1
|
Zhen Y, Zheng H, Zheng Y, Zheng Z, Yang Y, Tang S. Altered Hemispheric Asymmetry of Functional Hierarchy in Schizophrenia. Brain Sci 2025; 15:313. [PMID: 40149834 PMCID: PMC11940334 DOI: 10.3390/brainsci15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Schizophrenia is a severe psychiatric disorder characterized by deficits in perception and advanced cognitive functions. Prior studies have reported abnormal lateralization in cortical morphology and functional connectivity in schizophrenia. However, it remains unclear whether schizophrenia affects hemispheric asymmetry in the hierarchical organization of functional connectome. METHODS Here, we apply a gradient mapping framework to the hemispheric functional connectome to estimate the first three gradients, which characterize unimodal-to-transmodal, visual-to-somatomotor, and somatomotor/default mode-to-multiple demand hierarchy axes. We then assess between-group differences in intra- and inter-hemispheric asymmetries of these three functional gradients. RESULTS We find that, compared to healthy controls, patients with schizophrenia exhibit significantly altered hemispheric asymmetry in functional gradient across multiple networks, including the dorsal attention, ventral attention, visual, and control networks. Region-level analyses further reveal that patients with schizophrenia show significantly abnormal hemispheric gradient asymmetries in several cortical regions in the dorsal prefrontal gyrus, medial superior frontal gyrus, and somatomotor areas. Lastly, we find that hemispheric asymmetries in functional gradients can differentiate between patients and healthy controls and predict the severity of positive symptoms in schizophrenia. CONCLUSIONS Collectively, these findings suggest that schizophrenia is associated with altered hemispheric asymmetry in functional hierarchy, providing novel perspectives for understanding the atypical brain lateralization in schizophrenia.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Alkan E, Kumari V, Evans SL. Frontal brain volume correlates of impaired executive function in schizophrenia. J Psychiatr Res 2024; 178:397-404. [PMID: 39216276 DOI: 10.1016/j.jpsychires.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairments affect functional capacity in individuals with schizophrenia (SZH), but their neural basis remains unclear. The Wisconsin Card Sorting Test (WCST), and the Stroop Task (SCWT), are paradigmatic tests which have been used extensively for examining executive function in SZH. However, few studies have explored how deficits on these tasks link to brain volume differences commonly seen in SZH. Here, for the first time, we tested associations between FreeSurfer-derived frontal brain volumes and performance on both WCST and SCWT, in a well-matched sample of 57 SZH and 32 control subjects. We also explored whether these associations were dissociable from links to symptom severity in SZH. Results revealed correlations between volumes and task performance which were unique to SZH. In SZH only, volumes of right middle frontal regions correlated with both WCST and Stroop performance: correlation coefficients were significantly different to those present in the control group, highlighting their specificity to the patient group. In the Stroop task, superior frontal regions also showed associations with Stroop interference scores which were unique to SZH. These findings provide important detail around how deficits on these two paradigmatic executive function tasks link to brain structural differences in SZH. Results align with converging evidence suggesting that neuropathology within right middle frontal regions (BA9 and BA46) might be of particular import in SZH. No volumetric associations with symptom severity were found, supporting the notion that the structural abnormalities underpinning cognitive deficits in SZH differ from those associated with symptomatology.
Collapse
Affiliation(s)
- Erkan Alkan
- Faculty of Health, Science, Social Care and Education, Kingston University, London, United Kingdom
| | - Veena Kumari
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University of London, London, United Kingdom
| | - Simon L Evans
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
3
|
Shang T, Chen Y, Ding Z, Qin W, Li S, Wei S, Ding Z, Yang X, Qi J, Qin X, Lv D, Li T, Pan Z, Zhan C, Xiao J, Sun Z, Wang N, Yu Z, Li C, Li P. Altered dynamic neural activities in individuals with obsessive-compulsive disorder and comorbid depressive symptoms. Front Psychiatry 2024; 15:1403933. [PMID: 39176228 PMCID: PMC11339690 DOI: 10.3389/fpsyt.2024.1403933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives Depressive symptoms are the most prevalent comorbidity in individuals with obsessive-compulsive disorder (OCD). The objective of this study was to investigate the dynamic characteristics of resting-state neural activities in OCD patients with depressive symptoms. Methods We recruited 29 OCD patients with depressive symptoms, 21 OCD patients without depressive symptoms, and 27 healthy controls, and collected data via structural and functional magnetic resonance imaging (fMRI). We analyzed the fMRI results using the dynamic amplitude of low-frequency fluctuation (dALFF) and support vector machine (SVM) techniques. Results Compared with OCD patients without depressive symptoms, OCD patients with depressive symptoms exhibited an increased dALFF in the left precuneus and decreased dALFF in the right medial frontal gyrus. The SVM indicated that the integration of aberrant dALFF values in the left precuneus and right medial frontal gyrus led to an overall accuracy of 80%, a sensitivity of 79%, and a specificity of 100% in detecting depressive symptoms among OCD patients. Conclusion Therefore, our study reveals that OCD patients with depressive symptoms display neural activities with unique dynamic characteristics in the resting state. Accordingly, abnormal dALFF values in the left precuneus and right medial frontal gyrus could be used to identify depressive symptoms in OCD patients.
Collapse
Affiliation(s)
- Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhenning Ding
- Medical Imaging Department, Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Weiqi Qin
- The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shancong Li
- The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Siyi Wei
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jiale Qi
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xiaoqing Qin
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zan Pan
- Infection Control Department, Harbin Puning Hospital, Harbin, Heilongjiang, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
4
|
He H, Long J, Song X, Li Q, Niu L, Peng L, Wei X, Zhang R. A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fMRI. Schizophr Res 2024; 270:202-211. [PMID: 38924938 DOI: 10.1016/j.schres.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Aberrant resting-state functional connectivity is a neuropathological feature of schizophrenia (SCZ). Prior investigations into functional connectivity abnormalities have primarily employed seed-based connectivity analysis, necessitating predefined seed locations. To address this limitation, a data-driven multivariate method known as connectome-wide association study (CWAS) has been proposed for exploring whole-brain functional connectivity. METHODS We conducted a CWAS analysis involving 46 patients with SCZ and 40 age- and sex-matched healthy controls. Multivariate distance matrix regression (MDMR) was utilized to identify key nodes in the brain. Subsequently, we conducted a follow-up seed-based connectivity analysis to elucidate specific connectivity patterns between regions of interest (ROIs). Additionally, we explored the spatial correlation between changes in functional connectivity and underlying molecular architectures by examining correlations between neurotransmitter/transporter distribution densities and functional connectivity. RESULTS MDMR revealed the right medial frontal gyrus and the left calcarine sulcus as two key nodes. Follow-up analysis unveiled hypoconnectivity between the right medial frontal superior gyrus and the right fusiform gyrus, as well as hypoconnectivity between the left calcarine sulcus and the right lingual gyrus in SCZ. Notably, a significant association between functional connectivity strength and positive symptom severity was identified. Furthermore, altered functional connectivity patterns suggested potential dysfunctions in the dopamine, serotonin, and gamma-aminobutyric acid systems. CONCLUSIONS This study elucidated reduced functional connectivity both within and between the medial frontal regions and the occipital cortex in patients with SCZ. Moreover, it indicated potential alterations in molecular architecture, thereby expanding current knowledge regarding neurobiological changes associated with SCZ.
