1
|
Van Dyken PC, Yang K, Faria AV, Sawa A, MacKinley M, Khan AR, Palaniyappan L. Stable White Matter Structure in the First Three Years After Psychosis Onset. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100472. [PMID: 40231305 PMCID: PMC11994302 DOI: 10.1016/j.bpsgos.2025.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Background White matter alterations observed using diffusion weighted imaging have become a hallmark of chronic schizophrenia, but it is unclear when these changes arise over the course of the disease. Nearly all studies reported to date have been cross-sectional, so despite their large sample sizes, they cannot determine whether changes accumulate as a degenerative process or patients with preexisting white matter damage are predisposed to more chronic forms of schizophrenia. Methods We examined 160 scans comprising 2 years of annual follow-up data from 42 control participants and 28 patients with schizophrenia recruited in the first 2 years since their diagnosis, totaling 2 to 3 scans per participant. We also examined 6-month follow-up data obtained from an ultra-high field (7T) scanner (68 scans; n = 19 patients with first-episode schizophrenia, n = 15 control participants) as a validation dataset. A longitudinal model was used to compare the trajectory of diffusion tensor parameters in patients and control participants. Results Positive and negative symptom scores were correlated with diffusion parameters using region of interest-based approaches. No longitudinal differences between patients and control participants were observed for any diffusion tensor imaging parameter in either dataset. However, we did observe consistent associations between white matter alterations and negative symptoms in both datasets. Conclusions White matter does not appear to be susceptible to schizophrenia-linked degeneration in the early stages of disease, but preexisting pathology may be linked to disease severity.
Collapse
Affiliation(s)
- Peter C. Van Dyken
- Neuroscience Graduate Program, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael MacKinley
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Ali R. Khan
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Gao J, Yu D, Yin M, Li J, Zhang X, Tang X, Zhang X. Distinct white matter abnormalities and cognitive impairments in deficit schizophrenia: A cross-sectional diffusion tensor imaging study. J Psychiatr Res 2025; 181:381-390. [PMID: 39647350 DOI: 10.1016/j.jpsychires.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Deficit schizophrenia (DS), characterized by persistent and primary negative symptoms, is considered a promising homogeneous subtype of schizophrenia. According to the disconnection hypothesis, abnormalities in white matter fibers are common in schizophrenia. However, comprehensive measurement of white matter metrics and exploration of the relationships between neuroanatomical changes and cognitive functions in DS patients are still unknown. A cross-sectional study was conducted, including 35 DS patients, 37 non-deficit schizophrenia (NDS) patients, and 39 healthy controls (HC), all male and matched for age and education level. The tract-based spatial statistics method was performed to detect differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) among these three groups. Cognitive function in DS and NDS patients was assessed using the Mini-Mental State Examination (MMSE) and Mattis Dementia Rating Scale. Correlation analyses were performed between diffusion metrics in regions showing differences and clinical scales. The results showed significant differences in diffusion metrics (FA, RD, AD, MD) across DS, NDS, and HC groups, particularly in the corpus callosum, corona radiata, and thalamic radiations. Compare to NDS, DS patients exhibited more reductions in FA and increases in RD, especially in the right posterior thalamic radiation and right superior longitudinal fasciculus. Correlation analysis revealed that lower FA in specific regions was linked to worse cognitive and clinical symptoms. These findings reinforce the dysconnectivity hypothesis of schizophrenia and highlight the distinct pathological mechanisms of white matter impairments in DS. Correlations in crucial white matter regions suggest disruptions in thalamo-cortical feedback loops, potentially contributing to the cognitive impairments observed. This provides a deeper understanding of how structural brain changes relate to clinical symptoms.
Collapse
Affiliation(s)
- Ju Gao
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China
| | - Doudou Yu
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, Jiangsu, 225003, China
| | - Ming Yin
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China
| | - Xiaowei Tang
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, Jiangsu, 225003, China.
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
3
|
Teles M, Maximo JO, Lahti AC, Kraguljac NV. Topological Perturbations in the Functional Connectome Support the Deficit/Non-deficit Distinction in Antipsychotic Medication-Naïve First Episode Psychosis Patients. Schizophr Bull 2024; 50:839-847. [PMID: 38666705 PMCID: PMC11283198 DOI: 10.1093/schbul/sbae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND Heterogeneity in the etiology, pathophysiology, and clinical features of schizophrenia challenges clinicians and researchers. A helpful approach could be stratifying patients according to the presence or absence of clinical features of the deficit syndrome (DS). DS is characterized by enduring and primary negative symptoms, a clinically less heterogeneous subtype of the illness, and patients with features of DS are thought to present abnormal brain network characteristics, however, this idea has received limited attention. We investigated functional brain network topology in patients displaying deficit features and those who do not. DESIGN We applied graph theory analytics to resting-state functional magnetic resonance imaging data of 61 antipsychotic medication-naïve first episode psychosis patients, 18 DS and 43 non-deficit schizophrenia (NDS), and 72 healthy controls (HC). We quantified small-worldness, global and nodal efficiency measures, shortest path length, nodal local efficiency, and synchronization and contrasted them among the 3 groups. RESULTS DS presented decreased network integration and segregation compared to HC and NDS. DS showed lower global efficiency, longer global path lengths, and lower global local efficiency. Nodal efficiency was lower and the shortest path length was longer in DS in default mode, ventral attention, dorsal attention, frontoparietal, limbic, somatomotor, and visual networks compared to HC. Compared to NDS, DS showed lower efficiency and longer shortest path length in default mode, limbic, somatomotor, and visual networks. CONCLUSIONS Our data supports increasing evidence, based on topological perturbations of the functional connectome, that deficit syndrome may be a distinct form of the illness.
