphism in patients with schizophrenia to improve understanding of the pathophysiology of this disorder. METHODS We performed a systematic review using studies identified in PubMed and MEDLINE (from the date of the first available article to July 2012). Our review examined evidence of an association between the COMT Val(158)Met polymorphism and both neuropsychological performance and brain structure in patients with psychosis, in their relatives and in healthy individuals (step 1). The review also explored whether the neuropsychological tasks and brain structures identified in step 1 met the criteria for an endophenotype (step 2). Then we evaluated evidence that the neuropsychological endophenotypes identified in step 2 are associated with the brain structure endophenotypes identified in that step (step 3). Finally, we propose a neurobiological interpretation for this evidence. RESULTS A poorer performance on the n-back task and the Continuous Performance Test (CPT) and smaller temporal and frontal brain areas were associated with the COMT Val allele in patients with schizophrenia and their relatives and met most of the criteria for an endophenotype. It is possible that the COMT Val(158)Met polymorphism therefore contributes to the development of these neuropsychological and brain structural endophenotypes of schizophrenia, in which the prefrontal cortex may represent the neural substrate underlying both n-back and CPT performances. LIMITATIONS The association between a single genetic variant and an endophenotype does not necessarily imply a causal relationship between them. CONCLUSION This evidence and the proposed interpretation contribute to explain, at least in part, the biological substrate of 4 important endophenotypes that characterize schizophrenia.
Collapse
Affiliation(s)
- Elisa Ira
- Correspondence to: E. Ira, Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy;
| | | | | | | | | |
Collapse
|
17
|
Suazo V, Díez Á, Tamayo P, Montes C, Molina V. Limbic hyperactivity associated to verbal memory deficit in schizophrenia. J Psychiatr Res 2013; 47:843-50. [PMID: 23490064 DOI: 10.1016/j.jpsychires.2013.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
In schizophrenia there seems to be an inefficient activation of prefrontal and hippocampal regions. Patients tend to show worse cognitive performance in functions subserved by those regions as compared to healthy controls in spite of higher regional activation. However, the association between activation abnormalities and cognitive deficits remains without being understood. In the present study, we compared cerebral perfusion using single-photon emission tomography (SPECT) in patients and controls to study the association between activation patterns and cognitive performance in this disease. The SPECT studies were simultaneously obtained with an electrophysiological recording during a P300 paradigm to elicit P3a and P3b components. We included 23 stable patients with paranoid schizophrenia and 29 healthy controls that underwent clinical and cognitive assessments. Patients with schizophrenia showed an increased perfusion in the right hippocampus with respect to healthy controls, they also displayed a statistically significant inverse association between perfusion in the left hippocampus and verbal memory performance. Healthy controls showed an inverse association between perfusion in the left dorsolateral prefrontal (DLPFC) region and working memory performance. P3b but not P3a amplitude was significantly lower in patients. The limbic overactivation in the patients may contribute to their cognitive deficits in verbal memory.
Collapse
Affiliation(s)
- Vanessa Suazo
- Institute of Biomedical Research (IBSAL), Salamanca, Spain
| | | | | | | | | |
Collapse
|
18
|
Exposure to enriched environments during adolescence prevents abnormal behaviours associated with histone deacetylation in phencyclidine-treated mice. Int J Neuropsychopharmacol 2012; 15:1489-501. [PMID: 22093154 DOI: 10.1017/s1461145711001672] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enriched environments (EEs) during development have been shown to influence adult behaviour. Environmental conditions during childhood may contribute to the onset and/or pathology of schizophrenia; however, it remains unclear whether EE might prevent the development of schizophrenia. Herein, we investigated the effects of EE during adolescence on phencyclidine (PCP)-induced abnormal behaviour, a proposed schizophrenic endophenotype. Male ICR mice (3 wk old) were exposed to an EE for 4 wk and then treated with PCP for 2 wk. The EE potentiated the acute PCP treatment-induced hyperlocomotion in the locomotor test and prevented chronic PCP treatment-induced impairments of social behaviour and recognition memory in the social interaction and novel object recognition tests. It also prevented the PCP-induced decrease of acetylated Lys9 in histone H3-positive cells and increase of the histone deacetylase (HDAC)5 level in the prefrontal cortex. To investigate whether the histone modification during adolescence might be critical for the effect of EE, 3-wk-old mice were first treated with sodium butyrate (SB; an HDAC inhibitor) for 4 wk and then treated with PCP for 2 wk. Chronic SB treatment during adolescence mimicked the effects of EE, including potentiation of hyperlocomotion induced by acute PCP treatment and prevention of social and cognitive impairments, decrease of acetylated Lys9 in histone H3-positive cells and increase of the HDAC5 level in the prefrontal cortex associated with chronic PCP treatment. Our results suggest that EEs prevent PCP-induced abnormal behaviour associated with histone deacetylation. EEs during childhood might prove to be a novel strategy for prophylaxis against schizophrenia.
