1
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, Chen P, Huang L, Wang Y. Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med 2022; 52:2861-2873. [PMID: 36093787 DOI: 10.1017/s0033291722002392] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
3
|
The gut microbiome is associated with brain structure and function in schizophrenia. Sci Rep 2021; 11:9743. [PMID: 33963227 PMCID: PMC8105323 DOI: 10.1038/s41598-021-89166-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The effect of the gut microbiome on the central nervous system and its possible role in mental disorders have received increasing attention. However, knowledge about the relationship between the gut microbiome and brain structure and function is still very limited. Here, we used 16S rRNA sequencing with structural magnetic resonance imaging (sMRI) and resting-state functional (rs-fMRI) to investigate differences in fecal microbiota between 38 patients with schizophrenia (SZ) and 38 demographically matched normal controls (NCs) and explored whether such differences were associated with brain structure and function. At the genus level, we found that the relative abundance of Ruminococcus and Roseburia was significantly lower, whereas the abundance of Veillonella was significantly higher in SZ patients than in NCs. Additionally, the analysis of MRI data revealed that several brain regions showed significantly lower gray matter volume (GMV) and regional homogeneity (ReHo) but significantly higher amplitude of low-frequency fluctuation in SZ patients than in NCs. Moreover, the alpha diversity of the gut microbiota showed a strong linear relationship with the values of both GMV and ReHo. In SZ patients, the ReHo indexes in the right STC (r = − 0.35, p = 0.031, FDR corrected p = 0.039), the left cuneus (r = − 0.33, p = 0.044, FDR corrected p = 0.053) and the right MTC (r = − 0.34, p = 0.03, FDR corrected p = 0.052) were negatively correlated with the abundance of the genus Roseburia. Our results suggest that the potential role of the gut microbiome in SZ is related to alterations in brain structure and function. This study provides insights into the underlying neuropathology of SZ.
Collapse
|
4
|
Distinct Associations of Cognitive Impairments and Reduced Gray Matter Volumes in Remitted Patients with Schizophrenia and Bipolar Disorder. Neural Plast 2020; 2020:8859388. [PMID: 33381163 PMCID: PMC7748913 DOI: 10.1155/2020/8859388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cognitive impairments are documented in schizophrenia (SZ) and bipolar disorder (BD) and may be related to gray matter volumes (GMVs). Thus, this study is aimed at exploring whether the association between cognitive impairments and GMV alterations is similar in patients with SZ and BD and understanding the underlying neurobiological mechanisms. Methods A total of 137 adult subjects (46 with SZ, 35 with BD, and 56 age-, sex-, and education-matched healthy controls (HC)) completed the MATRICS Consensus Cognitive Battery (MCCB) and structural magnetic resonance imaging scanning. We performed group comparisons of the cognitive impairments, the GMV alterations, and the association between them. Results Compared with HC, the patients with SZ and BD showed shared deficits in 4 cognitive domains (i.e., processing speed, working memory, problem solving, and social cognition) and the composite. SZ and BD had commonly decreased GMVs, mainly in the insula, superior temporal pole, amygdala, anterior cingulate, and frontal cortices (superior, middle, opercular inferior, and orbital frontal gyrus). No correlation between MCCB scores and GMVs was detected in SZ. However, for BD, working memory was relevant to the right hemisphere (i.e., right insula, amygdala, superior temporal pole, and medial and dorsolateral superior frontal gyrus). Limitations. The major limitations were that not all patients were the first-episode status and no medication. Conclusions The association was mainly limited to the BD group. Thus, the underlying pathophysiology of the cognitive deficits, in terms of GMV alterations, may be diverse between two disorders.
Collapse
|
5
|
Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry 2020; 20:488. [PMID: 33023515 PMCID: PMC7542439 DOI: 10.1186/s12888-020-02886-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bipolar disorder (BPD) is a common mood disorder that is often goes misdiagnosed or undiagnosed. Recently, machine learning techniques have been combined with neuroimaging methods to aid in the diagnosis of BPD. However, most studies have focused on the construction of classifiers based on single-modality MRI. Hence, in this study, we aimed to construct a support vector machine (SVM) model using a combination of structural and functional MRI, which could be used to accurately identify patients with BPD. METHODS In total, 44 patients with BPD and 36 healthy controls were enrolled in the study. Clinical evaluation and MRI scans were performed for each subject. Next, image pre-processing, VBM and ReHo analyses were performed. The ReHo values of each subject in the clusters showing significant differences were extracted. Further, LASSO approach was recruited to screen features. Based on selected features, the SVM model was established, and discriminant analysis was performed. RESULTS After using the two-sample t-test with multiple comparisons, a total of 8 clusters were extracted from the data (VBM = 6; ReHo = 2). Next, we used both VBM and ReHo data to construct the new SVM classifier, which could effectively identify patients with BPD at an accuracy of 87.5% (95%CI: 72.5-95.3%), sensitivity of 86.4% (95%CI: 64.0-96.4%), and specificity of 88.9% (95%CI: 63.9-98.0%) in the test data (p = 0.0022). CONCLUSIONS A combination of structural and functional MRI can be of added value in the construction of SVM classifiers to aid in the accurate identification of BPD in the clinic.
Collapse
Affiliation(s)
- Hao Li
- grid.412615.5Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China.
| | - Yizhi Zhang
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Yueheng Liu
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,Chinese National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan China
| | - Wenhao Deng
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Wenjin Zhou
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| |
Collapse
|
6
|
The Amygdala in Schizophrenia and Bipolar Disorder: A Synthesis of Structural MRI, Diffusion Tensor Imaging, and Resting-State Functional Connectivity Findings. Harv Rev Psychiatry 2020; 27:150-164. [PMID: 31082993 DOI: 10.1097/hrp.0000000000000207] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Frequently implicated in psychotic spectrum disorders, the amygdala serves as an important hub for elucidating the convergent and divergent neural substrates in schizophrenia and bipolar disorder, the two most studied groups of psychotic spectrum conditions. A systematic search of electronic databases through December 2017 was conducted to identify neuroimaging studies of the amygdala in schizophrenia and bipolar disorder, focusing on structural MRI, diffusion tensor imaging (DTI), and resting-state functional connectivity studies, with an emphasis on cross-diagnostic studies. Ninety-four independent studies were selected for the present review (49 structural MRI, 27 DTI, and 18 resting-state functional MRI studies). Also selected, and analyzed in a separate meta-analysis, were 33 volumetric studies with the amygdala as the region-of-interest. Reduced left, right, and total amygdala volumes were found in schizophrenia, relative to both healthy controls and bipolar subjects, even when restricted to cohorts in the early stages of illness. No volume abnormalities were observed in bipolar subjects relative to healthy controls. Shape morphometry studies showed either amygdala deformity or no differences in schizophrenia, and no abnormalities in bipolar disorder. In contrast to the volumetric findings, DTI studies of the uncinate fasciculus tract (connecting the amygdala with the medial- and orbitofrontal cortices) largely showed reduced fractional anisotropy (a marker of white matter microstructure abnormality) in both schizophrenia and bipolar patients, with no cross-diagnostic differences. While decreased amygdalar-orbitofrontal functional connectivity was generally observed in schizophrenia, varying patterns of amygdalar-orbitofrontal connectivity in bipolar disorder were found. Future studies can consider adopting longitudinal approaches with multimodal imaging and more extensive clinical subtyping to probe amygdalar subregional changes and their relationship to the sequelae of psychotic disorders.
