1
|
Wang M, Yu J, Kim HD, Cruz AB. Neural correlates of executive function and attention in children with ADHD: An ALE meta-analysis of task-based functional connectivity studies. Psychiatry Res 2025; 345:116338. [PMID: 39947841 DOI: 10.1016/j.psychres.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 05/09/2025]
Abstract
We conducted a comprehensive meta-analysis of task-based functional MRI studies on executive function and attention in children with attention deficit hyperactivity disorder (ADHD). We searched for studies published before March 20, 2023, in PubMed, Cochrane Library, Web of Science, EBSCO, Embase, and Scopus. The ALE (activation likelihood estimation) method was used to detect differences in brain activation between children with ADHD and comparison children. Fifty-seven (57) studies were included, with 2,231 participants (1,062 children with ADHD). Based on the omnibus meta-analysis findings, significant hypoactivation in children with ADHD relative to comparisons was observed in the frontoparietal network, putamen, insula, cingulate gyrus, and middle temporal gyrus, while ADHD-related hyperactivation was present in the occipital lobe, declive, middle frontal gyrus, and parahippocampal gyrus. This study highlights the critical involvement of the parietal lobe. Results also revealed abnormalities in the frontal lobe and brainstem, suggesting unintegrated primitive reflexes. For stimulant-naive children with ADHD, significant hypoactivation in the right cerebrum was observed compared to controls. Finally, dysfunctional connectivity between the frontoparietal network and the striatum may lead to inefficient working memory, while the cerebellum plays a crucial role in inhibitory control and attention tasks. These findings provide important insights into the pathology of ADHD.
Collapse
Affiliation(s)
- Meng Wang
- College of Sports Science, Shenyang Normal University, Shenyang, China; Department of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Jing Yu
- College of Sports Science, Shenyang Normal University, Shenyang, China
| | - Hyun-Duck Kim
- Department of Sport Marketing, Keimyung University, Daegu, Republic of Korea
| | | |
Collapse
|
2
|
Dimanova P, Borbás R, Raschle NM. From mother to child: How intergenerational transfer is reflected in similarity of corticolimbic brain structure and mental health. Dev Cogn Neurosci 2023; 64:101324. [PMID: 37979300 PMCID: PMC10692656 DOI: 10.1016/j.dcn.2023.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Intergenerational transfer effects include traits transmission from parent to child. While behaviorally well documented, studies on intergenerational transfer effects for brain structure or functioning are scarce, especially those examining relations of behavioral and neurobiological endophenotypes. This study aims to investigate behavioral and neural intergenerational transfer effects associated with the corticolimbic circuitry, relevant for socioemotional functioning and mental well-being. METHODS T1-neuroimaging and behavioral data was obtained from 72 participants (39 mother-child dyads/ 39 children; 7-13 years; 16 girls/ 33 mothers; 26-52 years). Gray matter volume (GMV) was extracted from corticolimbic regions (subcortical: amygdala, hippocampus, nucleus accumbens; neocortical: anterior cingulate, medial orbitofrontal areas). Mother-child similarity was quantified by correlation coefficients and comparisons to random adult-child pairs. RESULTS We identified significant corticolimbic mother-child similarity (r = 0.663) stronger for subcortical over neocortical regions. Mother-child similarity in mental well-being was significant (r = 0.409) and the degree of dyadic similarity in mental well-being was predicted by similarity in neocortical, but not subcortical GMV. CONCLUSION Intergenerational neuroimaging reveals significant mother-child transfer for corticolimbic GMV, most strongly for subcortical regions. However, variations in neocortical similarity predicted similarity in mother-child well-being. Ultimately, such techniques may enhance our knowledge of behavioral and neural familial transfer effects relevant for health and disease.