Collapse
Affiliation(s)
- Matheus Teles
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose Omar Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Shi H, Zhang Y, Yang Y, Zhang H, Li W, Zhong Z, Lv L. Serum S100B protein and white matter changes in schizophrenia before and after medication. Brain Res Bull 2024; 210:110927. [PMID: 38485004 DOI: 10.1016/j.brainresbull.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia patients have abnormalities in white matter (WM) integrity in brain regions. S100B has been shown to be a marker protein for glial cells. The atypical antipsychotics have neuroprotective effects on the brain. It is not clear whether antipsychotics can induce S100B changes and improve symptoms by protecting oligodendrocytes. To investigate WM and S100B changes and associations and determine the effect of quetiapine on WM and S100B in schizophrenia patients, we determined serum S100B levels with solid phase immunochromatography and fractional anisotropy(FA)values of 36 patients and 40 healthy controls. Patients exhibited significantly higher serum concentrations of S100B and decreased FA values in left postcentral,right superior frontal,right thalamus, and left inferior occipital gyrus, while higher in right temporal cortex WM compared with healthy controls. Following treatment with quetiapine, patients had decreased S100B and higher FA values in right cerebellum,right superior frontal,right thalamus, and left parietal cortex,and decreased FA values in right temporal cortex WM compared with pre-treatment values. Furthermore, S100B were negatively correlated with PANSS positive scores and positively correlated with FA values in the left postcentral cortex. In addition,the percentage change in FA values in the right temporal cortex was positively correlated with the percentage change in the S100B, percentage reduction in PANSS scores, and percentage reduction in PANSS-positive scores. Our findings demonstrated abnormalities in S100B and WM microstructure in patients with schizophrenia. These abnormalities may be partly reversed by quetiapine treatment.
Collapse
Affiliation(s)
- Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Haisan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhaoxi Zhong
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| |
Collapse
|
5
|
Türk Y, Devecioğlu İ, Küskün A, Öge C, Beyazyüz E, Albayrak Y. ROI-based analysis of diffusion indices in healthy subjects and subjects with deficit or non-deficit syndrome schizophrenia. Psychiatry Res Neuroimaging 2023; 336:111726. [PMID: 37925764 DOI: 10.1016/j.pscychresns.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
We analyzed DTI data involving 22 healthy subjects (HC), 15 patients with deficit syndrome schizophrenia (DSZ), and 25 patients with non-deficit syndrome schizophrenia (NDSZ). We used a 1.5-T MRI scanner to collect diffusion-weighted images and T1 images, which were employed to correct distortions and deformations within the diffusion-weighted images. For 156 regions of interest (ROI), we calculated the average fractional anisotropy (FA), mean diffusion (MD), and radial diffusion (RD). Each ROI underwent a group-wise comparison using permutation F-test, followed by post hoc pairwise comparisons with Bonferroni correction. In general, we observed lower FA in both schizophrenia groups compared to HC (i.e., HC>(DSZ=NDSZ)), while MD and RD showed the opposite pattern. Notably, specific ROIs with reduced FA in schizophrenia patients included bilateral nucleus accumbens, left fusiform area, brain stem, anterior corpus callosum, left rostral and caudal anterior cingulate, right posterior cingulate, left thalamus, left hippocampus, left inferior temporal cortex, right superior temporal cortex, left pars triangularis and right lingual gyrus. Significantly, the right cuneus exhibited lower FA in the DSZ group compared to other groups ((HC=NDSZ)>DSZ), without affecting MD and RD. These results indicate that compromised neural integrity in the cuneus may contribute to the pathophysiological distinctions between DSZ and NDSZ.
Collapse
Affiliation(s)
- Yaşar Türk
- Radiology Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey; Radiology Department, İstanbul Health and Technology University Hospital, Kaptanpasa Mh., Darulaceze Cd., Sisli, İstanbul 34384, Turkey
| | - İsmail Devecioğlu
- Biomedical Engineering Department, Çorlu Faculty of Engineering, Tekirdağ Namık Kemal University, NKU Corlu Muhendislik Fakultesi, Silahtaraga Mh., Çorlu, Tekirdağ 59860, Turkey.
| | - Atakan Küskün
- Radiology Department, Medical Faculty, Kırklareli University, Cumhuriyet Mh., Kofcaz Yolu, Kayali Yerleskesi, Merkezi Derslikler 2, No 39/L, Merkez, Kırklareli, Turkey
| | - Cem Öge
- Psychiatry Department, Çorlu State Hospital, Zafer, Mah. Bülent Ecevit Blv. No:33, Çorlu, Tekirdağ 59850, Turkey
| | - Elmas Beyazyüz
- Psychiatry Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey
| | - Yakup Albayrak
- Psychiatry Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey
| |
Collapse
|
6
|
Banaj N, Vecchio D, Piras F, De Rossi P, Bustillo J, Ciufolini S, Dazzan P, Di Forti M, Dickie EW, Ford JM, Fuentes-Claramonte P, Gruber O, Guerrero-Pedraza A, Hamilton HK, Howells FM, Kraemer B, Lawrie SM, Mathalon DH, Murray R, Pomarol-Clotet E, Potkin SG, Preda A, Radua J, Richter A, Salvador R, Sawa A, Scheffler F, Sim K, Spaniel F, Stein DJ, Temmingh HS, Thomopoulos SI, Tomecek D, Uhlmann A, Voineskos A, Yang K, Jahanshad N, Thompson PM, Van Erp TGM, Turner JA, Spalletta G, Piras F. Cortical morphology in patients with the deficit and non-deficit syndrome of schizophrenia: a worldwide meta- and mega-analyses. Mol Psychiatry 2023; 28:4363-4373. [PMID: 37644174 PMCID: PMC10827665 DOI: 10.1038/s41380-023-02221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
Collapse
Affiliation(s)
- Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Pietro De Rossi
- Child and Adolescence Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Juan Bustillo
- Psichiatry and Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Simone Ciufolini
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Marta Di Forti