Collapse
|
7
|
Lee DK, Lee H, Park K, Joh E, Kim CE, Ryu S. Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS One 2020; 15:e0232826. [PMID: 32379845 PMCID: PMC7205291 DOI: 10.1371/journal.pone.0232826] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate abnormalities in the gray matter and white matter (GM and WM, respectively) that are shared between schizophrenia (SZ) and bipolar disorder (BD). We used 3T-magnetic resonance imaging to examine patients with SZ, BD, or healthy control (HC) subjects (aged 20–50 years, N = 65 in each group). We generated modulated GM maps through voxel-based morphometry (VBM) for T1-weighted images and skeletonized fractional anisotropy, mean diffusion, and radial diffusivity maps through tract-based special statistics (TBSS) methods for diffusion tensor imaging (DTI) data. These data were analyzed using a generalized linear model with pairwise comparisons between groups with a family-wise error corrected P < 0.017. The VBM analysis revealed widespread decreases in GM volume in SZ compared to HC, but patients with BD showed GM volume deficits limited to the right thalamus and left insular lobe. The TBSS analysis showed alterations of DTI parameters in widespread WM tracts both in SZ and BD patients compared to HC. The two disorders had WM alterations in the corpus callosum, superior longitudinal fasciculus, internal capsule, external capsule, posterior thalamic radiation, and fornix. However, we observed no differences in GM volume or WM integrity between SZ and BD. The study results suggest that GM volume deficits in the thalamus and insular lobe along with widespread disruptions of WM integrity might be the common neural mechanisms underlying the pathologies of SZ and BD.
Collapse
Affiliation(s)
- Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Kyeongwoo Park
- Department of Clinical Psychology, National Center for Mental Health, Seoul, Republic of Korea
| | - Euwon Joh
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Chul-Eung Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Madre M, Canales-Rodríguez EJ, Fuentes-Claramonte P, Alonso-Lana S, Salgado-Pineda P, Guerrero-Pedraza A, Moro N, Bosque C, Gomar JJ, Ortíz-Gil J, Goikolea JM, Bonnin CM, Vieta E, Sarró S, Maristany T, McKenna PJ, Salvador R, Pomarol-Clotet E. Structural abnormality in schizophrenia versus bipolar disorder: A whole brain cortical thickness, surface area, volume and gyrification analyses. Neuroimage Clin 2019; 25:102131. [PMID: 31911343 PMCID: PMC6948361 DOI: 10.1016/j.nicl.2019.102131] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The profiles of cortical abnormalities in schizophrenia and bipolar disorder, and how far they resemble each other, have only been studied to a limited extent. The aim of this study was to identify and compare the changes in cortical morphology associated with these pathologies. METHODS A total of 384 subjects, including 128 patients with schizophrenia, 128 patients with bipolar disorder and 127 sex-age-matched healthy subjects, were examined using cortical surface-based morphology. Four cortical structural measures were studied: cortical volume (CV), cortical thickness (CT), surface area (SA) and gyrification index (GI). Group comparisons for each separate cortical measure were conducted. RESULTS At a threshold of P = 0.05 corrected, both patient groups showed significant widespread CV and CT reductions in similar areas compared to healthy subjects. However, the changes in schizophrenia were more pronounced. While CV decrease in bipolar disorder was exclusively explained by cortical thinning, in schizophrenia it was driven by changes in CT and partially by SA. Reduced GI was only found in schizophrenia. The direct comparison between both disorders showed significant reductions in all measures in patients with schizophrenia. CONCLUSIONS Cortical volume and cortical thickness deficits are shared between patients with schizophrenia and bipolar disorder, suggesting that both pathologies may be affected by similar environmental and neurodegenerative factors. However, the exclusive alteration in schizophrenia of metrics related to the geometry and curvature of the brain cortical surface (SA, GI) suggests that this group is influenced by additional neurodevelopmental and genetic factors.
Collapse
Affiliation(s)
- Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain.
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Silvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | | | - Noemí Moro
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Clara Bosque
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; The Litwin-Zucker Alzheimer's Research Center, NY, USA
| | - Jordi Ortíz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital General de Granollers, Granollers, Catalonia, Spain
| | - José M Goikolea
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Caterina M Bonnin
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Fundació de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
9
|
Zou Y, Ni K, Wang Y, Yu E, Lui SSY, Zhou F, Yang H, Cohen AS, Strauss GP, Cheung EFC, Chan RCK. Effort–cost computation in a transdiagnostic psychiatric sample: Differences among patients with schizophrenia, bipolar disorder, and major depressive disorder. Psych J 2019; 9:210-222. [PMID: 31692266 DOI: 10.1002/pchj.316] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ying‐Min Zou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Ke Ni
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Qiqihar Psychiatry Hospital Heilongjiang China
| | - Yan‐Yu Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyWeifang Medical University Weifang China
| | - En‐Qing Yu
- Qiqihar Psychiatry Hospital Heilongjiang China
| | - Simon S. Y. Lui
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Castle Peak Hospital Hong Kong China
| | - Fu‐Chun Zhou
- Beijing Key Laboratory of Mental DisordersBeijing Anding Hospital, Capital Medical University Beijing China
| | - Han‐Xue Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Alex S. Cohen
- Department of PsychologyLouisiana State University Baton Rouge Louisiana USA
| | | | | | - Raymond C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Li J, Tang Y, Womer F, Fan G, Zhou Q, Sun W, Xu K, Wang F. Two patterns of anterior insular cortex functional connectivity in bipolar disorder and schizophrenia. World J Biol Psychiatry 2019; 19:S115-S123. [PMID: 28112029 DOI: 10.1080/15622975.2016.1274051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) and schizophrenia (SZ) share structural abnormalities in the anterior insula cortex (AIC). The AIC appears to have a crucial role in emotional processing and regulation and cognitive control in BD and SZ. METHODS Forty-six participants with BD, 68 with SZ and 66 healthy controls (HC) underwent functional magnetic resonance imaging scanning. Resting-state functional connectivity (rsFC) from AIC subregions (ventral and dorsal) was compared among the three groups. RESULTS Compared to HC group, both BD and SZ groups exhibited increased rsFC from the ventral AIC (vAIC) and dorsal AIC (dAIC) to bilateral frontal pole and thalamus, the left middle frontal gyrus and the hippocampus. Meanwhile, the BD group demonstrated increased rsFC from the vAIC to the perigenual anterior cingulate cortex, the SZ group presented increased rsFC from the vAIC and dAIC to the right caudate. Compared with the BD group, the SZ group showed significantly increased rsFC from the vAIC and dAIC to the left middle frontal gyrus. CONCLUSIONS The shared AIC rsFC abnormalities in both BD and SZ support the importance of the AIC in the common pathophysiology of BD and SZ. There were also disorder-specific features of AIC rsFC, which might implicate potential avenues for differentiating during the early stages.
Collapse
Affiliation(s)
- Jian Li
- a Department of Radiology , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| | - Yanqing Tang
- b Department of Psychiatry , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| | - Fay Womer
- c Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Guoguang Fan
- a Department of Radiology , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| | - Qian Zhou
- b Department of Psychiatry , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| | - Wenge Sun
- a Department of Radiology , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| | - Ke Xu
- a Department of Radiology , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| | - Fei Wang
- a Department of Radiology , The First Hospital of China Medical University , Shenyang , Liaoning , PR China.,b Department of Psychiatry , The First Hospital of China Medical University , Shenyang , Liaoning , PR China
| |
Collapse
|
11
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
12
|
Sorella S, Lapomarda G, Messina I, Frederickson JJ, Siugzdaite R, Job R, Grecucci A. Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms. Neuroimage Clin 2019; 23:101854. [PMID: 31121524 PMCID: PMC6529770 DOI: 10.1016/j.nicl.2019.101854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Despite the traditional view of Schizophrenia (SZ) and Bipolar disorder (BD) as separate diagnostic categories, the validity of such a categorical approach is challenging. In recent years, the hypothesis of a continuum between Schizophrenia (SZ) and Bipolar disorder (BD), postulating a common pathophysiologic mechanism, has been proposed. Although appealing, this unifying hypothesis may be too simplistic when looking at cognitive and affective differences these patients display. In this paper, we aim to test an expanded version of the continuum hypothesis according to which the continuum extends over three clusters: the psychotic, the cognitive, and the affective. We applied an innovative approach known as Source-based Morphometry (SBM) to the structural images of 46 individuals diagnosed with SZ, 46 with BD and 66 healthy controls (HC). We also analyzed the psychological profiles of the three groups using cognitive, affective, and clinical tests. At a neural level, we found evidence for a shared psychotic core in a distributed network involving portions of the medial parietal and temporo-occipital areas, as well as parts of the cerebellum and the middle frontal gyrus. We also found evidence of a cognitive core more compromised in SZ, including alterations in a fronto-parietal circuit, and mild evidence of an affective core more compromised in BD, including portions of the temporal and occipital lobes, cerebellum, and frontal gyrus. Such differences were confirmed by the psychological profiles, with SZ patients more impaired in cognitive tests, while BD in affective ones. On the bases of these results we put forward an expanded view of the continuum hypothesis, according to which a common psychotic core exists between SZ and BD patients complemented by two separate cognitive and affective cores that are both impaired in the two patients' groups, although to different degrees.