Collapse
Affiliation(s)
- Huawei He
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PRC, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for PsychiatricDisorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, PR China.
| |
Collapse
|
5
|
López-Carrilero R, Lo Monaco M, Frígola-Capell E, Ferrer-Quintero M, Díaz-Cutraro L, Verdaguer-Rodríguez M, García-Mieres H, Vila-Badia R, Punsoda-Puche P, Birulés I, Peláez T, Pousa E, Grasa E, Barajas A, Ruiz-Delgado I, Barrigón ML, Gonzalez-Higueras F, Lorente-Rovira E, Gutiérrez-Zotes A, Cid J, Legido T, Ayesa-Arriola R, Moritz S, Ochoa S. Cognitive insight in first-episode psychosis: Exploring the complex relationship between executive functions and social cognition. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024; 17:160-167. [PMID: 38219901 DOI: 10.1016/j.sjpmh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Social cognition (SC) and executive function (EF) have been described as important variables for social functioning and recovery of patients with psychosis. However, the relationship between SC and EF in first-episode psychosis (FEP) deserves further investigation, especially focusing on gender differences. AIMS To investigate the relationship between EF and different domains of SC in FEP patients and to explore gender differences in the relationship between these domains. METHODS A cross-sectional study of 191 patients with new-onset psychosis recruited from two multicenter clinical trials. A comprehensive cognitive battery was used to assess SC (Hinting Task, Face Test and IPSAQ) and EF (TMT, WSCT, Stroop Test and digit span - WAIS-III). Pearson correlations and linear regression models were performed. RESULTS A correlation between Theory of Mind (ToM), Emotional Recognition (ER) and EF was found using the complete sample. Separating the sample by gender showed different association profiles between these variables in women and men. CONCLUSIONS A relationship between different domains of SC and EF is found. Moreover, women and men presented distinct association profiles between EF and SC. These results should be considered in order to improve the treatment of FEP patients and designing personalized interventions by gender.
Collapse
Affiliation(s)
- Raquel López-Carrilero
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Lo Monaco
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Eva Frígola-Capell
- Mental Health & Addiction Research Group, IdiBGi - Institut d'Assistencia Sanitària, Girona, Spain
| | - Marta Ferrer-Quintero
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain; Social and Quantitative Psychology Department, University of Barcelona, Spain; Hospital Gregorio Marañón, Madrid, Spain
| | - Luciana Díaz-Cutraro
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Psychology Department, FPCEE Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Marina Verdaguer-Rodríguez
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Helena García-Mieres
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Regina Vila-Badia
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Irene Birulés
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Social and Quantitative Psychology Department, University of Barcelona, Spain
| | - Trinidad Peláez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Esther Pousa
- Department of Psychiatry, Institut d'Investigació Biomèdica-Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Psicologia Clínica i de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Salut Mental Parc Taulí, Sabadell, Hospital Universitari, UAB Universitat Autònoma de Barcelona, Sabadell, Spain; Neuropsiquiatria i Addicions, Hospital del Mar, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Eva Grasa
- Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Psychiatry, Institut d'Investigació Biomèdica-Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Barajas
- Serra Húnter Programme, Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centre d'Higiene Mental Les Corts, Department of Research, Barcelona, Spain
| | - Isabel Ruiz-Delgado
- Unidad de Salud Mental Comunitaria Málaga Norte, UGC Salud Mental Carlos Haya, Servicio Andaluz de Salud, Málaga, Spain
| | - María Luisa Barrigón
- Departamento de Psiquiatría, Hospital Universitario Virgen del Rocio, Sevilla, Spain; Hospital Gregorio Marañón, Madrid, Spain
| | | | - Esther Lorente-Rovira
- Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain; Psychiatry Service, Hospital Clínico Universitario de Valencia, Spain
| | - Alfonso Gutiérrez-Zotes
- Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Institut Pere Mata, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Cid
- Mental Health & Addiction Research Group, IdiBGi - Institut d'Assistencia Sanitària, Girona, Spain
| | - Teresa Legido
- Neuropsiquiatria i Addicions, Hospital del Mar, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rosa Ayesa-Arriola
- Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Investigación en Psiquiatría (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Steffen Moritz
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg, Hamburg, Germany
| | - Susana Ochoa
- Etiopatogènia i Tractament dels Trastorns Mentals Greus (MERITT), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Stoyanov D, Paunova R, Dichev J, Kandilarova S, Khorev V, Kurkin S. Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale. World J Clin Cases 2023; 11:8458-8474. [PMID: 38188204 PMCID: PMC10768520 DOI: 10.12998/wjcc.v11.i36.8458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders. AIM To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD). METHODS 60 patients were recruited with SCZ and MDD. All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm, comprised of block design, including blocks with items from diagnostic paranoid (DP), depression specific (DS) and DN from general interest scale. We performed a two-sample t-test between the two groups-SCZ patients and depressive patients. Our purpose was to observe different brain networks which were activated during a specific condition of the task, respectively DS, DP, DN. RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task. We identified one component that is task-related and independent of condition (shared between all three conditions), composed by regions within the temporal (right superior and middle temporal gyri), frontal (left middle and inferior frontal gyri) and limbic/salience system (right anterior insula). Another component is related to both diagnostic specific conditions (DS and DP) e.g. It is shared between DEP and SCZ, and includes frontal motor/language and parietal areas. One specific component is modulated preferentially by to the DP condition, and is related mainly to prefrontal regions, whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus, several occipital areas, including lingual and fusiform gyrus, as well as parahippocampal gyrus. Finally, component 12 appeared to be unique for the neutral condition. In addition, there have been determined circuits across components, which are either common, or distinct in the preferential processing of the sub-scales of the task. CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Julian Dichev