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Erin W Dickie
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Kimel Family Lab, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Judith M Ford
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Paola Fuentes-Claramonte
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | | | - Holly K Hamilton
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Fleur M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburg, EH10 5HF, UK
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Robin Murray
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Edith Pomarol-Clotet
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Steven G Potkin
- Department of Psychiatry, University of California Irvine, Newfoundland, NJ, NJ 07435, USA
| | - Adrian Preda
- Psychiatry and Human Behavior, University of California Irvine, Orange, CA, 92868, USA
| | - Joaquim Radua
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Imaging of mood- and anxiety-related disorders (IMARD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Medicina, University of Barcelona, Barcelona, 08036, Spain
| | - Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | - Raymond Salvador
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Freda Scheffler
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Brain Behavior Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kang Sim
- West Region, Institute of Mental Health, National Healthcare Group, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Filip Spaniel
- CARE, National Institute of Mental Health, Klecany, Czech Republic
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
- Department of Psychiatry and Mental Health, Valkenberg Psychiatric Hospital, Cape Town, Western Cape, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - David Tomecek
- CARE, National Institute of Mental Health, Klecany, Czech Republic
| | - Anne Uhlmann
- Department of child and adolescent psychiatry, TU Dresden, Dresden, Saxony, Germany
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Theo G M Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
7
|
Podwalski P, Tyburski E, Szczygieł K, Rudkowski K, Waszczuk K, Andrusewicz W, Kucharska-Mazur J, Michalczyk A, Mak M, Cyranka K, Misiak B, Sagan L, Samochowiec J. Psychopathology and Integrity of the Superior Longitudinal Fasciculus in Deficit and Nondeficit Schizophrenia. Brain Sci 2022; 12:brainsci12020267. [PMID: 35204030 PMCID: PMC8870217 DOI: 10.3390/brainsci12020267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
The superior longitudinal fasciculus (SLF) is a white matter bundle that connects the frontal areas with the parietal areas. As part of the visuospatial attentional network, it may be involved in the development of schizophrenia. Deficit syndrome (DS) is characterized by primary and enduring negative symptoms. The present study assessed SLF integrity in DS and nondeficit schizophrenia (NDS) patients and examined possible relationships between it and psychopathology. Twenty-six DS patients, 42 NDS patients, and 36 healthy controls (HC) underwent psychiatric evaluation and diffusion tensor imaging (DTI). After post-processing, fractional anisotropy (FA) values within the SLF were analyzed. Psychopathology was assessed with the Positive and Negative Syndrome Scale, Brief Negative Symptom Scale, and Self-evaluation of Negative Symptoms. The PANSS proxy for the deficit syndrome was used to diagnose DS. NDS patients had lower FA values than HC. DS patients had greater negative symptoms than NDS patients. After differentiating clinical groups and HC, we found no significant correlations between DTI measures and psychopathological dimensions. These results suggest that changes in SLF integrity are related to schizophrenia, and frontoparietal dysconnection plays a role in its etiopathogenesis. We confirmed that DS patients have greater negative psychopathology than NDS patients. These results are preliminary; further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (E.T.); (M.M.)
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (E.T.); (M.M.)
| | - Katarzyna Cyranka
- Department of Psychiatry, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Department of Metabolic Diseases, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.R.); (K.W.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
8
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Türk Y, Ercan I, Sahin I, Erdemli Gursel B, Uzunoglu A, Öge C, Beyazyüz E, Albayrak Y. Corpus callosum in schizophrenia with deficit and non-deficit syndrome: a statistical shape analysis. Gen Psychiatr 2021; 34:e100635. [PMID: 34950854 PMCID: PMC8638449 DOI: 10.1136/gpsych-2021-100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Background The corpus callosum (CC) is the most targeted region in the cerebrum that integrates cognitive data between homologous areas in the right and left hemispheres. Aims Our study used statistical analysis to determine whether there was a correlation between shape changes in the CC in patients with schizophrenia (SZ) (deficit syndrome (DS) and non-deficit syndrome (NDS)) and healthy control (HC) subjects. Methods This study consisted of 27 HC subjects and 50 schizophrenic patients (20 with DS and 30 with NDS). 3 patients with DS and 4 patients with NDS were excluded. Three-dimensional, sagittal, T1-spoiled, gradient-echo imaging was used. Standard anatomical landmarks were selected and marked on each image using specific software. Results As to comparing the Procrustes mean shapes of the CC, statistically significant differences were observed between HC and SZ (DS+NDS) (p=0.017, James’s Fj=73.732), HC and DS (p<0.001, James’s Fj=140.843), HC and NDS (p=0.006, James’s Fj=89.178) and also DS and NDS (p<0.001, James’s Fj=152.967). Shape variability in the form of CC was 0.131, 0.085, 0.082 and 0.086 in the HC, SZ (DS+NDS), DS and NDS groups, respectively. Conclusions This study reveals callosal shape variations in patients with SZ and their DS and NDS subgroups that take into account the CC’s topographic distribution.