Collapse
Affiliation(s)
- Sara Sorella
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Gaia Lapomarda
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | | | | | - Roma Siugzdaite
- Department of Experimental Psychology, Faculty of Psychological and Pedagogical Sciences, Ghent University, Ghent, Belgium.
| | - Remo Job
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| |
Collapse
|
13
|
Lu X, Zhong Y, Ma Z, Wu Y, Fox PT, Zhang N, Wang C. Structural imaging biomarkers for bipolar disorder: Meta-analyses of whole-brain voxel-based morphometry studies. Depress Anxiety 2019; 36:353-364. [PMID: 30475436 DOI: 10.1002/da.22866] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a common and destructive psychiatric illness worldwide. Although it is known that BD is associated with morphological abnormalities of the brain, the regions implicated in BD remain unclear. Therefore, we aimed to update current knowledge on potential structural imaging biomarkers of BD. METHODS Studies published up to January 31, 2018, were identified by a comprehensive literature search of PubMed, EBSCO, and BrainMap voxel-based morphometry (VBM) database. Whole-brain VBM studies that examined gray matter (GM) abnormalities of group comparisons between BD and healthy controls (HC) and reported results as coordinates in a standard reference space were included. Different meta-analyses were performed by activation likelihood estimation (ALE) algorithm. RESULTS A total of 46 studies with 56 experiments, including 1720 subjects and 268 foci were included. Seven different meta-analyses were calculated separately across experiments reporting decreased or increased GM volume among BD, BDΙ, BD-adults, and BD-youths groups. Fifteen regions of significantly different GM volume between four groups and HC were identified. There were extensive GM deficits in the prefrontal and temporal cortex, and enlargements in the putamen, cingulate cortex, and precuneus. CONCLUSIONS The results revealed that the thinning of prefrontal cortex was a key region in the pathophysiology of BD. The enlargement of the cingulate cortex may be implicated in a compensatory mechanism. It underscored important differences between BD-adults and BD-youths and specific biomarkers of three subgroups.
Collapse
Affiliation(s)
- Xin Lu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zijuan Ma
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Wu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,South Texas Veterans Healthcare System, University of Texas Health San Antonio, San Antonio, United States.,Research Imaging Institute, University of Texas Health San Antonio, San Antonio, United States
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
15
|
Huhtaniska S, Korkala I, Heikka T, Björnholm L, Lehtiniemi H, Hulkko AP, Moilanen J, Tohka J, Manjón J, Coupé P, Kiviniemi V, Isohanni M, Koponen H, Murray GK, Miettunen J, Jääskeläinen E. Antipsychotic and benzodiazepine use and brain morphology in schizophrenia and affective psychoses - Systematic reviews and birth cohort study. Psychiatry Res Neuroimaging 2018; 281:43-52. [PMID: 30219591 DOI: 10.1016/j.pscychresns.2018.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
The aim of this paper was to investigate differences in brain structure volumes between schizophrenia and affective psychoses, and whether cumulative lifetime antipsychotic or benzodiazepine doses relate to brain morphology in these groups. We conducted two systematic reviews on the topic and investigated 44 schizophrenia cases and 19 with affective psychoses from the Northern Finland Birth Cohort 1966. The association between lifetime antipsychotic and benzodiazepine dose and brain MRI scans at the age of 43 was investigated using linear regression. Intracranial volume, sex, illness severity, and antipsychotic/benzodiazepine doses were used as covariates. There were no differences between the groups in brain structure volumes. In schizophrenia, after adjusting for benzodiazepine dose and symptoms, a negative association between lifetime antipsychotic dose and the nucleus accumbens volume remained. In affective psychoses, higher lifetime benzodiazepine dose associated with larger volumes of total gray matter and hippocampal volume after controlling for antipsychotic use and symptoms. It seems that in addition to antipsychotics, the severity of symptoms and benzodiazepine dose are also associated with brain structure volumes. These results suggest, that benzodiazepine effects should also be investigated also independently and not only as a confounder.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland.
| | - Iikka Korkala
- Center for Life Course Health Research, University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Tuomas Heikka
- Center for Life Course Health Research, University of Oulu, Finland
| | - Lassi Björnholm
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Heli Lehtiniemi
- Center for Life Course Health Research, University of Oulu, Finland
| | - Anja P Hulkko
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Jani Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Jussi Tohka
- AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - José Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Spain
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, France
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Finland
| | - Hannu Koponen
- University of Helsinki, Helsinki University Hospital, Psychiatry, Helsinki, Finland
| | - Graham K Murray
- University of Cambridge, Department of Psychiatry, United Kingdom; University of Cambridge, Behavioural and Clinical Neuroscience Institute, United Kingdom
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Finland
| |
Collapse
|
16
|
Altamura AC, Maggioni E, Dhanoa T, Ciappolino V, Paoli RA, Cremaschi L, Prunas C, Orsenigo G, Caletti E, Cinnante CM, Triulzi FM, Dell'Osso B, Yatham L, Brambilla P. The impact of psychosis on brain anatomy in bipolar disorder: A structural MRI study. J Affect Disord 2018; 233:100-109. [PMID: 29223329 DOI: 10.1016/j.jad.2017.11.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a major psychiatric illness characterized by heterogeneous symptoms including psychotic features. Up until now, neuroimaging studies investigating cerebral morphology in patients with BD have underestimated the potential impact of psychosis on brain anatomy in BD patients. In this regard, psychotic and non-psychotic BD may represent biologically different subtypes of the disorder, being possibly associated with specific cerebral features. METHODS In the present study, magnetic resonance imaging (MRI) at 3T was used to identify the neuroanatomical correlates of psychosis in an International sample of BD patients. A large sample of structural MRI data from healthy subjects (HC) and BD patients was collected across two research centers. Voxel based morphometry was used to compare gray matter (GM) volume among psychotic and non-psychotic BD patients and HC. RESULTS We found specific structural alterations in the two patient groups, more extended in the psychotic sample. Psychotic patients showed GM volume deficits in left frontal cortex compared to HC, and in right temporo-parietal cortex compared to both HC and non-psychotic patients (p < 0.001, > 100 voxels). Psychotic patients also exhibited enhanced age-related GM volume deficits in a set of subcortical and cortical regions. LIMITATIONS The integration of multiple datasets may have affected the results. CONCLUSIONS Overall, our results confirm the importance of classifying BD based on psychosis. The knowledge of the neuronal bases of psychotic symptomatology in BD can provide a more comprehensive picture of the determinants of BD, in the light of the continuum characteristic of major psychoses.