Collapse
Affiliation(s)
- Plamina Dimanova
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Réka Borbás
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Nora Maria Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Matsudaira I, Yamaguchi R, Taki Y. Transmit Radiant Individuality to Offspring (TRIO) study: investigating intergenerational transmission effects on brain development. Front Psychiatry 2023; 14:1150973. [PMID: 37840799 PMCID: PMC10568142 DOI: 10.3389/fpsyt.2023.1150973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Intergenerational transmission is a crucial aspect of human development. Although prior studies have demonstrated the continuity of psychopathology and maladaptive upbringing environments between parents and offspring, the underlying neurobiological mechanisms remain unclear. We have begun a novel neuroimaging research project, the Transmit Radiant Individuality to Offspring (TRIO) study, which focuses on biological parent-offspring trios. The participants of the TRIO study were Japanese parent-offspring trios consisting of offspring aged 10-40 and their biological mother and father. Structural and functional brain images of all participants were acquired using magnetic resonance imaging (MRI). Saliva samples were collected for DNA analysis. We obtained psychosocial information, such as intelligence, mental health problems, personality traits, and experiences during the developmental period from each parent and offspring in the same manner as much as possible. By April 2023, we completed data acquisition from 174 trios consisting of fathers, mothers, and offspring. The target sample size was 310 trios. However, we plan to conduct genetic and epigenetic analyses, and the sample size is expected to be expanded further while developing this project into a multi-site collaborative study in the future. The TRIO study can challenge the elucidation of the mechanism of intergenerational transmission effects on human development by collecting diverse information from parents and offspring at the molecular, neural, and behavioral levels. Our study provides interdisciplinary insights into how individuals' lives are involved in the construction of the lives of their descendants in the subsequent generation.
Collapse
Affiliation(s)
- Izumi Matsudaira
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | - Ryo Yamaguchi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Medical Sciences, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Fehlbaum LV, Peters L, Dimanova P, Roell M, Borbás R, Ansari D, Raschle NM. Mother-child similarity in brain morphology: A comparison of structural characteristics of the brain's reading network. Dev Cogn Neurosci 2022; 53:101058. [PMID: 34999505 PMCID: PMC8749220 DOI: 10.1016/j.dcn.2022.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Substantial evidence acknowledges the complex gene-environment interplay impacting brain development and learning. Intergenerational neuroimaging allows the assessment of familial transfer effects on brain structure, function and behavior by investigating neural similarity in caregiver-child dyads. METHODS Neural similarity in the human reading network was assessed through well-used measures of brain structure (i.e., surface area (SA), gyrification (lG), sulcal morphology, gray matter volume (GMV) and cortical thickness (CT)) in 69 mother-child dyads (children's age~11 y). Regions of interest for the reading network included left-hemispheric inferior frontal gyrus, inferior parietal lobe and fusiform gyrus. Mother-child similarity was quantified by correlation coefficients and familial specificity was tested by comparison to random adult-child dyads. Sulcal morphology analyses focused on occipitotemporal sulcus interruptions and similarity was assessed by chi-square goodness of fit. RESULTS Significant structural brain similarity was observed for mother-child dyads in the reading network for lG, SA and GMV (r = 0.349/0.534/0.542, respectively), but not CT. Sulcal morphology associations were non-significant. Structural brain similarity in lG, SA and GMV were specific to mother-child pairs. Furthermore, structural brain similarity for SA and GMV was higher compared to CT. CONCLUSION Intergenerational neuroimaging techniques promise to enhance our knowledge of familial transfer effects on brain development and disorders.
Collapse
Affiliation(s)
- Lynn V Fehlbaum
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Lien Peters
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Plamina Dimanova
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Margot Roell
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Réka Borbás
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland.
| |
Collapse
|
5
|
Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS One 2020; 15:e0228092. [PMID: 31978108 PMCID: PMC6980590 DOI: 10.1371/journal.pone.0228092] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain.