Collapse
Affiliation(s)
- Yaşar Türk
- Department of Radiology, Medical Faculty of Bülent Ecevit University, Kozlu, Zonguldak, Turkey
| | - Ilker Ercan
- Department of Biostatistics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Ibrahim Sahin
- Department of Biostatistics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Basak Erdemli Gursel
- Department of Radiology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Arda Uzunoglu
- Department of Biostatistics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Cem Öge
- Department of Psychiatry, Çorlu State Hospital, Çorlu, Turkey
| | - Elmas Beyazyüz
- Department of Psychiatry, Medical Faculty of Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Yakup Albayrak
- Department of Psychiatry, Medical Faculty of Tekirdag Namık Kemal University, Tekirdag, Turkey
| |
Collapse
|
10
|
Giordano GM, Pezzella P, Quarantelli M, Bucci P, Prinster A, Soricelli A, Perrottelli A, Giuliani L, Fabrazzo M, Galderisi S. Investigating the Relationship between White Matter Connectivity and Motivational Circuits in Subjects with Deficit Schizophrenia: A Diffusion Tensor Imaging (DTI) Study. J Clin Med 2021; 11:61. [PMID: 35011803 PMCID: PMC8745695 DOI: 10.3390/jcm11010061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Deficit schizophrenia is a subtype of schizophrenia presenting primary and enduring negative symptoms (NS). Although one of the most updated hypotheses indicates a relationship between NS and impaired motivation, only a few studies have investigated abnormalities of motivational circuits in subjects with deficit schizophrenia (DS). Our aim was to investigate structural connectivity within motivational circuits in DS. We analyzed diffusion tensor imaging (DTI) data from 46 subjects with schizophrenia (SCZ) and 35 healthy controls (HCs). SCZ were classified as DS (n = 9) and non-deficit (NDS) (n = 37) using the Schedule for Deficit Syndrome. The connectivity index (CI) and the Fractional Anisotropy (FA) of the connections between selected brain areas involved in motivational circuits were examined. DS, as compared with NDS and HCs, showed increased CI between the right amygdala and dorsal anterior insular cortex and increased FA of the pathway connecting the left nucleus accumbens with the posterior insular cortex. Our results support previous evidence of distinct neurobiological alterations underlying different clinical subtypes of schizophrenia. DS, as compared with NDS and HCs, may present an altered pruning process (consistent with the hyperconnectivity) in cerebral regions involved in updating the stimulus value to guide goal-directed behavior.
Collapse
Affiliation(s)
- Giulia M. Giordano
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| | - Pasquale Pezzella
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, 80134 Naples, Italy; (M.Q.); (A.P.)
| | - Paola Bucci
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, 80134 Naples, Italy; (M.Q.); (A.P.)
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, 80133 Naples, Italy
| | - Andrea Perrottelli
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| | - Michele Fabrazzo
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.P.); (P.B.); (A.P.); (L.G.); (M.F.); (S.G.)
| |
Collapse
|
11
|
Podwalski P, Tyburski E, Szczygieł K, Waszczuk K, Rek-Owodziń K, Mak M, Plichta P, Bielecki M, Rudkowski K, Kucharska-Mazur J, Andrusewicz W, Misiak B, Szulc A, Michalczyk A, Michałowska S, Sagan L, Samochowiec J. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J Clin Med 2021; 10:jcm10112225. [PMID: 34063845 PMCID: PMC8196621 DOI: 10.3390/jcm10112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deficit syndrome (DS) is a subtype of schizophrenia characterized by primary persistent negative symptoms. The corpus callosum (CC) appears to be related to psychopathology in schizophrenia. This study assessed white matter integrity in the CC using diffusion tensor imaging (DTI) in deficit and non-deficit schizophrenia (NDS) patients. We also investigated the psychopathological dimensions of schizophrenia and their relationship to CC integrity. Fifteen DS patients, 40 NDS patients, and 30 healthy controls (HC) underwent psychiatric evaluation and neuroimaging. We divided the CC into five regions and assessed their fractional anisotropy (FA) and mean diffusivity (MD). Psychopathology was assessed with the Positive and Negative Syndrome Scale. DS patients had lower FA than NDS patients and HC, and higher MD in Region 5 of the CC than did HC. NDS patients had higher MD in Region 4 of the CC. The patient groups differed in terms of negative symptoms. After differentiating clinical groups and HC, no significant correlations were observed between DTI measures and psychopathological symptoms. Our results suggest that DS and NDS are characterized by minor impairments of the posterior CC. We confirmed that DS patients have greater negative psychopathology than NDS patients. Our results are preliminary, and further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, 61-719 Poznan, Poland;
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University in Warsaw, 05-802 Warsaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Sylwia Michałowska
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, 71-004 Szczecin, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
12
|
Liloia D, Brasso C, Cauda F, Mancuso L, Nani A, Manuello J, Costa T, Duca S, Rocca P. Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: A revised coordinate-based meta-analysis. Neurosci Biobehav Rev 2021; 123:83-103. [PMID: 33497790 DOI: 10.1016/j.neubiorev.2021.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Characterizing neuroanatomical markers of different stages of schizophrenia (SZ) to assess pathophysiological models of how the disorder develops is an important target for the clinical practice. We performed a meta-analysis of voxel-based morphometry studies of genetic and clinical high-risk subjects (g-/c-HR), recently diagnosed (RDSZ) and chronic SZ patients (ChSZ). We quantified gray matter (GM) changes associated with these four conditions and compared them with contrast and conjunctional data. We performed the behavioral analysis and networks decomposition of alterations to obtain their functional characterization. Results reveal a cortical-subcortical, left-to-right homotopic progression of GM loss. The right anterior cingulate is the only altered region found altered among c-HR, RDSZ and ChSZ. Contrast analyses show left-lateralized insular, amygdalar and parahippocampal GM reduction in RDSZ, which appears bilateral in ChSZ. Functional decomposition shows involvement of the salience network, with an enlargement of the sensorimotor network in RDSZ and the thalamus-basal nuclei network in ChSZ. These findings support the current neuroprogressive models of SZ and integrate this deterioration with the clinical evolution of the disease.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Claudio Brasso
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Paola Rocca
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| |
Collapse
|
13
|
Tamminga CA, Clementz BA, Pearlson G, Keshavan M, Gershon ES, Ivleva EI, McDowell J, Meda SA, Keedy S, Calhoun VD, Lizano P, Bishop JR, Hudgens-Haney M, Alliey-Rodriguez N, Asif H, Gibbons R. Biotyping in psychosis: using multiple computational approaches with one data set. Neuropsychopharmacology 2021; 46:143-155. [PMID: 32979849 PMCID: PMC7689458 DOI: 10.1038/s41386-020-00849-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Focusing on biomarker identification and using biomarkers individually or in clusters to define biological subgroups in psychiatry requires a re-orientation from behavioral phenomenology to quantifying brain features, requiring big data approaches for data integration. Much still needs to be accomplished, not only to refine but also to build support for the application and customization of such an analytical phenotypic approach. In this review, we present some of what Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) has learned so far to guide future applications of multivariate phenotyping and their analyses to understanding psychosis. This paper describes several B-SNIP projects that use phenotype data and big data computations to generate novel outcomes and glimpse what phenotypes contribute to disease understanding and, with aspiration, to treatment. The source of the phenotypes varies from genetic data, structural neuroanatomic localization, immune markers, brain physiology, and cognition. We aim to see guiding principles emerge and areas of commonality revealed. And, we will need to demonstrate not only data stability but also the usefulness of biomarker information for subgroup identification enhancing target identification and treatment development.