Collapse
Affiliation(s)
- A Carlo Altamura
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Taj Dhanoa
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Riccardo A Paoli
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Laura Cremaschi
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elisabetta Caletti
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Claudia M Cinnante
- Department of Neuroradiology, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Fabio M Triulzi
- Department of Neuroradiology, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA
| | - Lakshmi Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
17
|
Maggioni E, Crespo-Facorro B, Nenadic I, Benedetti F, Gaser C, Sauer H, Roiz-Santiañez R, Poletti S, Marinelli V, Bellani M, Perlini C, Ruggeri M, Altamura AC, Diwadkar VA, Brambilla P. Common and distinct structural features of schizophrenia and bipolar disorder: The European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT) study. PLoS One 2017; 12:e0188000. [PMID: 29136642 PMCID: PMC5685634 DOI: 10.1371/journal.pone.0188000] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology, their neural underpinnings are still under investigation. Here, structural Magnetic Resonance Imaging (MRI) data collected from a large sample of BD and SCZ patients and healthy controls (HC) were analyzed in terms of gray matter volume (GMV) using both voxel based morphometry (VBM) and a region of interest (ROI) approach. METHODS The analysis was conducted on two datasets, Dataset1 (802 subjects: 243 SCZ, 176 BD, 383 HC) and Dataset2, a homogeneous subset of Dataset1 (301 subjects: 107 HC, 85 BD and 109 SCZ). General Linear Model analyses were performed 1) at the voxel-level in the whole brain (VBM study), 2) at the regional level in the anatomical regions emerged from the VBM study (ROI study). The GMV comparison across groups was integrated with the analysis of GMV correlates of different clinical dimensions. RESULTS The VBM results of Dataset1 showed 1) in BD compared to HC, GMV deficits in right cingulate, superior temporal and calcarine cortices, 2) in SCZ compared to HC, GMV deficits in widespread cortical and subcortical areas, 3) in SCZ compared to BD, GMV deficits in insula and thalamus (p<0.05, cluster family wise error corrected). The regions showing GMV deficits in the BD group were mostly included in the SCZ ones. The ROI analyses confirmed the VBM results at the regional level in most of the clusters from the SCZ vs. HC comparison (p<0.05, Bonferroni corrected). The VBM and ROI analyses of Dataset2 provided further evidence for the enhanced GMV deficits characterizing SCZ. Based on the clinical-neuroanatomical analyses, we cannot exclude possible confounding effects due to 1) age of onset and medication in BD patients, 2) symptoms severity in SCZ patients. CONCLUSION Our study reported both shared and specific neuroanatomical characteristics between the two disorders, suggesting more severe and generalized GMV deficits in SCZ, with a specific role for insula and thalamus.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg / Marburg University Hospital UKGM, Marburg, Germany
| | - Francesco Benedetti
- Department of Clinical Neurosciences and Centro di Eccellenza Risonanza Magnetica ad Alto Campo, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Sara Poletti
- Department of Clinical Neurosciences and Centro di Eccellenza Risonanza Magnetica ad Alto Campo, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Marinelli
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| | - Marcella Bellani
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - A. Carlo Altamura
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neuroscience, Wayne State University, Detroit, MI, United States of America
| | - Paolo Brambilla
- IRCCS Scientific Institute “E. Medea”, Bosisio Parini, Lecco, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
18
|
Kim M, Kim J, Lee SH, Park H. Imaging genetics approach to Parkinson's disease and its correlation with clinical score. Sci Rep 2017; 7:46700. [PMID: 28429747 PMCID: PMC5399369 DOI: 10.1038/srep46700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with both underlying genetic factors and neuroimaging findings. Existing neuroimaging studies related to the genome in PD have mostly focused on certain candidate genes. The aim of our study was to construct a linear regression model using both genetic and neuroimaging features to better predict clinical scores compared to conventional approaches. We obtained neuroimaging and DNA genotyping data from a research database. Connectivity analysis was applied to identify neuroimaging features that could differentiate between healthy control (HC) and PD groups. A joint analysis of genetic and imaging information known as imaging genetics was applied to investigate genetic variants. We then compared the utility of combining different genetic variants and neuroimaging features for predicting the Movement Disorder Society-sponsored unified Parkinson's disease rating scale (MDS-UPDRS) in a regression framework. The associative cortex, motor cortex, thalamus, and pallidum showed significantly different connectivity between the HC and PD groups. Imaging genetics analysis identified PARK2, PARK7, HtrA2, GIGYRF2, and SNCA as genetic variants that are significantly associated with imaging phenotypes. A linear regression model combining genetic and neuroimaging features predicted the MDS-UPDRS with lower error and higher correlation with the actual MDS-UPDRS compared to other models using only genetic or neuroimaging information alone.
Collapse
Affiliation(s)
- Mansu Kim
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Korea
| | - Jonghoon Kim
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Korea
| | - Seung-Hak Lee
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Korea
| |
Collapse
|
19
|
Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ SCHIZOPHRENIA 2017; 3:15. [PMID: 28560261 PMCID: PMC5441538 DOI: 10.1038/s41537-017-0013-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Since Emil Kraepelin's conceptualization of endogenous psychoses as dementia praecox and manic depression, the separation between primary psychotic disorders and primary affective disorders has been much debated. We conducted a systematic review of case-control studies contrasting magnetic resonance imaging studies in schizophrenia and bipolar disorder. A literature search in PubMed of studies published between January 2005 and December 2016 was conducted, and 50 structural, 29 functional, 7 magnetic resonance spectroscopy, and 8 combined imaging and genetic studies were deemed eligible for systematic review. Structural neuroimaging studies suggest white matter integrity deficits that are consistent across the illnesses, while gray matter reductions appear more widespread in schizophrenia compared to bipolar disorder. Spectroscopy studies in cortical gray matter report evidence of decreased neuronal integrity in both disorders. Functional neuroimaging studies typically report similar functional architecture of brain networks in healthy controls and patients across the psychosis spectrum, but find differential extent of alterations in task related activation and resting state connectivity between illnesses. The very limited imaging-genetic literature suggests a relationship between psychosis risk genes and brain structure, and possible gene by diagnosis interaction effects on functional imaging markers. While the existing literature suggests some shared and some distinct neural markers in schizophrenia and bipolar disorder, it will be imperative to conduct large, well designed, multi-modal neuroimaging studies in medication-naïve first episode patients that will be followed longitudinally over the course of their illness in an effort to advance our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Badari Birur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
20
|
Ganzola R, Duchesne S. Voxel-based morphometry meta-analysis of gray and white matter finds significant areas of differences in bipolar patients from healthy controls. Bipolar Disord 2017; 19:74-83. [PMID: 28444949 DOI: 10.1111/bdi.12488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We present a retrospective meta-analysis of voxel-based morphometry (VBM) of gray (GM) and white matter (WM) differences between patients with bipolar disorder (BD) and behaviorally healthy controls. METHODS We used the activation likelihood estimation and Sleuth software for our meta-analysis, considering P-value maps at the cluster level inference of .05 with uncorrected P<.001. Results were visualized with the software MANGO. RESULTS We included twenty-five articles in the analysis, and separated the comparisons where BD patients had lower GM or WM concentrations than controls (573 subjects, 21 experiments, and 117 locations/180 subjects, five experiments, and 15 locations, respectively) and the comparisons where BD patients had greater GM concentrations than controls (217 subjects, nine experiments, and 49 locations). Higher WM concentrations in BD patients were not detected. We observed for BD reduced GM concentrations in the left medial frontal gyrus and right inferior/precentral gyri encompassing the insular cortex, and greater GM concentrations in the left putamen. Further, lower WM concentrations were detected in the left inferior longitudinal fasciculus, left superior corona radiata, and left posterior cingulum. CONCLUSIONS This meta-analysis confirms deterioration of frontal and insular regions as already found in previous meta-analysis. GM reductions in these regions could be related to emotional processing and decision making, which are typically impaired in BD. Moreover, we found abnormalities in precentral frontal areas and putamen that have been linked to more basic functions, which could point to sensory and specific cognitive deficits. Finally, WM reductions involved circuitry that may contribute to emotional dysregulation in BD.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
21
|
Abstract
Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology (Ellison-Wright and Bullmore, 2009), the neural mechanisms underlying these disorders are still under investigation. Up until now, many neuroimaging studies investigated the brain structural differences of SCZ and BD compared with healthy controls (HC), trying to identify the possible neuroanatomical markers for the two disorders. However, just a few studies focused on the brain structural changes between the two diagnoses. The present review summarises the findings of the voxel-based grey matter (GM) comparisons between SCZ and BD, with the objective to highlight the possible consistent anatomical differences between the two disorders. While the comparisons between patients and HC highlighted overlapping areas of GM reduction in insula and anterior cingulate cortex, the SCZ-BD comparisons suggest the presence of more generalised GM deficits in SCZ compared with BD. Indeed, in a number of studies, SCZ patients showed lower GM volumes than BD patients in fronto-temporal cortex, thalamus, hippocampus and amygdala. Conversely, only a couple of studies reported GM deficits in BD compared with SCZ, both at the level of cerebellum. In summary, the two disorders exhibit both common and specific neuroanatomical characteristics, whose knowledge is mandatory to develop innovative diagnostic and treatment strategies.