Collapse
|
19
|
Michael AM, King MD, Ehrlich S, Pearlson G, White T, Holt DJ, Andreasen NC, Sakoglu U, Ho BC, Schulz SC, Calhoun VD. A Data-Driven Investigation of Gray Matter-Function Correlations in Schizophrenia during a Working Memory Task. Front Hum Neurosci 2011; 5:71. [PMID: 21886614 PMCID: PMC3153862 DOI: 10.3389/fnhum.2011.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/16/2011] [Indexed: 11/15/2022] Open
Abstract
The brain is a vastly interconnected organ and methods are needed to investigate its long range structure(S)–function(F) associations to better understand disorders such as schizophrenia that are hypothesized to be due to distributed disconnected brain regions. In previous work we introduced a methodology to reduce the whole brain S–F correlations to a histogram and here we reduce the correlations to brain clusters. The application of our approach to sMRI [gray matter (GM) concentration maps] and functional magnetic resonance imaging data (general linear model activation maps during Encode and Probe epochs of a working memory task) from patients with schizophrenia (SZ, n = 100) and healthy controls (HC, n = 100) presented the following results. In HC the whole brain correlation histograms for GM–Encode and GM–Probe overlap for Low and Medium loads and at High the histograms separate, but in SZ the histograms do not overlap for any of the load levels and Medium load shows the maximum difference. We computed GM–F differential correlation clusters using activation for Probe Medium, and they included regions in the left and right superior temporal gyri, anterior cingulate, cuneus, middle temporal gyrus, and the cerebellum. Inter-cluster GM–Probe correlations for Medium load were positive in HC but negative in SZ. Within group inter-cluster GM–Encode and GM–Probe correlation comparisons show no differences in HC but in SZ differences are evident in the same clusters where HC vs. SZ differences occurred for Probe Medium, indicating that the S–F integrity during Probe is aberrant in SZ. Through a data-driven whole brain analysis approach we find novel brain clusters and show how the S–F differential correlation changes during Probe and Encode at three memory load levels. Structural and functional anomalies have been extensively reported in schizophrenia and here we provide evidences to suggest that evaluating S–F associations can provide important additional information.
Collapse
|
20
|
Lavoie S, Allaman I, Petit JM, Do KQ, Magistretti PJ. Altered glycogen metabolism in cultured astrocytes from mice with chronic glutathione deficit; relevance for neuroenergetics in schizophrenia. PLoS One 2011; 6:e22875. [PMID: 21829542 PMCID: PMC3145770 DOI: 10.1371/journal.pone.0022875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/03/2011] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.
Collapse
Affiliation(s)
- Suzie Lavoie
- Department of Psychiatry, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Bergé D, Carmona S, Rovira M, Bulbena A, Salgado P, Vilarroya O. Gray matter volume deficits and correlation with insight and negative symptoms in first-psychotic-episode subjects. Acta Psychiatr Scand 2011; 123:431-9. [PMID: 21054282 DOI: 10.1111/j.1600-0447.2010.01635.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine brain areas reduced in first episode of psychotic subjects and its association with lack of insight and negative symptoms. METHOD Twenty-one drug naive first-episode subjects and 20 controls underwent a structural MRI scan and were clinically assessed. Optimized voxel-based-morphometry analysis (VBM) was implemented to find between-group differences and correlations between GM volume and: (i) lack of insight and (ii) negative symptoms. RESULTS Patients showed GM reduction in prefrontal and left temporal areas. A significant correlation was found between insight and GM volume in the cerebellum (corrected P = 0.01), inferior temporal gyrus (corrected P = 0.022), medial superior frontal gyrus (corrected P < 0.001), and inferior frontal gyrus (corrected P = 0.012), as the insight decreased, the volume decreased. Negative symptoms correlated with decreased GM volume at cerebellum (corrected P = 0.037) and frontal inferior regions (corrected P < 0.001), the more negative symptoms, the less volume. CONCLUSION Our findings support an association between prefrontal, temporal, and cerebellar deficits and lack of insight in schizophrenia and confirm previous findings of GM deficits in patients since the first episode of psychosis.