Collapse
Affiliation(s)
- Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Brett A Clementz
- Departments of Psychology, Neuroscience, and BioImaging Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, USA
- Departments of Psychiatry & Neuroscience, Yale University, New Haven, CT, USA
| | - Macheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jennifer McDowell
- Departments of Psychology, Neuroscience, and BioImaging Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Shashwath A Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, USA
- Departments of Psychiatry & Neuroscience, Yale University, New Haven, CT, USA
| | - Sarah Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, United States
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | | | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Huma Asif
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Gibbons
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
- Departments of Medicine and Public Health Sciences, University of Chicago, Chicago, Ill, USA
| |
Collapse
|
14
|
Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis. Pharmacol Rep 2020; 73:43-56. [PMID: 33125677 PMCID: PMC7862529 DOI: 10.1007/s43440-020-00177-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.
Collapse
|
15
|
Tan AS, Chew QH, Sim K. Cerebral white matter changes in deficit and non-deficit subtypes of schizophrenia. J Neural Transm (Vienna) 2020; 127:1073-1079. [PMID: 32435900 DOI: 10.1007/s00702-020-02207-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/08/2020] [Indexed: 01/01/2023]
Abstract
The considerable clinical heterogeneity in schizophrenia makes elucidation of its neurobiology challenging. Subtyping the disorder is one way to reduce this heterogeneity and deficit status is one such categorization based on the prominence of negative symptoms. We aimed to utilize diffusion tensor imaging (DTI) to identify unique white matter cerebral changes in deficit schizophrenia (DS) compared with non-deficit schizophrenia (NDS) and healthy controls (HC) in an Asian sample. A total of 289 subjects (111 HC, 133 NDS and 45 DS) underwent DTI and completed rating scales which assessed the severity of psychopathology, psychosocial functioning and premorbid intelligence.We found that DS patients had fractional anisotropy (FA) reductions in the Body of the Corpus Callosum (BCC) and right Posterior Thalamic Radiation (PTR) regions relative to HCs, and FA reductions in the right PTR relative to NDS patients. NDS patients had FA reductions of the BCC and right PTR relative to HCs. Binomial logistic regression analyses revealed that FA reductions of the right PTR FA was an independent predictor of deficit status. The identified brain white matter changes especially in the PTR relate to deficits of cognitive control and emotional awareness, which may underlie psychopathology associated with deficit status like inattention and affective blunting. These potential biomarkers of DS warrant further examination to determine their utility for monitoring illness progression and intervention response in schizophrenia.
Collapse
Affiliation(s)
- An Sen Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qian Hui Chew
- Institute of Mental Health, 10, Buangkok View, Singapore, Republic of Singapore
| | - Kang Sim
- Institute of Mental Health, 10, Buangkok View, Singapore, Republic of Singapore.
| |
Collapse
|
16
|
Haigh SM, Eack SM, Keller T, Minshew NJ, Behrmann M. White matter structure in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. Neuropsychologia 2019; 135:107233. [PMID: 31655160 PMCID: PMC6884694 DOI: 10.1016/j.neuropsychologia.2019.107233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Schizophrenia and autism share many behavioral and neurological similarities, including altered white matter tract structure. However, because schizophrenia and autism are rarely compared directly, it is difficult to establish whether white matter abnormalities are disorder-specific or are common across these disorders that share some symptomatology. METHODS In the current study, we compared white matter water diffusion using tensor imaging in 25 adults with autism, 15 adults with schizophrenia, all with IQ scores above 88, and 19 neurotypical adults. RESULTS Although the three groups evinced no statistically significant differences in measures of fractional anisotropy (FA), the schizophrenia group showed significantly greater mean diffusivity (MD; Cohen's d > 0.77), due to greater radial diffusivity (RD; Cohen's d > 0.92), compared to both the autism and control groups. This effect was evident across the brain rather than specific to a particular tract. CONCLUSIONS The greater MD and RD in schizophrenia appears to be diagnosis-specific. The altered diffusion may reflect subtle abnormalities in myelination, which could be a potential mechanism underlying the widespread behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology, Carnegie Mellon University, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, USA; Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, USA.
| | - Shaun M Eack
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; School of Social Work, University of Pittsburgh, USA
| | - Timothy Keller
- Department of Psychology, Carnegie Mellon University, USA
| | - Nancy J Minshew
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Neurology, University of Pittsburgh, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, USA
| |
Collapse
|
17
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
18
|
Mak M, Misiak B, Frydecka D, Pełka-Wysiecka J, Kucharska-Mazur J, Samochowiec A, Bieńkowski P, Pawlak-Adamska E, Karabon L, Szmida E, Skiba P, Kotowicz K, Piotrowski P, Beszłej JA, Samochowiec J. Polymorphisms in immune-inflammatory response genes and the risk of deficit schizophrenia. Schizophr Res 2018; 193:359-363. [PMID: 28673752 DOI: 10.1016/j.schres.2017.06.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/24/2017] [Accepted: 06/25/2017] [Indexed: 01/06/2023]
Abstract
Polymorphisms in immune-inflammatory response genes are believed to impact schizophrenia susceptibility. However, it remains unknown whether immunogenetic factors play a role in the etiology of deficit schizophrenia (D-SCZ). Therefore, we genotyped four polymorphisms in genes encoding two immune system regulatory proteins (CTLA-4 rs231775 and CD28 rs3116496), interleukin-6 (IL6 rs1800795) and transforming growth factor-β (TGFB1 rs1800470) in 513 schizophrenia patients and 374 controls. The CD28 rs3116496-CC genotype and C-allele were significantly more frequent in the whole group of patients and D-SCZ patients compared to controls. Our results indicate that the CD28 rs3116496 polymorphism might impact the risk of schizophrenia, especially D-SCZ.