Collapse
|
22
|
Dannlowski U, Kugel H, Grotegerd D, Redlich R, Suchy J, Opel N, Suslow T, Konrad C, Ohrmann P, Bauer J, Kircher T, Krug A, Jansen A, Baune BT, Heindel W, Domschke K, Forstner AJ, Nöthen MM, Treutlein J, Arolt V, Hohoff C, Rietschel M, Witt SH. NCAN Cross-Disorder Risk Variant Is Associated With Limbic Gray Matter Deficits in Healthy Subjects and Major Depression. Neuropsychopharmacology 2015; 40:2510-6. [PMID: 25801500 PMCID: PMC4569958 DOI: 10.1038/npp.2015.86] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Genome-wide association studies have reported an association between NCAN rs1064395 genotype and bipolar disorder. This association was later extended to schizophrenia and major depression. However, the neurobiological underpinnings of these associations are poorly understood. NCAN is implicated in neuronal plasticity and expressed in subcortical brain areas, such as the amygdala and hippocampus, which are critically involved in dysfunctional emotion processing and regulation across diagnostic boundaries. We hypothesized that the NCAN risk variant is associated with reduced gray matter volumes in these areas. Gray matter structure was assessed by voxel-based morphometry on structural MRI data in two independent German samples (healthy subjects, n=512; depressed inpatients, n=171). All participants were genotyped for NCAN rs1064395. Hippocampal and amygdala region-of-interest analyses were performed within each sample. In addition, whole-brain data from the combined sample were analyzed. Risk (A)-allele carriers showed reduced amygdala and hippocampal gray matter volumes in both cohorts with a remarkable spatial overlap. In the combined sample, genotype effects observed for the amygdala and hippocampus survived correction for entire brain volume. Further effects were also observed in the left orbitofrontal cortex and the cerebellum/fusiform gyrus. We conclude that NCAN genotype is associated with limbic gray matter alterations in healthy and depressed subjects in brain areas implicated in emotion perception and regulation. The present data suggest that NCAN forms susceptibility to neurostructural deficits in the amygdala, hippocampus, and prefrontal areas independent of disease, which might lead to disorder onset in the presence of other genetic or environmental risk factors.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Marburg, Marburg, Germany,Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany, Tel: +49 251 8357218, Fax: +49 251 8356612, E-mail:
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Janina Suchy
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine, University of Leipzig, Leipzig, Germany
| | - Carsten Konrad
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Patricia Ohrmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
23
|
Palaniyappan L, Maayan N, Bergman H, Davenport C, Adams CE, Soares‐Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. Cochrane Database Syst Rev 2015; 2015:CD011021. [PMID: 26252640 PMCID: PMC7104330 DOI: 10.1002/14651858.cd011021.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder which involves distortions in thought and perception, blunted affect, and behavioural disturbances. The longer psychosis goes unnoticed and untreated, the more severe the repercussions for relapse and recovery. There is some evidence that early intervention services can help, and diagnostic techniques that could contribute to early intervention may offer clinical utility in these situations. The index test being evaluated in this review is the structural magnetic resonance imaging (MRI) analysis technique known as voxel-based morphometry (VBM) that estimates the distribution of grey matter tissue volume across several brain regions. This review is an exploratory examination of the diagnostic 'potential' of VBM for use as an additional tool in the clinical examination of patients with first episode psychosis to establish whether an individual will progress on to developing schizophrenia as opposed to other types of psychosis. OBJECTIVES To determine whether VBM applied to the brain can be used to differentiate schizophrenia from other types of psychosis in participants who have received a clinical diagnosis of first episode psychosis. SEARCH METHODS In December 2013, we updated a previous search (May 2012) of MEDLINE, EMBASE, and PsycInfo using OvidSP. SELECTION CRITERIA We included retrospective and prospective studies that consecutively or randomly selected adolescent and adult participants (< 45 years) with a first episode of psychosis; and that evaluated the diagnostic accuracy of VBM for differentiating schizophrenia from other psychoses compared with a clinical diagnosis made by a qualified mental health professional, with or without the use of standard operational criteria or symptom checklists. We excluded studies in children, and in adult participants with organic brain disorders or who were at high risk for schizophrenia, such as people with a genetic predisposition. DATA COLLECTION AND ANALYSIS Two review authors screened all references for inclusion. We assessed the quality of studies using the QUADAS-2 instrument. Due to a lack of data, we were not able to extract 2 x 2 data tables for each study nor undertake any meta-analysis. MAIN RESULTS We included four studies with a total of 275 participants with first episode psychosis. VBM was not used to diagnose schizophrenia in any of the studies, instead VBM was used to quantify the magnitude of differences in grey matter volume. Therefore, none of the included studies reported data that could be used in the analysis, and we summarised the findings narratively for each study. AUTHORS' CONCLUSIONS There is no evidence to currently support diagnosing schizophrenia (as opposed to other psychotic disorders) using the pattern of brain changes seen in VBM studies in patients with first episode psychosis. VBM has the potential to discriminate between diagnostic categories but the methods to do this reliably are currently in evolution. In addition, the lack of applicability of the use of VBM to clinical practice in the studies to date limits the usefulness of VBM as a diagnostic aid to differentiate schizophrenia from other types of psychotic presentations in people with first episode of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- The University of NottinghamDivison of Psychiatry, Institute of Mental HealthRoom 09, C FloorInnovation Park, Triumph RoadNottinghamUKNG7 2TU
| | - Nicola Maayan
- Enhance Reviews LtdCentral Office, Cobweb BuildingsThe Lane, LyfordWantageUKOX12 0EE
| | - Hanna Bergman
- Enhance Reviews LtdCentral Office, Cobweb BuildingsThe Lane, LyfordWantageUKOX12 0EE
| | - Clare Davenport
- University of BirminghamPublic Health, Epidemiology and BiostatisticsBirminghamUKB15 2TT
| | - Clive E Adams
- The University of NottinghamCochrane Schizophrenia GroupInstitute of Mental HealthInnovation Park, Triumph Road,NottinghamUKNG7 2TU
| | - Karla Soares‐Weiser
- Enhance Reviews LtdCentral Office, Cobweb BuildingsThe Lane, LyfordWantageUKOX12 0EE
| | | |
Collapse
|
24
|
Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study. Schizophr Res 2015; 165:212-9. [PMID: 25935815 DOI: 10.1016/j.schres.2015.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022]
Abstract
While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (p<0.05, FDR corrected) in medial and right dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (p<0.05, FDR corrected) yielded a similar pattern, however, there was an additional significant reduction in schizophrenia patients in the (posterior) hippocampus bilaterally, left dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at p<0.001 (uncorr.) for a minor parietal cluster, but not for prefrontal areas. Our results suggest that the more extensive prefrontal, thalamic, and hippocampal deficits that might set apart schizophrenia and bipolar disorder might not be related to mere appearance of psychotic symptoms at some stage of the disorders.
Collapse
|
25
|
Hippocampal structure and function in individuals with bipolar disorder: a systematic review. J Affect Disord 2015; 174:113-25. [PMID: 25496759 DOI: 10.1016/j.jad.2014.11.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/15/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a psychiatric disorder accompanied by deficits in declarative memory. Given the importance of the hippocampus in declarative memory, it is not surprising that BD patients have been reported to show hippocampal abnormalities. OBJECTIVES Review evidence about structural and functional hippocampal abnormalities in BD. METHODS Systematic review of studies comparing BD patients and healthy controls with respect to hippocampal structure or function. RESULTS Twenty-five studies were included, together involving 1043 patients, 21 of which compared patients to controls. Decrease in hippocampal volume was found in four of 18 studies using adult samples, and two of three samples using adolescents. Four studies revealed localized hippocampal deficits. Meta-analysis revealed a significant but small effect with lower hippocampal volumes when comparing all BD patients with controls. Lithium treatment was associated with larger hippocampal volumes across studies. The three functional studies yielded contradictory evidence. LIMITATIONS Studies were only cross-sectional in nature and all used MRI or fMRI to investigate hippocampal volume or function. Heterogeneous patients groups and different methodologies for hippocampal segmentation, may have contributed to difficulties when comparing the different studies. CONCLUSIONS There seems to be a small reduction in hippocampal volume in BD, which perhaps is more pronounced in early-onset BD and is counteracted by a neuroprotective effect of lithium treatment. However, how these structural abnormalities relate to functional deficits is largely unclear. Given the few functional neuroimaging studies and given the lack of congruence in these results, further investigation of especially hippocampal function in BD is recommended.