- Faculty of Medicine, Medical University, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
7
|
Guan M, Xie Y, Li C, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Rich-club reorganization of white matter structural network in schizophrenia patients with auditory verbal hallucinations following 1 Hz rTMS treatment. Neuroimage Clin 2023; 40:103546. [PMID: 37988997 PMCID: PMC10701084 DOI: 10.1016/j.nicl.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The human brain comprises a large-scale structural network of regions and interregional pathways, including a selectively defined set of highly central and interconnected hub regions, often referred to as the "rich club", which may play a pivotal role in the integrative processes of the brain. A quintessential symptom of schizophrenia, auditory verbal hallucinations (AVH) have shown a decrease in severity following low-frequency repetitive transcranial magnetic stimulation (rTMS). However, the underlying mechanism of rTMS in treating AVH remains elusive. This study investigated the effect of low-frequency rTMS on the rich-club organization within the brain in patients diagnosed with schizophrenia who experience AVH using diffusion tensor imaging data. Through by constructing structural connectivity networks, we identified several critical rich hub nodes, which constituted a rich-club subnetwork, predominantly located in the prefrontal cortices. Notably, our findings revealed enhanced connection strength and density within the rich-club subnetwork following rTMS treatment. Furthermore, we found that the decreased connectivity within the subnetwork components, including the rich-club subnetwork, was notably enhanced in patients following rTMS treatment. In particular, the increased connectivity strength of the right median superior frontal gyrus, which functions as a critical local bridge, with the right postcentral gyrus exhibited a significant correlation with improvements in both positive symptoms and AVH. These findings provide valuable insights into the role of rTMS in inducing reorganizational changes within the rich-club structural network in schizophrenia and shed light on potential mechanisms through which rTMS may alleviate AVH.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China.
| | - Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Zhu T, Wang Z, Wu W, Ling Y, Wang Z, Zhou C, Fang X, Huang C, Xie C, Chen J, Zhang X. Altered brain functional networks in schizophrenia with persistent negative symptoms: an activation likelihood estimation meta-analysis. Front Hum Neurosci 2023; 17:1204632. [PMID: 37954938 PMCID: PMC10637389 DOI: 10.3389/fnhum.2023.1204632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate brain structural and functional characteristics of three brain functional networks including default mode network (DMN), central executive network (CEN), and salience network (SN) in persistent negative symptoms (PNS) patients. Methods We performed an activation likelihood estimation (ALE) meta-analysis of functional connectivity (FC) studies and voxel-based morphometry (VBM) studies to detect specific structural and functional alterations of brain networks between PNS patients and healthy controls. Results Seventeen VBM studies and twenty FC studies were included. In the DMN, PNS patients showed decreased gray matter in the bilateral medial frontal gyrus and left anterior cingulate gyrus and a significant reduction of FC in the right precuneus. Also, PNS patients had a decrease of gray matter in the left inferior parietal lobules and medial frontal gyrus, and a significant reduction of FC in the bilateral superior frontal gyrus in the CEN. In comparison with healthy controls, PNS patients exhibited reduced gray matter in the bilateral insula, anterior cingulate gyrus, left precentral gyrus and right claustrum and lower FC in these brain areas in the SN, including the left insula, claustrum, inferior frontal gyrus and extra-nuclear. Conclusion This meta-analysis reveals brain structural and functional imaging alterations in the three networks and the interaction among these networks in PNS patients, which provides neuroscientific evidence for more personalized treatment.Systematic Review RegistrationThe PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42022335962).
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zengxiu Wang
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine Southeast University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
de Winter L, Vermeulen JM, Couwenbergh C, van Weeghel J, Hasson-Ohayon I, Mulder CL, Boonstra N, Veling W, de Haan L. Short- and long-term changes in symptom dimensions among patients with schizophrenia spectrum disorders and different durations of illness: A meta-analysis. J Psychiatr Res 2023; 164:416-439. [PMID: 37429186 DOI: 10.1016/j.jpsychires.2023.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
In schizophrenia spectrum disorders, improvement in symptoms varies between patients with short and long durations of illness. In this meta-analysis we provided an overview of both short- and long-term symptomatic improvement for patients with schizophrenia spectrum disorders with distinct durations of illness. We included 82 longitudinal studies assessing the course of positive, negative, depressive and disorganization symptoms. We analyzed effect sizes of change in four subgroups based on durations of illness at baseline: <2 years, 2-5 years, 5-10 years, >10 years. Potential moderators were explored using meta-regression and sensitivity analyses. Overall, we found large improvements of positive symptoms and small improvements of negative, depressive, and disorganization symptoms. Positive and disorganization symptoms improved relatively stronger for patients earlier in the course of illness, whereas negative and depressive symptoms showed modest improvement regardless of duration of illness. Improvement of symptoms was associated with higher baseline severity of positive symptoms, a younger age, a smaller subsample with schizophrenia, and, specifically for negative symptoms, higher baseline severity of depressive symptoms. Future research should focus on exploring ways to optimize improvement in negative and depressive symptoms for patients with schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Lars de Winter
- Phrenos Center of Expertise, Utrecht, the Netherlands; Department of Psychiatry, Amsterdam UMC Location AMC, Amsterdam, the Netherlands.