Collapse
Affiliation(s)
- Monika Mak
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Justyna Pełka-Wysiecka
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Agnieszka Samochowiec
- Institute of Psychology, Department of Clinical Psychology, University of Szczecin, 69 Krakowska Street, 71-017 Szczecin, Poland
| | - Przemysław Bieńkowski
- Department of Psychiatry, Medical University of Warsaw, 27 Nowowiejska Street, 00-665 Warsaw, Poland
| | - Edyta Pawlak-Adamska
- Department of Experimental Therapy, Laboratory of Immunopathology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 51-114 Wroclaw, Poland
| | - Lidia Karabon
- Department of Experimental Therapy, Laboratory of Immunopathology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 51-114 Wroclaw, Poland
| | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland
| | - Paweł Skiba
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| |
Collapse
|
19
|
Vitolo E, Tatu MK, Pignolo C, Cauda F, Costa T, Ando' A, Zennaro A. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2017; 270:8-21. [PMID: 28988022 DOI: 10.1016/j.pscychresns.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.
Collapse
Affiliation(s)
- Enrico Vitolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Mona Karina Tatu
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Claudia Pignolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Franco Cauda
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy; GCS-fMRI, Koelliker Hospital, Corso Galileo Ferraris 247/255, 10134 Turin, TO, Italy.
| | - Tommaso Costa
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Agata Ando'
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Alessandro Zennaro
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| |
Collapse
|
20
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
21
|
Nenadić I, Hoof A, Dietzek M, Langbein K, Reichenbach JR, Sauer H, Güllmar D. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder. Psychiatry Res Neuroimaging 2017; 266:96-100. [PMID: 28644999 DOI: 10.1016/j.pscychresns.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Philipps University Marburg & Marburg University Hospital / UKGM, Marburg, Germany.
| | - Anna Hoof
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| |
Collapse
|
22
|
Takahashi T, Takayanagi Y, Nishikawa Y, Nakamura M, Komori Y, Furuichi A, Kido M, Sasabayashi D, Noguchi K, Suzuki M. Brain neurodevelopmental markers related to the deficit subtype of schizophrenia. Psychiatry Res Neuroimaging 2017; 266:10-18. [PMID: 28549318 DOI: 10.1016/j.pscychresns.2017.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 02/02/2023]
Abstract
Deficit schizophrenia is a homogeneous subtype characterized by a trait-like feature of primary and prominent negative symptoms, but the etiologic factors related to this specific subtype remain largely unknown. This magnetic resonance imaging study aimed to examine gross brain morphology that probably reflects early neurodevelopment in 38 patients with deficit schizophrenia, 37 patients with non-deficit schizophrenia, and 59 healthy controls. Potential brain neurodevelopmental markers investigated in this study were the adhesio interthalamica (AI), cavum septi pellucidi (CSP), and surface morphology (i.e., olfactory sulcus depth, sulcogyral pattern, and number of orbital sulci) of the orbitofrontal cortex (OFC). The subtype classification of schizophrenia patients was based on the score of Proxy for the Deficit Syndrome. The deficit schizophrenia group had a significantly shorter AI compared with the non-deficit group and controls. The deficit group, but not the non-deficit group, was also characterized by an altered distribution of the OFC sulcogyral pattern, as well as fewer posterior orbital sulcus compared with controls. Other neurodevelopmental markers did not differentiate the deficit and non-deficit subgroups. These results suggest that the deficit subtype of schizophrenia and its clinical manifestation may be at least partly related to prominent neurodevelopmental pathology.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yuko Komori
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
23
|
Mucci A, Merlotti E, Üçok A, Aleman A, Galderisi S. Primary and persistent negative symptoms: Concepts, assessments and neurobiological bases. Schizophr Res 2017; 186:19-28. [PMID: 27242069 DOI: 10.1016/j.schres.2016.05.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 02/01/2023]
Abstract
Primary and persistent negative symptoms (PPNS) represent an unmet need in the care of people with schizophrenia. They have an unfavourable impact on real-life functioning and do not respond to available treatments. Underlying etiopathogenetic mechanisms of PPNS are still unknown. The presence of primary and enduring negative symptoms characterizes deficit schizophrenia (DS), proposed as a separate disease entity with respect to non-deficit schizophrenia (NDS). More recently, to reduce the heterogeneity of negative symptoms by using criteria easily applicable in the context of clinical trials, the concept of persistent negative symptoms (PNS) was developed. Both PNS and DS constructs include enduring negative symptoms (at least 6months for PNS and 12months for DS) that do not respond to available treatments. PNS exclude secondary negative symptoms based on a cross-sectional evaluation of severity thresholds on commonly used rating scales for positive symptoms, depression and extrapyramidal side effects; the DS diagnosis, instead, excludes all potential sources of secondary negative symptoms based on a clinical longitudinal assessment. In this paper we review the evolution of concepts and assessment modalities relevant to PPNS, data on prevalence of DS and PNS, as well as studies on clinical, neuropsychological, brain imaging electrophysiological and psychosocial functioning aspects of DS and PNS.