Collapse
|
26
|
Fuentes D, Contreras J, Yu J, He R, Castillo E, Castillo R, Guerrero T. Morphometry-based measurements of the structural response to whole-brain radiation. Int J Comput Assist Radiol Surg 2014; 10:393-401. [PMID: 25408306 DOI: 10.1007/s11548-014-1128-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Morphometry techniques were applied to quantify the normal tissue therapy response in patients receiving whole-brain radiation for intracranial malignancies. METHODS Pre- and Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N = 15 patients. Volume changes with respect to pre-irradiation were quantitatively measured in the cerebrum and ventricles. Measurements were correlated with the time interval from irradiation. Criteria for inclusion included craniospinal irradiation, pre-irradiation MRI, at least one follow-up MRI, and no disease progression. The brain on each image was segmented to remove the skull and registered to the initial pre-treatment scan. Average volume changes were measured using morphometry analysis of the deformation Jacobian and direct template registration-based segmentation of brain structures. RESULTS An average cerebral volume atrophy of -0.2 and -3% 3% was measured for the deformation morphometry and direct segmentation methods, respectively. An average ventricle volume dilation of 21 and 20% was measured for the deformation morphometry and direct segmentation methods, respectively. CONCLUSION The presented study has developed an image processing pipeline for morphometric monitoring of brain tissue volume changes as a response to radiation therapy. Results indicate that quantitative morphometric monitoring is feasible and may provide additional information in assessing response.
Collapse
Affiliation(s)
- D Fuentes
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Womer FY, Wang L, Alpert K, Smith MJ, Csernansky JG, Barch D, Mamah D. Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder. Psychiatry Res 2014; 223:75-83. [PMID: 24957866 PMCID: PMC4112520 DOI: 10.1016/j.pscychresns.2014.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
Abstract
In this study, we examined the morphology of the basal ganglia and thalamus in bipolar disorder (BP), schizophrenia-spectrum disorders (SCZ-S), and healthy controls (HC) with particular interest in differences related to the absence or presence of psychosis. Volumetric and shape analyses of the basal ganglia and thalamus were performed in 33 BP individuals [12 without history of psychotic features (NPBP) and 21 with history of psychotic features (PBP)], 32 SCZ-S individuals [28 with SCZ and 4 with schizoaffective disorder], and 27 HC using FreeSurfer-initiated large deformation diffeomorphic metric mapping. Significant volume differences were found in the caudate and globus pallidus, with volumes smallest in the NPBP group. Shape abnormalities showing inward deformation of superior regions of the caudate were observed in BP (and especially in NPBP) compared with HC. Shape differences were also found in the globus pallidus and putamen when comparing BP and SCZ-S groups. No significant differences were seen in the nucleus accumbens and thalamus. In summary, structural abnormalities in the caudate and globus pallidus are present in BP and SCZ-S. Differences were more apparent in the NPBP subgroup. The findings herein highlight the potential importance of separately examining BP subgroups in neuroimaging studies.
Collapse
Affiliation(s)
- Fay Y. Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Deanna Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychology, Washington University, St. Louis, MO, USA,Department or Radiology, Washington University, St. Louis, MO, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Knöchel C, Stäblein M, Storchak H, Reinke B, Jurcoane A, Prvulovic D, Linden DE, van de Ven V, Ghinea D, Wenzler S, Alves G, Matura S, Kröger A, Oertel-Knöchel V. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: evidences from neurobehavioral measures and functional and structural MRI. Neuroimage Clin 2014; 6:134-44. [PMID: 25379425 PMCID: PMC4215399 DOI: 10.1016/j.nicl.2014.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/28/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
Abstract
A potential clinical and etiological overlap between schizophrenia (SZ) and bipolar disorder (BD) has long been a subject of discussion. Imaging studies imply functional and structural alterations of the hippocampus in both diseases. Thus, imaging this core memory region could provide insight into the pathophysiology of these disorders and the associated cognitive deficits. To examine possible shared alterations in the hippocampus, we conducted a multi-modal assessment, including functional and structural imaging as well as neurobehavioral measures of memory performance in BD and SZ patients compared with healthy controls. We assessed episodic memory performance, using tests of verbal and visual learning (HVLT, BVMT) in three groups of participants: BD patients (n = 21), SZ patients (n = 21) and matched (age, gender, education) healthy control subjects (n = 21). In addition, we examined hippocampal resting state functional connectivity, hippocampal volume using voxel-based morphometry (VBM) and fibre integrity of hippocampal connections using diffusion tensor imaging (DTI). We found memory deficits, changes in functional connectivity within the hippocampal network as well as volumetric reductions and altered white matter fibre integrity across patient groups in comparison with controls. However, SZ patients when directly compared with BD patients were more severely affected in several of the assessed parameters (verbal learning, left hippocampal volumes, mean diffusivity of bilateral cingulum and right uncinated fasciculus). The results of our study suggest a graded expression of verbal learning deficits accompanied by structural alterations within the hippocampus in BD patients and SZ patients, with SZ patients being more strongly affected. Our findings imply that these two disorders may share some common pathophysiological mechanisms. The results could thus help to further advance and integrate current pathophysiological models of SZ and BD.
Collapse
Affiliation(s)
- Christian Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Michael Stäblein
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Helena Storchak
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Alina Jurcoane
- Institute for Neuroradiology, Goethe Univ., Frankfurt/Main, Germany
- Center for Individual Development and Adaptive Education of Children at Risk, Frankfurt/Main, Germany
| | - David Prvulovic
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - David E.J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Denisa Ghinea
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Sofia Wenzler
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer's Disease and Related Disorders, Universidade Federal, do Rio de Janeiro, Brazil
| | - Silke Matura
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Anne Kröger
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Viola Oertel-Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| |
Collapse
|
29
|
Bonilha L, Nesland T, Rorden C, Fridriksson J. Asymmetry of the structural brain connectome in healthy older adults. Front Psychiatry 2014; 4:186. [PMID: 24409158 PMCID: PMC3885898 DOI: 10.3389/fpsyt.2013.00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/23/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome). This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks. OBJECTIVE To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults. MATERIALS AND METHODS We obtained high-resolution structural magnetic resonance images (MRI) from 17 healthy older adults. For each subject, the brain connectome was reconstructed by parcelating the probabilistic map of gray matter into anatomically defined regions of interested (ROIs). White matter fiber tractography was reconstructed from diffusion tensor imaging and streamlines connecting gray matter ROIs were computed. Asymmetry indices were calculated regarding ROI connectivity (representing the sum of connectivity weight of each cortical ROI) and for regional white matter links. All asymmetry measures were compared to a normal distribution with mean = 0 through one-sample t-tests. RESULTS Leftward cortical ROI asymmetry was observed in medial temporal, dorsolateral frontal, and occipital regions. Rightward cortical ROI asymmetry was observed in middle temporal and orbito-frontal regions. Link-wise asymmetry revealed stronger connections in the left hemisphere between the medial temporal, anterior, and posterior peri-Sylvian and occipito-temporal regions. Rightward link asymmetry was observed in lateral temporal, parietal, and dorsolateral frontal connections. CONCLUSION We postulate that asymmetry of specific connections may be related to functional hemispheric organization. This study may provide reference for future studies evaluating the architecture of the connectome in health and disease processes in older individuals.
Collapse
Affiliation(s)
- Leonardo Bonilha
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA
| | - Travis Nesland
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina , Columbia, SC , USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina , Columbia, SC , USA
| |
Collapse
|
30
|
Ratnanather JT, Poynton CB, Pisano DV, Crocker B, Postell E, Cebron S, Ceyhan E, Honeycutt NA, Mahon PB, Barta PE. Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophr Res 2013; 150:476-83. [PMID: 24012458 PMCID: PMC3825771 DOI: 10.1016/j.schres.2013.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
Abstract
Structural abnormalities in temporal lobe, including the superior temporal gyrus (STG) and planum temporale (PT), have been reported in schizophrenia (SCZ) and bipolar disorder (BPD) patients. While most MRI studies have suggested gray matter volume and surface area reduction in temporal lobe regions, few have explored changes in laminar thickness in PT and STG in SCZ and BPD. ROI subvolumes of the STG from 94 subjects were used to yield gray matter volume, gray/white surface area and laminar thickness for STG and PT cortical regions. Morphometric analysis suggests that there may be gender and laterality effects on the size and shape of the PT in BPD (n=36) and SCZ (n=31) with reduced laterality in PT in subjects with SCZ but not in BPD. In addition, PT surface area was seen to be larger in males, and asymmetry in PT surface area was larger in BPD. Subjects with SCZ had reduced thickness and smaller asymmetry in PT volume. Thus, the PT probably plays a more sensitive role than the STG in structural abnormalities seen in SCZ.