| | - Jentien M Vermeulen
- Department of Psychiatry, Amsterdam UMC Location AMC, Amsterdam, the Netherlands
| | | | - Jaap van Weeghel
- Phrenos Center of Expertise, Utrecht, the Netherlands; Tranzo, Tilburg University, Tilburg, the Netherlands
| | | | - Cornelis L Mulder
- Epidemiological and Social Psychiatric Research Institute, Erasmus MC, Rotterdam, the Netherlands; Parnassia Psychiatric Institute, the Netherlands
| | - Nynke Boonstra
- NHL Stenden University of Applied Science, Leeuwarden, the Netherlands; Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wim Veling
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Pinto D, Martins R, Macedo A, Castelo Branco M, Valente Duarte J, Madeira N. Brain Hemispheric Asymmetry in Schizophrenia and Bipolar Disorder. J Clin Med 2023; 12:jcm12103421. [PMID: 37240527 DOI: 10.3390/jcm12103421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND This study aimed to compare brain asymmetry in patients with schizophrenia (SCZ), bipolar disorder (BPD), and healthy controls to test whether asymmetry patterns could discriminate and set boundaries between two partially overlapping severe mental disorders. METHODS We applied a fully automated voxel-based morphometry (VBM) approach to assess structural brain hemispheric asymmetry in magnetic resonance imaging (MRI) anatomical scans in 60 participants (SCZ = 20; BP = 20; healthy controls = 20), all right-handed and matched for gender, age, and education. RESULTS Significant differences in gray matter asymmetry were found between patients with SCZ and BPD, between SCZ patients and healthy controls (HC), and between BPD patients and HC. We found a higher asymmetry index (AI) in BPD patients when compared to SCZ in Brodmann areas 6, 11, and 37 and anterior cingulate cortex and an AI higher in SCZ patients when compared to BPD in the cerebellum. CONCLUSION Our study found significant differences in brain asymmetry between patients with SCZ and BPD. These promising results could be translated to clinical practice, given that structural brain changes detected by MRI are good candidates for exploration as biological markers for differential diagnosis, besides helping to understand disease-specific abnormalities.
Collapse
Affiliation(s)
- Diogo Pinto
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
| | - Ricardo Martins
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| | - Miguel Castelo Branco
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Valente Duarte
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| |
Collapse
|
11
|
Zhang YJ, Hu HX, Wang LL, Wang X, Wang Y, Huang J, Wang Y, Lui SSY, Hui L, Chan RCK. Altered neural mechanism of social reward anticipation in individuals with schizophrenia and social anhedonia. Eur Arch Psychiatry Clin Neurosci 2022:10.1007/s00406-022-01505-6. [PMID: 36305919 DOI: 10.1007/s00406-022-01505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Altered social reward anticipation could be found in schizophrenia (SCZ) patients and individuals with high levels of social anhedonia (SA). However, few research investigated the putative neural processing for altered social reward anticipation in these populations on the SCZ spectrum. This study aimed to examine the underlying neural mechanisms of social reward anticipation in these populations. Twenty-three SCZ patients and 17 healthy controls (HC), 37 SA individuals and 50 respective HCs completed the Social Incentive Delay (SID) imaging task while they were undertaking MRI brain scans. We used the group contrast to examine the alterations of BOLD activation and functional connectivity (FC, psychophysiological interactions analysis). We then characterized the beta-series social brain network (SBN) based on the meta-analysis results from NeuroSynth and examined their prediction effects on real-life social network (SN) characteristics using the partial least squared regression analysis. The results showed that SCZ patients exhibited hypo-activation of the left medial frontal gyrus and the negative FCs with the left parietal regions, while individuals with SA showed the hyper-activation of the left middle frontal gyrus when anticipating social reward. For the beta-series SBNs, SCZ patients had strengthened cerebellum-temporal FCs, while SA individuals had strengthened left frontal regions FCs. However, such FCs of the SBN failed to predict the real-life SN characteristics. These preliminary findings suggested that SCZ patients and SA individuals appear to exhibit altered neural processing for social reward anticipation, and such neural activities showed a weakened association with real-life SN characteristics.
Collapse
Affiliation(s)
- Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Xin Hu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Hui
- The Affiliated Guangji Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Moring JC, Husain FT, Gray J, Franklin C, Peterson AL, Resick PA, Garrett A, Esquivel C, Fox PT. Invariant structural and functional brain regions associated with tinnitus: A meta-analysis. PLoS One 2022; 17:e0276140. [PMID: 36256642 PMCID: PMC9578602 DOI: 10.1371/journal.pone.0276140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Tinnitus is a common, functionally disabling condition of often unknown etiology. Neuroimaging research to better understand tinnitus is emerging but remains limited in scope. Voxel-based physiology (VBP) studies detect tinnitus-associated pathophysiology by group-wise contrast (tinnitus vs controls) of resting-state indices of hemodynamics, metabolism, and neurovascular coupling. Voxel-based morphometry (VBM) detects tinnitus-associated neurodegeneration by group-wise contrast of structural MRI. Both VBP and VBM studies routinely report results as atlas-referenced coordinates, suitable for coordinate-based meta-analysis (CBMA). Here, 17 resting-state VBP and 8 VBM reports of tinnitus-associated regional alterations were meta-analyzed using activation likelihood estimation (ALE). Acknowledging the need for data-driven insights, ALEs were performed at two levels of statistical rigor: corrected for multiple comparisons and uncorrected. The corrected ALE applied cluster-level inference thresholding by intensity (z-score > 1.96; p < 0.05) followed by family-wise error correction for multiple comparisons (p < .05, 1000 permutations) and fail-safe correction for missing data. The corrected analysis identified one significant cluster comprising five foci in the posterior cingulate gyrus and precuneus, that is, not within the primary or secondary auditory cortices. The uncorrected ALE identified additional regions within auditory and cognitive processing networks. Taken together, tinnitus is likely a dysfunction of regions spanning multiple canonical networks that may serve to increase individuals’ interoceptive awareness of the tinnitus sound, decrease capacity to switch cognitive sets, and prevent behavioral and cognitive attention to other stimuli. It is noteworthy that the most robust tinnitus-related abnormalities are not in the auditory system, contradicting collective findings of task-activation literature in tinnitus.