Collapse
Affiliation(s)
- Armida Mucci
- Department of Psychiatry, University of Naples SUN, Naples, Italy.
| | | | - Alp Üçok
- Department of Psychiatry, Psychotic Disorders Research Program, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Neuroscience and Department of Psychology, Groningen, The Netherlands
| | | |
Collapse
|
24
|
Abstract
We previously proposed that people with schizophrenia who have primary, enduring negative symptoms have a disease-deficit schizophrenia (DS)-that is separate from that affecting people with schizophrenia without these features. Additional evidence consistent with the separate disease hypothesis has accumulated in recent years. White matter changes may be widespread in deficit compared to nondeficit patients and may relate to problems in early brain migration. These 2 patient groups also appear to differ on metabolic measures prior to antipsychotic treatment. Studies of reward and defeatist beliefs provide the basis for future treatment trials. The 2 factors or groups within negative symptoms broadly defined (both primary and secondary) have also been found in DS, and recent evidence suggests these 2 symptom groups have different correlates and reflect the existence of 2 groups with in DS. Negative symptoms are found in disorders other than schizophrenia, and excess summer birth, a deficit risk factor, has been found in a non-patient group with deficit-like features. It may be useful in future research to determine whether findings in DS extend to patients with other neuropsychiatric disorders who also have negative symptoms.
Collapse
Affiliation(s)
- Brian Kirkpatrick
- Department of Psychiatry and Behavioral Sciences, University of Nevada Reno School of Medicine, Reno, NV
| | - Armida Mucci
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania Luigi Vanvitelli (SUN); University Hospital SUN, Naples, Italy
| |
Collapse
|
25
|
Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry 2017; 7:e1171. [PMID: 28934193 PMCID: PMC5538118 DOI: 10.1038/tp.2017.138] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/12/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with a broad symptomatology, including cognitive symptoms that are thought to arise from the prefrontal cortex (PFC). The neurobiological aetiology of these symptoms remains elusive, yet both impaired redox control and PFC dysconnectivity have been recently implicated. PFC dysconnectivity has been linked to white matter, oligodendrocyte (OL) and myelin abnormalities in SZ patients. Myelin is produced by mature OLs, and OL precursor cells (OPCs) are exceptionally susceptible to oxidative stress. Here we propose a hypothesis for the aetiology of cognitive symptomatology in SZ: the redox-induced prefrontal OPC-dysfunctioning hypothesis. We pose that the combination of genetic and environmental factors causes oxidative stress marked by a build-up of reactive oxygen species that, during late adolescence, impair OPC signal transduction processes that are necessary for OPC proliferation and differentiation, and involve AMP-activated protein kinase, Akt-mTOR-P70S6K and peroxisome proliferator receptor alpha signalling. OPC dysfunctioning coincides with the relatively late onset of PFC myelination, causing hypomyelination and disruption of connectivity in this brain area. The resulting cognitive deficits arise in parallel with SZ onset. Hence, our hypothesis provides a novel neurobiological framework for the aetiology of SZ cognitive symptoms. Future research addressing our hypothesis could have important implications for the development of new (combined) antioxidant- and promyelination-based strategies to treat the cognitive symptoms in SZ.
Collapse
|
26
|
Hirjak D, Thomann PA, Wolf RC, Kubera KM, Goch C, Hering J, Maier-Hein KH. White matter microstructure variations contribute to neurological soft signs in healthy adults. Hum Brain Mapp 2017; 38:3552-3565. [PMID: 28429448 DOI: 10.1002/hbm.23609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Neurological soft signs (NSS) are core features of psychiatric disorders with significant neurodevelopmental origin. However, it is unclear whether NSS correlates are associated with neuropathological processes underlying the disease or if they are confounded by medication. Given that NSS are also present in healthy persons (HP), investigating HP could reveal NSS correlates, which are not biased by disease-specific processes or drug treatment. Therefore, we used a combination of diffusion MRI analysis tools to provide a framework of specific white matter (WM) microstructure variations underlying NSS in HP. METHOD NSS of 59 HP were examined on the Heidelberg Scale and related to diffusion associated metrics. Using tract-based spatial statistics (TBSS), we studied WM variations in fractional anisotropy (FA) as well as radial (RD), axial (AD), and mean diffusivity (MD). Using graph analytics (clustering coefficient-CC, local betweenness centrality -BC), we then explored DTI-derived structural network variations in regions identified by previous MRI studies on NSS. RESULTS NSS scores were negatively associated with RD, AD and MD in corpus callosum, brainstem and cerebellum (P < 0.05, corr.). NSS scores were negatively associated with CC and BC of the pallidum, the superior parietal gyrus, the precentral sulcus, the insula, and the cingulate gyrus (P < 0.05, uncorr.). CONCLUSION The present study supports the notion that WM microstructure variations in subcortical and cortical sensorimotor regions contribute to NSS expression in young HP. Hum Brain Mapp 38:3552-3565, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany.,Center for Mental Health, Odenwald District Healthcare Center, Albert-Schweitzer-Straße 10-20, 64711, Erbach, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Caspar Goch
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Hering
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus H Maier-Hein
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
De Rossi P, Dacquino C, Piras F, Caltagirone C, Spalletta G. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study. Psychiatry Res Neuroimaging 2016; 254:48-55. [PMID: 27322868 DOI: 10.1016/j.pscychresns.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 01/21/2023]
Abstract
A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism.