Collapse
Affiliation(s)
- J. Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218,Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218,Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218
| | - Clare B. Poynton
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Dominic V. Pisano
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Britni Crocker
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Elizabeth Postell
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Shannon Cebron
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Elvan Ceyhan
- Dept of Mathematics, Koc University, Istanbul, Turkey
| | - Nancy A. Honeycutt
- Dept. of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Pamela B. Mahon
- Dept. of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Patrick E. Barta
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218,Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
31
|
Wang Q, Xiang B, Deng W, Wu J, Li M, Ma X, Wang Y, Jiang L, McAlonan G, Chua SE, Sham PC, Hu X, Li T. Genome-wide association analysis with gray matter volume as a quantitative phenotype in first-episode treatment-naïve patients with schizophrenia. PLoS One 2013; 8:e75083. [PMID: 24086445 PMCID: PMC3782493 DOI: 10.1371/journal.pone.0075083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
Reduced Gray matter (GM) volume is a core feature of schizophrenia. Mapping genes that is associated with the heritable disease-related phenotypes may be conducive to elucidate the pathogenesis of schizophrenia. This study aims to identify the common genetic variants that underlie the deficits of GM volume in schizophrenia. High-resolution T1 images and whole genome genotyping data were obtained from 74 first-episode treatment-naïve patients with schizophrenia and 51 healthy controls in the Mental Health Centre of the West China Hospital, Sichuan University. All participants were scanned using a 3T MR imaging system and were genotyped using the HumanHap660 Bead Array. Reduced GM volumes in three brain areas including left hOC3v in the collateral sulcus of visual cortex (hOC3vL), left cerebellar vermis lobule 10 (vermisL10) and right cerebellar vermis lobule 10 (vermisR10) were found in patients with schizophrenia. There was a group by genotype interaction when genotypes from genome-wide scan were subsequently considered in the case-control analyses. SNPs from three genes or chromosomal regions (TBXAS1, PIK3C2G and HS3ST5) were identified to predict the changes of GM volume in hOC3vL, vermisL10 and vermisR10. These results also highlighted the usefulness of endophenotype in exploring the pathogenesis of neuropsychiatric diseases such as schizophrenia although further independent replication studies are needed in the future.
Collapse
Affiliation(s)
- Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Bo Xiang
- State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Wei Deng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Junyao Wu
- State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Mingli Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
- State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Yingcheng Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
- State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Lijun Jiang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Siew E. Chua
- Department of Psychiatry, University of Hong Kong, Hong Kong, P R China
| | - Pak C. Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong, P R China
| | - Xun Hu
- Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
- * E-mail: (XH); (TL)
| | - Tao Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
- State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
- * E-mail: (XH); (TL)
| |
Collapse
|
32
|
Gurvich C, Maller JJ, Lithgow B, Haghgooie S, Kulkarni J. Vestibular insights into cognition and psychiatry. Brain Res 2013; 1537:244-59. [PMID: 24012768 DOI: 10.1016/j.brainres.2013.08.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
The vestibular system has traditionally been thought of as a balance apparatus; however, accumulating research suggests an association between vestibular function and psychiatric and cognitive symptoms, even when balance is measurably unaffected. There are several brain regions that are implicated in both vestibular pathways and psychiatric disorders. The present review examines the anatomical associations between the vestibular system and various psychiatric disorders. Despite the lack of direct evidence for vestibular pathology in the key psychiatric disorders selected for this review, there is a substantial body of literature implicating the vestibular system in each of the selected psychiatric disorders. The second part of this review provides complimentary evidence showing the link between vestibular dysfunction and vestibular stimulation upon cognitive and psychiatric symptoms. In summary, emerging research suggests the vestibular system can be considered a potential window for exploring brain function beyond that of maintenance of balance, and into areas of cognitive, affective and psychiatric symptomology. Given the paucity of biological and diagnostic markers in psychiatry, novel avenues to explore brain function in psychiatric disorders are of particular interest and warrant further exploration.
Collapse
Affiliation(s)
- Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, VIC 3004, Australia.
| | | | | | | | | |
Collapse
|
33
|
Anderson D, Ardekani BA, Burdick KE, Robinson DG, John M, Malhotra AK, Szeszko PR. Overlapping and distinct gray and white matter abnormalities in schizophrenia and bipolar I disorder. Bipolar Disord 2013; 15:680-93. [PMID: 23796123 PMCID: PMC3762889 DOI: 10.1111/bdi.12096] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/13/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Schizophrenia and bipolar disorder may share common neurobiological mechanisms, but few studies have directly compared gray and white matter structure in these disorders. We used diffusion-weighted magnetic resonance imaging and a region of interest based analysis to identify overlapping and distinct gray and white matter abnormalities in 35 patients with schizophrenia and 20 patients with bipolar I disorder in comparison to 56 healthy volunteers. METHODS We examined fractional anisotropy within the white matter and mean diffusivity within the gray matter in 42 regions of interest defined on a probabilistic atlas following non-linear registration of the images to atlas space. RESULTS Patients with schizophrenia had significantly lower fractional anisotropy in temporal (superior temporal and parahippocampal) and occipital (superior and middle occipital) white matter compared to patients with bipolar disorder and healthy volunteers. By contrast, both patient groups demonstrated significantly higher mean diffusivity in frontal (inferior frontal and lateral orbitofrontal) and temporal (superior temporal and parahippocampal) gray matter compared to healthy volunteers, but did not differ from each other. CONCLUSIONS Our study implicates overlapping gray matter frontal and temporal lobe structural alterations in the neurobiology of schizophrenia and bipolar I disorder, but suggests that temporal and occipital lobe white matter deficits may be an additional risk factor for schizophrenia. Our findings may have relevance for future diagnostic classification systems and the identification of susceptibility genes for these disorders.
Collapse
Affiliation(s)
- Dana Anderson
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY
| | - Babak A. Ardekani
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Katherine E. Burdick
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NY, NY
| | - Delbert G. Robinson
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - Majnu John
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY
| | - Anil K. Malhotra
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - Philip R. Szeszko
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| |
Collapse
|
34
|
Goghari VM, Sponheim SR. More pronounced deficits in facial emotion recognition for schizophrenia than bipolar disorder. Compr Psychiatry 2013; 54:388-97. [PMID: 23218816 PMCID: PMC3600398 DOI: 10.1016/j.comppsych.2012.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022] Open
Abstract
Schizophrenia and bipolar disorder are typically separated in diagnostic systems. Behavioral, cognitive, and brain abnormalities associated with each disorder nonetheless overlap. We evaluated the diagnostic specificity of facial emotion recognition deficits in schizophrenia and bipolar disorder to determine whether select aspects of emotion recognition differed for the two disorders. The investigation used an experimental task that included the same facial images in an emotion recognition condition and an age recognition condition (to control for processes associated with general face recognition) in 27 schizophrenia patients, 16 bipolar I patients, and 30 controls. Schizophrenia and bipolar patients exhibited both shared and distinct aspects of facial emotion recognition deficits. Schizophrenia patients had deficits in recognizing angry facial expressions compared to healthy controls and bipolar patients. Compared to control participants, both schizophrenia and bipolar patients were more likely to mislabel facial expressions of anger as fear. Given that schizophrenia patients exhibited a deficit in emotion recognition for angry faces, which did not appear due to generalized perceptual and cognitive dysfunction, improving recognition of threat-related expression may be an important intervention target to improve social functioning in schizophrenia.