Collapse
Affiliation(s)
- John C. Moring
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| | - Fatima T. Husain
- Department of Speech and Hearing Science and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Jodie Gray
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Crystal Franklin
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alan L. Peterson
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Patricia A. Resick
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amy Garrett
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Carlos Esquivel
- Hearing Center of Excellence, Wilford Hall Ambulatory Surgical Center, San Antonio, Texas, United States of America
| | - Peter T. Fox
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
13
|
Yang Y, Sun Y, Zhang Y, Jin X, Li Z, Ding M, Shi H, Liu Q, Zhang L, Su X, Shao M, Song M, Zhang Y, Li W, Yue W, Liu B, Lv L. Abnormal patterns of regional homogeneity and functional connectivity across the adolescent first-episode, adult first-episode and adult chronic schizophrenia. Neuroimage Clin 2022; 36:103198. [PMID: 36116163 PMCID: PMC9486119 DOI: 10.1016/j.nicl.2022.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
Functional deficits in schizophrenia (SZ) are observed prior to the onset of psychosis and differ at different stages of SZ. However, there is a paucity of studies focused on adolescent first-episode SZ (AOS), adult first-episode SZ (AFES), and adult chronic SZ (CHSZ). In this study, we investigated regional activity and corresponding functional connectivity alterations that have aimed to compare the three disease stages simultaneously. The subjects comprised 49 patients with AOS, 57 patients with AFES, 51 patients with CHSZ, 41 adolescent healthy controls, and 138 adult healthy controls. We compared regional homogeneity (ReHo) between patients at each disease stage with matched healthy controls. We focused on the shared brain regions that showed significant differences between SZ patients at the three different disease stages and healthy controls. Further analysis was conducted to explore whether the patterns of the whole brain functional connectivity alterations were similar. The putamen and medial frontal gyrus (MFG) showed consistently abnormal patterns in AOS, AFES, and CHSZ. Commonly decreased ReHo values in the MFG and increased ReHo values in the bilateral putamen were found in AOS, AFES, and CHSZ. Functional connectivity of MFG remained common abnormality in different SZ stage. In conclusion, ReHo abnormalities in the MFG and the putamen may be common abnormal patterns of brain function in the three different stages of SZ. The vmPFC-dlPFC FC abnormality common occurs in adolescence and adulthood.. This study may provide a more comprehensive understanding of the neurodevelopmental abnormality across the AOS, AFES, and CHSZ.
Collapse
Affiliation(s)
- Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Yuqing Sun
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Zhang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xueyan Jin
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Zheng Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Minli Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Luwen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory for Mental Health, Ministry of Health, Beijing 100191, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| |
Collapse
|
14
|
Changes in social functioning over the course of psychotic disorders-A meta-analysis. Schizophr Res 2022; 239:55-82. [PMID: 34844096 DOI: 10.1016/j.schres.2021.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
In this meta-analysis we investigated changes in social functioning and its moderators in patients with a psychotic disorder but different durations of illness at baseline. We included longitudinal studies assessing the course of five domains of social functioning in patients with a psychotic disorder. Effect sizes of change between baseline and follow-up within these domains were analyzed in four subgroups based on durations of psychotic disorder at baseline: less than 2 years, between 2 and 5 years, between 5 and 10 years, and more than 10 years. The influence of baseline confounders was analyzed using meta-regression and sensitivity analysis. We included 84 studies analyzing 33,456 participants. We found a medium improvement (d = 0.60) in overall social functioning over time, with a greater improvement for studies investigating patients with a duration of illness of less than 5 years. We found minor improvement in specific domains of social functioning, such as vocational functioning (d = 0.31), prosocial behavior (d = 0.36), activities (d = 0.15), and independence (d = 0.25). Improvement in social functioning was associated with lower baseline levels of negative symptoms, higher baseline levels of quality of life, and, specifically, improved vocational functioning, with rehabilitation and combined treatment. Social functioning in patients with psychotic disorders improves over time, especially for patients with shorter illness durations. Reduction of negative symptoms and improving quality of life might reinforce improvement of social functioning.
Collapse
|
15
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
16
|
Guo Y, Ma Y, Wang G, Li T, Wang T, Li D, Xiang J, Yan T, Wang B, Liu M. Modular-level alterations of single-subject gray matter networks in schizophrenia. Brain Imaging Behav 2021; 16:855-867. [PMID: 34647268 DOI: 10.1007/s11682-021-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
Schizophrenia is often regarded as a psychiatric disorder caused by disrupted connections in the brain. Evidence suggests that the gray matter of schizophrenia patients is damaged in a modular pattern. Recently, abnormal topological organization was observed in the gray matter networks of patients with schizophrenia. However, the modular-level alteration of gray matter networks in schizophrenia remains unclear. In this study, single-subject gray matter networks were constructed for a total of 217 subjects (116 patients with schizophrenia and 101 controls). We analyzed the topological characteristics of the brain network and the strengths of connections between and within modules. Compared with the outcomes in the control group, the global efficiency and participation coefficient values of the single-subject gray matter networks in schizophrenic patients were significantly reduced. The nodal participation coefficient of the regions involving the frontoparietal attention network, default mode network and subcortical network were significantly decreased in subjects with schizophrenia. The intermodule connections between the frontoparietal attention network and visual network and between the default mode network and subcortical network, in the frontoparietal attention network were significantly reduced in the patient group. In the frontoparietal attention network, the intramodule nodal connection strength of the left orbital inferior frontal gyrus and right inferior parietal gyrus was significantly decreased in schizophrenia patients. Reduced intermodule nodal connection strength between the frontoparietal attention network and visual network was associated with the severity of schizophrenia symptoms. These findings suggest that abnormal intramodule and intermodule connections in the structural brain network may a biomarker of schizophrenia symptoms.
Collapse
Affiliation(s)
- Yuxiang Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yunxiao Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - GongShu Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tong Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Dandan Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China.