Collapse
Affiliation(s)
- D Bergé
- Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Metabonomic studies of schizophrenia and psychotropic medications: focus on alterations in CNS energy homeostasis. Bioanalysis 2011; 1:1615-26. [PMID: 21083107 DOI: 10.4155/bio.09.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder with a poorly understood etiology and progression. We and other research groups have found that energy metabolic pathways in the CNS are perturbed in many subjects with this disorder. Antipsychotic drugs that generally target neurotransmission are currently used for clinical management of the disorder, although these can also have marked effects on energy metabolism in the CNS and periphery. Recent proteomic and metabonomic studies have shown that molecular pathways associated with brain energy metabolism are altered in both the disorder and by antipsychotic treatments. This review focuses on discussion of these molecular alterations. Increased knowledge in this area could facilitate biomarker identification and drug discovery based on improving brain energy metabolism in this debilitating disorder.
Collapse
|
23
|
Bubber P, Hartounian V, Gibson GE, Blass JP. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur Neuropsychopharmacol 2011; 21:254-60. [PMID: 21123035 PMCID: PMC3033969 DOI: 10.1016/j.euroneuro.2010.10.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 10/07/2010] [Accepted: 10/19/2010] [Indexed: 12/12/2022]
Abstract
Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, p<0.05), KGDHC (26%) and STH (28.2%, p<0.05), enzymes in the first half of the TCA cycle, were lower, but SDH (18.3%, p<0.05) and MDH (34%, p<0.005), enzymes in the second half, were higher than controls. PDHC, CS, ICDH and fumarase activities were unchanged. There were no significant correlations between enzymes of TCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia.
Collapse
Affiliation(s)
- P Bubber
- Burke Medical Research Institute of Weill-Cornell Medical School, White Plains, NY 10605, United States
| | | | | | | |
Collapse
|
24
|
Thomson DM, McVie A, Morris BJ, Pratt JA. Dissociation of acute and chronic intermittent phencyclidine-induced performance deficits in the 5-choice serial reaction time task: influence of clozapine. Psychopharmacology (Berl) 2011; 213:681-95. [PMID: 20878519 DOI: 10.1007/s00213-010-2020-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 09/07/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cognitive deficits are a core feature of schizophrenia that respond minimally to existing drugs. PCP is commonly used to model schizophrenia-like deficits preclinically although different dosing protocols may affect different domains. Here we characterise the acute, and chronic intermittent effects of PCP in the 5-choice serial reaction time task (5-CSRTT) in rats, and assess the effects of clozapine. In a novel approach, we also assess the effects of increased inhibitory load and conduct clinically relevant signal detection analysis (SDA). MATERIALS AND METHODS The effects of acute and repeated PCP (2.58 mg/kg) treatment on attentional processes and inhibitory control were assessed during and following the chronic treatment regime in the presence or absence of chronic clozapine (20 mg/kg/day). RESULTS Thirty minutes post-PCP injection, there was an increase in anticipatory responding which disappeared after 24 h. Although, acute PCP did not change accuracy of responding or processing speed, repeated PCP revealed delayed deficits in cognitive processing speed which were partly ameliorated by clozapine. Extended inter-trial intervals increased premature responding, while SDA revealed that clozapine modified persistent PCP-induced deficits in lnBeta (a composite measure of risk taking versus caution). CONCLUSION Acute NMDA receptor antagonism impairs inhibitory control, whereas repeated treatment produces delayed deficits in cognitive processing speed. The ability of clozapine partially to restore persistent PCP-induced deficits in processing speed and in lnBeta is consistent with clinical findings. This suggests that the enduring effects of repeated PCP treatment, combined with SDA, offers a useful, translational, approach to evaluate novel cognitive enhancers in the 5-CSRTT.
Collapse
Affiliation(s)
- David M Thomson
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), Universities of Glasgow and Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
25
|
Molina V, Cortés B, Pérez J, Martín C, Villa R, López DE, Sancho C. No association between prepulse inhibition of the startle reflex and neuropsychological deficit in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 2010; 260:609-15. [PMID: 20112025 DOI: 10.1007/s00406-010-0102-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 01/12/2010] [Indexed: 11/26/2022]
Abstract
Sensorimotor gating deficits are relevant in schizophrenia and can be measured using prepulse inhibition (PPI) of the startle reflex. It is conceivable that such deficits may hinder the cognitive functions in schizophrenia patients. In this study, using PPI and a neuropsychological battery, we studied this possibility in a group of 23 acute, neuroleptic-free schizophrenia patients and 16 controls. A non-significant decrease in PPI was found in the patients as compared to the controls, as well as significant differences in the performance of Trail A and B in Wisconsin Card Sorting and Digit/Symbol Tests. No statistically significant correlations between PPI and neuropsychological performance were found after the correction for multiple comparisons in any group. Our results suggest that PPI deficits in schizophrenia patients may not contribute to the cognitive deficits typical of that illness, at least in patients with a non-significant PPI decrease.
Collapse
Affiliation(s)
- Vicente Molina
- Department of Psychiatry, Hospital Clínico Universitario, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|