Collapse
Affiliation(s)
- Vina M Goghari
- Departments of Psychology and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 1N4.
| | - Scott R Sponheim
- Minneapolis Veteran’s Affairs Healthcare System and Departments of Psychiatry and Psychology, University of Minnesota
| |
Collapse
|
35
|
Three-dimensional mapping of hippocampal and amygdalar structure in euthymic adults with bipolar disorder not treated with lithium. Psychiatry Res 2013; 211:195-201. [PMID: 23149020 PMCID: PMC3594485 DOI: 10.1016/j.pscychresns.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/22/2012] [Accepted: 08/04/2012] [Indexed: 01/21/2023]
Abstract
Structural neuroimaging studies of the amygdala and hippocampus in bipolar disorder have been largely inconsistent. This may be due in part to differences in the proportion of subjects taking lithium or experiencing an acute mood state, as both factors have recently been shown to influence gray matter structure. To avoid these problems, we evaluated euthymic subjects not currently taking lithium. Thirty-two subjects with bipolar type I disorder and 32 healthy subjects were scanned using magnetic resonance imaging. Subcortical regions were manually traced, and converted to three-dimensional meshes to evaluate the main effect of bipolar illness on radial distance. Statistical analyses found no evidence for a main effect of bipolar illness in either region, although exploratory analyses found a significant age by diagnosis interaction in the right amygdala, as well as positive associations between radial distance of the left amygdala and both prior hospitalizations for mania and current medication status. These findings suggest that, when not treated with lithium or in an acute mood state, patients with bipolar disorder exhibit no structural abnormalities of the amygdala or hippocampus. Future studies, nevertheless, that further elucidate the impact of age, course of illness, and medication on amygdala structure in bipolar disorder are warranted.
Collapse
|
36
|
Jamadar S, O’Neil KM, Pearlson GD, Ansari M, Gill A, Jagannathan K, Assaf M. Impairment in semantic retrieval is associated with symptoms in schizophrenia but not bipolar disorder. Biol Psychiatry 2013; 73:555-64. [PMID: 22985694 PMCID: PMC3581745 DOI: 10.1016/j.biopsych.2012.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The Semantic Object Retrieval Task (SORT) requires participants to indicate whether word pairs recall a third object. Schizophrenia individuals (SZ) tend to report associations between nonassociated word pairs; this overretrieval is related to formal thought disorder (FTD). Since semantic memory impairments and psychosis are also found in bipolar disorder (BP), we examined whether SORT impairments and their relationship to symptoms are also present in BP. METHODS Participants (n = 239; healthy control subjects [HC] = 133; BP = 32; SZ = 74) completed SORT while undergoing functional magnetic resonance imaging (fMRI) scanning. RESULTS Retrieval accuracy negatively correlated with negative symptoms and no-retrieval accuracy negatively correlated with FTD severity in SZ but not BP. Retrieval versus no-retrieval trials activated a distributed fronto-parieto-temporal network; bilateral inferior parietal lobule (IPL) activity was larger in HC versus SZ and HC versus BP, with no difference in SZ versus BP. Right IPL activity positively correlated with positive and general psychosis symptoms in SZ but not BP. CONCLUSIONS SZ reported more associations between unrelated word pairs than HC; this overretrieval increased with FTD severity. Schizophrenia individuals were also more likely to fail to find associations between related word pairs; this underretrieval increased with negative symptom severity. fMRI symptom correlations in IPL in SZ are consistent with arguments that IPL abnormality relates to loosening of associations in SZ. By comparison, BP showed intermediate impairments on SORT, uncorrelated with symptoms, suggesting that the relationship between SORT performance, fMRI activity, and psychotic symptoms is schizophrenia-specific.
Collapse
Affiliation(s)
- Sharna Jamadar
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut 06106, USA.
| | - Kasey M. O’Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, USA,Departments of Psychiatry and Neurobiology, Yale University, New Haven CT, USA
| | - Mahvesh Ansari
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, USA
| | - Adrienne Gill
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, USA
| | | | - Michal Assaf
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, USA,Departments of Psychiatry and Neurobiology, Yale University, New Haven CT, USA
| |
Collapse
|
37
|
Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res 2013; 211:37-46. [PMID: 23146253 DOI: 10.1016/j.pscychresns.2012.06.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/27/2012] [Accepted: 06/14/2012] [Indexed: 12/13/2022]
Abstract
We designed this study to perform a meta-analysis of gray matter (GM) findings in major depressive disorder (MDD) by using the signed differential mapping (SDM) toolbox. The Pubmed, ScienceDirect and Scopus databases were searched, and only studies published or published online before November 2010 have been included. Twenty voxel-based morphometry (VBM) studies of adult MDD patients were entered in the meta-analysis by SDM toolbox with threshold criteria set as error probability less than 0.00005 and cluster more than 50 voxels. Onset age, numbers of patients and controls, gender ratio of both groups, ratio of medicated patients, depression rating scores, illness duration, co-morbidity and existence of corrected p value were also meta-regressed as covariates to exclude confounding biases. Voxel-wise meta-analytic results of these 20 VBM studies in MDD patients revealed that GM deficits were observed in the right anterior cingulate cortex and left anterior cingulate cortex when patients were compared with controls. The findings remained mostly unchanged in jackknife sensitivity analyses. The potential confounding factors had little impact on the results. This meta-analysis suggested GM deficits of the anterior cingulate cortex might be important in the etiology of MDD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Division of Psychiatry, Cheng Hsin General Hospital, Taipei City, Taiwan, ROC.
| |
Collapse
|
38
|
An MRI study of amygdala in schizophrenia and psychotic bipolar disorder. Schizophr Res 2012; 138:188-91. [PMID: 22559949 PMCID: PMC3372630 DOI: 10.1016/j.schres.2012.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
Meta-analyses report larger amygdala in subjects with bipolar disorder compared to schizophrenia. However, few studies have compared the size of amygdala in psychotic bipolar disorder with schizophrenia. Here we examine size of amygdala in a sample of 36 patients with psychotic bipolar disorder, 31 patients with schizophrenia and 27 healthy comparison subjects. Patients with schizophrenia had smaller amygdala compared with patients with psychotic bipolar disorder (p=0.014). These results suggest that change in volume of amygdala may represent a morphologic feature distinguishing psychotic bipolar disorder from schizophrenia.
Collapse
|
39
|
Borgwardt S, Smieskova R, Fusar-Poli P. Gray matter pathology of hippocampus - a specific endophenotype for schizophrenia? Psychiatry Res 2012; 202:273-4. [PMID: 22743117 DOI: 10.1016/j.pscychresns.2011.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022]
|
40
|
Jedynak P, Jaholkowski P, Wozniak G, Sandi C, Kaczmarek L, Filipkowski RK. Lack of cyclin D2 impairing adult brain neurogenesis alters hippocampal-dependent behavioral tasks without reducing learning ability. Behav Brain Res 2011; 227:159-66. [PMID: 22101301 DOI: 10.1016/j.bbr.2011.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 11/30/2022]
Abstract
The exact function of the adult brain neurogenesis remains elusive, although it has been suggested to play a role in learning and memory processes. In our studies, we employed cyclin D2 gene knockout (cD2 KO) mice showing impaired neurogenesis as well as decreased hippocampal size. However, irrespectively of the genetic background of cD2 KO mice, this phenotype resulted in neither deficits in the hippocampal-dependent learning ability nor the memory formation. In the present study, cD2 KO mice and control littermates were subjected to hippocampal-dependent behavioral tests with little or no learning component. The knockout mice showed significant impairment in such species-typical behaviors as nest construction, digging, and marble burying. They were building none or poorer nests, digging less robustly, and burying fewer marbles than control mice. Such impairments were previously described, e.g., in animals with hippocampal lesions. Moreover, cD2 KO animals were also more active in the open field and automated motility chamber as well as showed increased explorative behavior in IntelliCage. Both increased motility and explorative behaviors were previously observed in hippocampally lesioned animals. Finally, cD2 KO mice showed normal sucrose preference, however starting from the second exposure to the sweetened solution, while control animals displayed a strong preference immediately. Presented results suggest that either morphological abnormalities of the hippocampal formation or adult brain neurogenesis impairment (or both) alter hippocampal-dependent behaviors of mutant mice without influencing learning abilities. These results may also suggest that adult brain neurogenesis is involved in species-typical behaviors.
Collapse
Affiliation(s)
- Paulina Jedynak
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|