| | - Miaomiao Liu
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
17
|
Shen Z, Yu L, Zhao Z, Jin K, Pan F, Hu S, Li S, Xu Y, Xu D, Huang M. Gray Matter Volume and Functional Connectivity in Hypochondriasis: A Magnetic Resonance Imaging and Support Vector Machine Analysis. Front Hum Neurosci 2020; 14:596157. [PMID: 33343319 PMCID: PMC7738430 DOI: 10.3389/fnhum.2020.596157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Patients with hypochondriasis hold unexplainable beliefs and a fear of having a lethal disease, with poor compliances and treatment response to psychotropic drugs. Although several studies have demonstrated that patients with hypochondriasis demonstrate abnormalities in brain structure and function, gray matter volume (GMV) and functional connectivity (FC) in hypochondriasis still remain unclear. Methods: The present study collected T1-weighted and resting-state functional magnetic resonance images from 21 hypochondriasis patients and 22 well-matched healthy controls (HCs). We first analyzed the difference in the GMV between the two groups. We then used the regions showing a difference in GMV between two groups as seeds to perform functional connectivity (FC) analysis. Finally, a support vector machine (SVM) was applied to the imaging data to distinguish hypochondriasis patients from HCs. Results: Compared with the HCs, the hypochondriasis group showed decreased GMV in the left precuneus, and increased GMV in the left medial frontal gyrus. FC analyses revealed decreased FC between the left medial frontal gyrus and cuneus, and between the left precuneus and cuneus. A combination of both GMV and FC in the left precuneus, medial frontal gyrus, and cuneus was able to discriminate the hypochondriasis patients from HCs with a sensitivity of 0.98, specificity of 0.93, and accuracy of 0.95. Conclusion: Our study suggests that smaller left precuneus volumes and decreased FC between the left precuneus and cuneus seem to play an important role of hypochondriasis. Future studies are needed to confirm whether this finding is generalizable to patients with hypochondriasis.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Liang Yu
- Department of Anesthesiology and Pain, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Fen Pan
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Dongrong Xu
- Columbia University and New York State Psychiatric Institute, Riverside Drive, New York, NY, United States
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| |
Collapse
|
18
|
Anti-PDHA1 antibody is detected in a subset of patients with schizophrenia. Sci Rep 2020; 10:7906. [PMID: 32404964 PMCID: PMC7220915 DOI: 10.1038/s41598-020-63776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022] Open
Abstract
Autoantibodies have been implicated in schizophrenia aetiology. Here, novel autoantibodies were isolated from patients with schizophrenia. Autoantibody candidates were searched using two-dimensional gel electrophoresis and western blotting with rat brain proteins as antigens and two sera pools (25 schizophrenia patients versus 25 controls) as antibodies. Immunoreactive antigens were identified by mass spectrometry. Antibody prevalence were evaluated by western blotting using human recombinant proteins. Furthermore, brain magnetic resonance imaging data (regional brain volumes and diffusion tensor imaging measures) were compared. Two proteins of the mitochondrial respiration pathway were identified as candidate antigens. Three patients with schizophrenia, but no controls, expressed antibodies targeting one of the candidate antigens, i.e., pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial (PDHA1, EC 1.2.4.1), which is related to mitochondrial energy production. Anti-PDHA1 antibody-positive patients (n = 3) had increased volumes in the left occipital fusiform gyrus compared to both controls (n = 23, p = 0.017) and antibody-negative patients (n = 16, p = 0.009), as well as in the left cuneus compared to antibody-negative patients (n = 16, p = 0.018). This is the first report of an anti-PDHA1 antibody in patients with schizophrenia. Compatible with recent findings of mitochondrial dysfunction in schizophrenia, this antibody may be involved in the pathogenesis of a specific subgroup of schizophrenia.
Collapse
|
19
|
Chung WY, Liu SY, Gao JC, Jiang YJ, Zhang J, Qu SS, Zhang JP, Tan XL, Chen JQ, Wang SX. Modulatory effect of International Standard Scalp Acupuncture on brain activation in the elderly as revealed by resting-state fMRI. Neural Regen Res 2019; 14:2126-2131. [PMID: 31397351 PMCID: PMC6788231 DOI: 10.4103/1673-5374.262590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers (three men and four women; 50–70 years old) received International Standard Scalp Acupuncture at MS5 (the mid-sagittal line between Baihui (DU20) and Qianding (DU21)), the left MS6 (line joining Sishencong (EX-HN1) and Xuanli (GB6)), and the left MS7 (line joining DU20 and Qubin (GB7)). After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus (42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions. The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016 (approval No. 2016ks043).
Collapse
Affiliation(s)
- Wai-Yeung Chung
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province; School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Song-Yan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jing-Chun Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi-Jing Jiang
- Department of Rehabilitation Medicine, Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jing Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shan-Shan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ji-Ping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Long Tan
- Department of Medical Image, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-Qi Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sheng-Xu Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Jonak K, Krukow P, Jonak KE, Grochowski C, Karakuła-Juchnowicz H. Quantitative and Qualitative Comparison of EEG-Based Neural Network Organization in Two Schizophrenia Groups Differing in the Duration of Illness and Disease Burden: Graph Analysis With Application of the Minimum Spanning Tree. Clin EEG Neurosci 2019; 50:231-241. [PMID: 30322279 DOI: 10.1177/1550059418807372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to compare neural network topology of 30 patients with first episode schizophrenia (FES) and 30 multiepisode schizophrenia (mean number of psychotic relapses =4 years, duration of illness >5 years) patients, who were assessed with graph theory methods. This comparison was designed to identify network differences, which might be assigned to the burden of a mental disease. To estimate functional connectivity, we applied the phase lag index algorithm and the minimum spanning tree (MST) for the characterization of network topology. Group comparison revealed significant between-group differences of maximal betweenness centrality and tree hierarchy in the beta-band and hierarchy in the gamma-band. MST results showed that in the beta-band the network of patients with longer duration of illness (LDI) was characterized by more centralized network, while subjects with short duration of illness (FES) showed more decentralized topology. Furthermore, in the gamma-band, our results suggest that illness duration can disturb the balance between overload prevention and large-scale integration in the brain network. A qualitative analysis proved that the topological displacement of hubs also differentiated the FES and LDI groups. Our findings suggest that the duration of illness significantly affects the topology of resting-state functional network, supporting the "disconnectivity hypothesis' in schizophrenia.
Collapse
Affiliation(s)
- Kamil Jonak
- 1 Department of Biomedical Engineering, Lublin University of Technology, Lublin, Poland.,2 Chair and I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| | - Paweł Krukow
- 3 Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Katarzyna E Jonak
- 4 Department of Foreign Languages, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Cezary Grochowski
- 5 Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Hanna Karakuła-Juchnowicz
- 2 Chair and I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland.,3 Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Lubelskie, Poland
| |
Collapse
|
21
|
Soni S, Muthukrishnan SP, Samanchi R, Sood M, Kaur S, Sharma R. Pre-trial and pre-response EEG microstates in schizophrenia: An endophenotypic marker. Behav Brain Res 2019; 371:111964. [PMID: 31129232 DOI: 10.1016/j.bbr.2019.111964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 05/18/2019] [Indexed: 01/15/2023]
Abstract
Cognitive deficits in Schizophrenia interfere with everyday functioning and social functioning. Strong familial associations in schizophrenia might serve to establish cognitive impairments as endophenotypic markers. Therefore, visuo-spatial working memory simulating day-to-day activities at high memory load was assessed in patients with schizophrenia, their first-degree relatives and healthy controls to explore pre-trial and pre-response EEG microstates and their intracranial generators. Twenty-eight patients with schizophrenia, first-degree relatives and matched healthy controls participated in the study. Brain activity during visuo-spatial working memory task was recorded using 128-channel electroencephalography. Pre-trial and pre-response microstate maps of correct and error trials were clustered across groups according to their topography. Microstate map parameters and underlying cortical sources were compared among groups. Pre-trial (correct) microstate Map 1 was significantly different between controls and patients which could qualify it as a state marker with its intracranial generator localized to right inferior frontal gyrus (rIFG). Pre-response (correct) microstate map was significantly different between controls and first-degree relatives which could be considered an endophenotypic marker for schizophrenia. No significant differences were observed for error trials between groups. rIFG which is involved in the execution of multi-component behaviour and selective inhibitory control could distinguish patients with schizophrenia from their first-degree relatives and healthy controls. Further, microstate based biomarkers have the potential to facilitate diagnosis of schizophrenia at a preclinical stage resulting in efficient diagnosis and better prognosis.