Collapse
|
6
|
Chi MH, Chu CL, Lee IH, Hsieh YT, Chen KC, Chen PS, Yang YK. Altered Auditory P300 Performance in Parents with Attention Deficit Hyperactivity Disorder Offspring. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:509-516. [PMID: 31671488 PMCID: PMC6852684 DOI: 10.9758/cpn.2019.17.4.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/02/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Objective Altered event-related potential (ERP) performances have been noted in attention deficit hyperactivity disorder (ADHD) patients and reflect neurocognitive dysfunction. Whether these ERP alterations and correlated dysfunctions exist in healthy parents with ADHD offspring is worth exploring. Methods Thirteen healthy parents with ADHD offspring and thirteen healthy controls matched for age, sex and years of education were recruited. The auditory oddball paradigm was used to evaluate the P300 wave complex of the ERP, and the Wechsler Adult Intelligence Scale-Revised, Wisconsin Card Sorting Test, and continuous performance test were used to measure neurocognitive performance. Results Healthy parents with ADHD offspring had significantly longer auditory P300 latency at Fz than control group. However, no significant differences were found in cognitive performance. Conclusion The presence of a subtle alteration in electro-neurophysiological activity without explicit neurocognitive dysfunction suggests potential candidate of biological marker for parents with ADHD offspring.
Collapse
Affiliation(s)
- Mei Hung Chi
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lin Chu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Educational Psychiatry & Counseling, National Pingtung University, Pingtung, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Hsieh
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ko Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| |
Collapse
|
7
|
Billeci L, Calderoni S, Conti E, Gesi C, Carmassi C, Dell'Osso L, Cioni G, Muratori F, Guzzetta A. The Broad Autism (Endo)Phenotype: Neurostructural and Neurofunctional Correlates in Parents of Individuals with Autism Spectrum Disorders. Front Neurosci 2016; 10:346. [PMID: 27499732 PMCID: PMC4956643 DOI: 10.3389/fnins.2016.00346] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/11/2016] [Indexed: 12/01/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with an early-onset and a strong genetic component in their pathogenesis. According to genetic and epidemiological data, ASD relatives present personality traits similar to, but not as severe as the defining features of ASD, which have been indicated as the "Broader Autism Phenotype" (BAP). BAP features seem to be more prevalent in first-degree relatives of individuals with ASD than in the general population. Characterizing brain profiles of relatives of autistic probands may help to understand ASD endophenotype. The aim of this review was to provide an up-to-date overview of research findings on the neurostructural and neurofunctional substrates in parents of individuals with ASD (pASD). The primary hypothesis was that, like for the behavioral profile, the pASD express an intermediate neurobiological pattern between ASD individuals and healthy controls. The 13 reviewed studies evaluated structural magnetic resonance imaging (MRI) brain volumes, chemical signals using magnetic resonance spectroscopy (MRS), task-related functional activation by functional magnetic resonance imaging (fMRI), electroencephalography (EEG), or magnetoencephalography (MEG) in pASD.The studies showed that pASD are generally different from healthy controls at a structural and functional level despite often not behaviorally impaired. More atypicalities in neural patterns of pASD seem to be associated with higher scores at BAP assessment. Some of the observed atypicalities are the same of the ASD probands. In addition, the pattern of neural correlates in pASD resembles that of adult individuals with ASD, or it is specific, possibly due to a compensatory mechanism. Future studies should ideally include a group of pASD and HC with their ASD and non-ASD probands respectively. They should subgrouping the pASD according to the BAP scores, considering gender as a possible confounding factor, and correlating these scores to underlying brain structure and function. These types of studies may help to understand the genetic mechanisms involved in the various clinical dimension of ASD.
Collapse
Affiliation(s)
- Lucia Billeci
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | | | - Eugenia Conti
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
- Department of Sciences for Health Promotion and Mother and Child Care G. D'Alessandro, University of PalermoPalermo, Italy
| | - Camilla Gesi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Giovanni Cioni
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
- IRCCS Stella Maris FoundationPisa, Italy
| | - Filippo Muratori
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
- IRCCS Stella Maris FoundationPisa, Italy
| | - Andrea Guzzetta
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
- IRCCS Stella Maris FoundationPisa, Italy
| |
Collapse
|