Collapse
Affiliation(s)
- Pietro De Rossi
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Department NESMOS, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| | - Claudia Dacquino
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy
| | - Fabrizio Piras
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Department of Neuroscience, "Tor Vergata" University, 00173, Rome, Italy
| | - Gianfranco Spalletta
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy; Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Karlsgodt KH. Diffusion Imaging of White Matter In Schizophrenia: Progress and Future Directions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:209-217. [PMID: 27453952 PMCID: PMC4955654 DOI: 10.1016/j.bpsc.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diffusion tensor imaging (DTI) is a powerful tool for the in-vivo assessment of white matter microstructure. The application of DTI methodologies to the study of schizophrenia has supported and advanced the hypothesis of schizophrenia as a disorder of disrupted connectivity. In the context of impaired structural connectivity, the extended time frame of white matter development may offer unique opportunities for treatment that can capitalize on the neural flexibility that is still present in the period leading up to and after disease onset. Therefore, it is important to gain a clear understanding of white matter deficits and how they may emerge and change across the illness. However, while there is broad consistency in the findings of white matter deficits in patients with schizophrenia, there is also a great deal of variability in specific findings across studies. In this review, the aim is to move beyond summarizing case-control analyses, to consider the many factors that may impact DTI measures, to explain variability of findings, and to explore future directions for the field. The topics explored include ways to parse DTI patterns associated with different disease subtypes, ways in which novel and established treatments might interact with or enhance white matter, ways of dissociating developmental change from the disease process itself, and understanding the role of emerging analytic methodologies.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Psychiatry Research Division, Zucker Hillside Hospital and Feinstein Institute for Medical Research; Department of Psychiatry, Hofstra NorthShore LIJ School of Medicine
| |
Collapse
|
29
|
Behdinan T, Foussias G, Wheeler AL, Stefanik L, Felsky D, Remington G, Rajji TK, Mallar Chakravarty M, Voineskos AN. Neuroimaging predictors of functional outcomes in schizophrenia at baseline and 6-month follow-up. Schizophr Res 2015; 169:69-75. [PMID: 26603060 PMCID: PMC4681643 DOI: 10.1016/j.schres.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Studies show that deficit syndrome schizophrenia patients, characterized by primary negative symptoms and poor functional outcome, have impairment in specific neural circuits. We assessed whether these same neural circuits are directly linked to functional outcomes across schizophrenia patients. METHODS T1- and diffusion-weighted MR images were obtained for schizophrenia (n=30) and matched healthy control participants (n=30). Negative symptoms and functional outcome were assessed at baseline and 6-month follow-up. Cortical thickness and tract-wise fractional anisotropy (FA) were compared between groups. To assess relationships of neuroimaging measures with functional outcome, principal component analysis (PCA) was performed on tract-wise FA values and components were entered into a multiple regression model for schizophrenia participants. RESULTS Consistent with the literature, schizophrenia participants showed frontotemporal reductions in cortical thickness and tract-wise FA compared to controls. The top two components from PCA explained 71% of the variance in tract-wise FA values. The second component (associated with inferior longitudinal and arcuate fasciculus FA) was significantly correlated with functional outcome (baseline: β=0.54, p=0.03; follow-up: β=0.74, p=0.047); further analysis revealed this effect was mediated by negative symptoms. Post-hoc network analysis revealed increased cortical coupling between right inferior frontal and supramarginal gyri (connected by the arcuate fasciculus) in schizophrenia participants with poorer functional outcome. CONCLUSIONS Our findings indicate that impairment in the same neural circuitry susceptible in deficit syndrome schizophrenia predicts functional outcome in a continuous manner in schizophrenia participants. This relationship was mediated by negative symptom burden. Our findings provide novel evidence for brain-based biomarkers of longitudinal functional outcome in people with schizophrenia.
Collapse
Affiliation(s)
- Tina Behdinan
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada
| | - George Foussias
- Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada
| | - Anne L Wheeler
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Laura Stefanik
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Daniel Felsky
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada
| | - Tarek K Rajji
- Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 27 King's College Circle, Toronto, ON, M5S, Canada.
| |
Collapse
|
30
|
Schizophrenia and bipolar disorder: The road from similarities and clinical heterogeneity to neurobiological types. Clin Chim Acta 2015; 449:49-59. [DOI: 10.1016/j.cca.2015.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
|
31
|
Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy. Neuroimage 2015; 120:43-54. [PMID: 26151103 DOI: 10.1016/j.neuroimage.2015.06.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/01/2015] [Accepted: 06/28/2015] [Indexed: 11/24/2022] Open
Abstract
Fractional anisotropy (FA) analysis of diffusion tensor-images (DTI) has yielded inconsistent abnormalities in schizophrenia (SZ). Inconsistencies may arise from averaging heterogeneous groups of patients. Here we investigate whether SZ is a heterogeneous group of disorders distinguished by distinct patterns of FA reductions. We developed a Generalized Factorization Method (GFM) to identify biclusters (i.e., subsets of subjects associated with a subset of particular characteristics, such as low FA in specific regions). GFM appropriately assembles a collection of unsupervised techniques with Non-negative Matrix Factorization to generate biclusters, rather than averaging across all subjects and all their characteristics. DTI tract-based spatial statistics images, which output is the locally maximal FA projected onto the group white matter skeleton, were analyzed in 47 SZ and 36 healthy subjects, identifying 8 biclusters. The mean FA of the voxels of each bicluster was significantly different from those of other SZ subjects or 36 healthy controls. The eight biclusters were organized into four more general patterns of low FA in specific regions: 1) genu of corpus callosum (GCC), 2) fornix (FX)+external capsule (EC), 3) splenium of CC (SCC)+retrolenticular limb (RLIC)+posterior limb (PLIC) of the internal capsule, and 4) anterior limb of the internal capsule. These patterns were significantly associated with particular clinical features: Pattern 1 (GCC) with bizarre behavior, pattern 2 (FX+EC) with prominent delusions, and pattern 3 (SCC+RLIC+PLIC) with negative symptoms including disorganized speech. The uncovered patterns suggest that SZ is a heterogeneous group of disorders that can be distinguished by different patterns of FA reductions associated with distinct clinical features.
Collapse
|
32
|
Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2015; 20:213-24. [PMID: 26166588 PMCID: PMC4710336 DOI: 10.17712/nsj.2015.3.20140757] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia.
Collapse
Affiliation(s)
- Hassaan Tohid
- Center for Mind and Brain, UC Davis, CA, United States of America. E-mail:
| | | | | |
Collapse
|