Collapse
Affiliation(s)
- Sunaina Soni
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Rupesh Samanchi
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
22
|
Neuroimaging Studies of Cognitive Function in Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:117-134. [PMID: 30747420 DOI: 10.1007/978-3-030-05542-4_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Persons suffering from schizophrenia present cognitive impairments that have a major functional impact on their lives. Particularly, executive functions and episodic memory are consistently found to be impaired. Neuroimaging allows the investigation of affected areas of the brain associated with these impairments and, moreover, the detection of brain functioning improvements after cognitive remediation interventions. For instance, executive function impairments have been associated with prefrontal cortex volume and thickness; cognitive control impairments are correlated with an increased activation in the anterior cingulate cortex, and episodic memory impairments are linked to hippocampal reduction. Some findings suggest the presence of brain compensatory mechanisms in schizophrenia, e.g. recruiting broader cortical areas to perform identical tasks. Similarly, neuroimaging studies of cognitive remediation in schizophrenia focus differentially on structural, functional and connectivity changes. Cognitive remediation improvements have been reported in two main areas: the prefrontal and thalamic regions. It has been suggested that those changes imply a functional reorganisation of neural networks, and cognitive remediation interventions might have a neuroprotective effect. Future studies should use multimodal neuroimaging procedures and more complex theoretical models to identify, confirm and clarify these and newer outcomes. This chapter highlights neuroimaging findings in anatomical and functional brain correlates of schizophrenia, as well as its application and potential use for identifying brain changes after cognitive remediation.
Collapse
|
23
|
Zhang X, Zhang Y, Liao J, Jiang S, Yan J, Yue W, Zhang D, Yan H. Progressive Grey Matter Volume Changes in Patients with Schizophrenia over 6 Weeks of Antipsychotic Treatment and Their Relationship to Clinical Improvement. Neurosci Bull 2018; 34:816-826. [PMID: 29779085 PMCID: PMC6129241 DOI: 10.1007/s12264-018-0234-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Cross-sectional and longitudinal studies have identified widespread and progressive grey matter volume (GMV) reductions in schizophrenia, especially in the frontal lobe. In this study, we found a progressive GMV decrease in the rostral medial frontal cortex (rMFC, including the anterior cingulate cortex) in the patient group during a 6-week follow-up of 40 patients with schizophrenia and 31 healthy controls well-matched for age, gender, and education. The higher baseline GMV in the rMFC predicted better improvement in the positive score on the Positive and Negative Syndrome Scale (PANSS), and this might be related to the improved reality-monitoring. Besides, a higher baseline GMV in the posterior rMFC predicted better remission of general symptoms, and a lesser GMV reduction in this region was correlated with better remission of negative symptoms, probably associated with ameliorated self-referential processing and social cognition. Besides, a shorter disease course and higher educational level contributed to better improvement in the general psychopathological PANSS score, and a family history was negatively associated with improvement of the negative and total PANSS scores. These phenomena might be important for understanding the neuropathological mechanisms underlying the symptoms of schizophrenia and for making clinical decisions.
Collapse
Affiliation(s)
- Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jinmin Liao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Sisi Jiang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
24
|
Impaired social cognition in schizophrenia during the Ultimatum Game: An EEG study. Schizophr Res 2018; 192:308-316. [PMID: 28578921 DOI: 10.1016/j.schres.2017.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Schizophrenia has a core feature of cognitive dysfunctions. Since these deficits are predictive for patients' functional outcome, understanding their origin is of great importance to improve their daily lives. A specific component of the deficit involves social decision-making, which can be studied using the Ultimatum Game (UG). In this task, a "proposer" proposes a share of money to a "responder", who can either accept or reject this offer. If the responder accepts the proposal, both win money. If the responder refuses, both players end up with nothing. Therefore, the UG evaluates decision-making strategies and social interaction. METHODS We compared the neuronal bases of schizophrenic patients with healthy controls, while performing the UG. Electroencephalography (EEG) was used to find differences in the event-related potential (ERP) components typical for the UG, namely the P2 and feedback-related negativity (FRN). Source reconstruction was further used to define the origin of these differences. RESULTS In the proposer condition, no differences were found in amplitude of the P2 and FRN components. In contrast, in the responder condition, significant differences were found for the amplitude of the FRN (p=0.009). Using source reconstruction, a different activation in a border zone of the dorsolateral and the medial prefrontal cortex was revealed in schizophrenic patients to underlie this component. CONCLUSIONS We suggest that the difference found in the FRN amplitude is associated with difficulties of patients in interpreting another's behavior. Although schizophrenic patients correctly activate neuronal bases in the proposer condition, they were not able to activate the same networks in the responder condition, thereby exposing their difficulties in social interaction.
Collapse
|
25
|
Mubarik A, Tohid H. Frontal lobe alterations in schizophrenia: a review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2016; 38:198-206. [DOI: 10.1590/2237-6089-2015-0088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Abstract Objective: To highlight the changes in the frontal lobe of the human brain in people with schizophrenia. Methods: This was a qualitative review of the literature. Results: Many schizophrenic patients exhibit functional, structural, and metabolic abnormalities in the frontal lobe. Some patients have few or no alterations, while some have more functional and structural changes than others. Magnetic resonance imaging (MRI) shows structural and functional changes in volume, gray matter, white matter, and functional activity in the frontal lobe, but the mechanisms underlying these changes are not yet fully understood. Conclusion: When schizophrenia is studied as an essential topic in the field of neuropsychiatry, neuroscientists find that the frontal lobe is the most commonly involved area of the human brain. A clear picture of how this lobe is affected in schizophrenia is still lacking. We therefore recommend that further research be conducted to improve understanding of the pathophysiology of this psychiatric dilemma.
Collapse
|
26
|
Schilbach L, Derntl B, Aleman A, Caspers S, Clos M, Diederen KMJ, Gruber O, Kogler L, Liemburg EJ, Sommer IE, Müller VI, Cieslik EC, Eickhoff SB. Differential Patterns of Dysconnectivity in Mirror Neuron and Mentalizing Networks in Schizophrenia. Schizophr Bull 2016; 42:1135-48. [PMID: 26940699 PMCID: PMC4988733 DOI: 10.1093/schbul/sbw015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impairments of social cognition are well documented in patients with schizophrenia (SCZ), but the neural basis remains poorly understood. In light of evidence that suggests that the "mirror neuron system" (MNS) and the "mentalizing network" (MENT) are key substrates of intersubjectivity and joint action, it has been suggested that dysfunction of these neural networks may underlie social difficulties in SCZ patients. Additionally, MNS and MENT might be associated differently with positive vs negative symptoms, given prior social cognitive and symptom associations. We assessed resting state functional connectivity (RSFC) in meta-analytically defined MNS and MENT networks in this patient group. Magnetic resonance imaging (MRI) scans were obtained from 116 patients and 133 age-, gender- and movement-matched healthy controls (HC) at 5 different MRI sites. Network connectivity was analyzed for group differences and correlations with clinical symptoms. Results demonstrated decreased connectivity within the MNS and also the MENT in patients compared to controls. Notably, dysconnectivity of the MNS was related to symptom severity, while no such relationship was observed for the MENT. In sum, these findings demonstrate that differential patterns of dysconnectivity exist in SCZ patients, which may contribute differently to the interpersonal difficulties commonly observed in the disorder.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Max Planck Institute of Psychiatry, Munich, Germany;,Department of Psychiatry, University Hospital Cologne, Cologne, Germany;,These authors contributed equally
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy & Psychosomatics, RWTH University Aachen, Aachen, Germany; Jülich Aachen Research Alliance, JARA-BRAIN, Translational Brain Medicine, Jülich-Aachen, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany;
| | - Andre Aleman
- BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Mareike Clos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Kelly M. J. Diederen
- Neuroscience Division, University Medical Center Utrecht & Rudolf Magnus Institute for Neuroscience, Utrecht, Netherlands
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany;,Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Kogler
- Department of Psychiatry, Psychotherapy & Psychosomatics, RWTH University Aachen, Aachen, Germany;,Jülich Aachen Research Alliance, JARA-BRAIN, Translational Brain Medicine, Jülich-Aachen, Germany;,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Edith J. Liemburg
- BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Iris E. Sommer
- Neuroscience Division, University Medical Center Utrecht & Rudolf Magnus Institute for Neuroscience, Utrecht, Netherlands
| | - Veronika I. Müller
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany;,Institute of Clinical Neuroscience and Medical Psychology, HHU Duesseldorf, Duesseldorf, Germany
| | - Edna C. Cieslik
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany;,Institute of Clinical Neuroscience and Medical Psychology, HHU Duesseldorf, Duesseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany;,Institute of Clinical Neuroscience and Medical Psychology, HHU Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
27
|
Batty R, Francis A, Thomas N, Hopwood M, Ponsford J, Johnston L, Rossell S. Executive dysfunction in psychosis following traumatic brain injury (PFTBI). J Clin Exp Neuropsychol 2016; 37:917-30. [PMID: 26332172 DOI: 10.1080/13803395.2015.1068279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Executive dysfunction is well established in patients with traumatic brain injury and in schizophrenia (SCZ). However, assessments of executive function in psychosis following traumatic brain injury (PFTBI) are limited and inconsistent, and often do not reflect the deficits demonstrated in patients with traumatic brain injury (TBI) or SCZ. We sought to determine the extent of executive dysfunction in PFTBI relative to three comparison cohorts. METHOD Measures of executive function were administered to dually diagnosed patients with PFTBI (n = 10) including tests of mental inhibition and switching, processing speed, and attention: the Stroop Task, Trail Making Test (TMT), and the Attention subtest of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Demographically comparable patients with TBI (n = 10), SCZ (n = 23), and healthy controls (n = 23) underwent an identical battery. RESULTS Significant executive dysfunction was evident in patients with PFTBI on all measures. Relative to all three comparison cohorts patients with PFTBI performed most poorly. CONCLUSIONS These data present novel evidence of substantially impaired executive function across four task types in PFTBI and suggest that TBI and psychosis have an additive influence on executive function deficits. Treatment programs requiring substantial executive engagement are not suitable for patients dually diagnosed with PFTBI.
Collapse
Affiliation(s)
- Rachel Batty
- a Brain and Psychological Sciences Research Centre (BPsyC) , Swinburne University of Technology , Melbourne , VIC , Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Oh J, Chun JW, Joon Jo H, Kim E, Park HJ, Lee B, Kim JJ. The neural basis of a deficit in abstract thinking in patients with schizophrenia. Psychiatry Res 2015; 234:66-73. [PMID: 26329118 DOI: 10.1016/j.pscychresns.2015.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/06/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
Abstract
Abnormal abstract thinking is a major cause of social dysfunction in patients with schizophrenia, but little is known about its neural basis. In this study, we aimed to determine the characteristic abstract thinking-related brain responses in patients using a task reflecting social situations. We conducted functional magnetic resonance imaging while 16 patients with schizophrenia and 16 healthy controls performed a theme-identification task, in which various emotional pictures depicting social situations were presented. Compared with healthy controls, the patients showed significantly decreased activity in the left frontopolar and right orbitofrontal cortices during theme identification. Activity in these two regions correlated well in the controls, but not in patients. Instead, the patients exhibited a close correlation between activity in both sides of the frontopolar cortex, and a positive correlation between the right orbitofrontal cortex activity and degrees of theme identification. Reduced activity in the left frontopolar and right orbitofrontal cortices and the underlying aberrant connectivity may be implicated in the patients' deficits in abstract thinking. These newly identified features of the neural basis of abnormal abstract thinking are important as they have implications for the impaired social behavior of patients with schizophrenia during real-life situations.
Collapse
Affiliation(s)
- Jooyoung Oh
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ji-Won Chun
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hang Joon Jo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Eunseong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boreom Lee
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|