1
|
Wang J, Zhang Q, Fan W, Shi Q, Mao J, Xie J, Chai G, Zhang C. Deciphering olfactory receptor binding mechanisms: a structural and dynamic perspective on olfactory receptors. Front Mol Biosci 2025; 11:1498796. [PMID: 39845900 PMCID: PMC11751049 DOI: 10.3389/fmolb.2024.1498796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans. This has provided new insights into the binding mechanisms between odor molecules and olfactory receptors. Furthermore, due to the rapid advancements in related fields such as computer simulations, the prediction and exploration of odor molecule binding to olfactory receptors have been progressively achieved through molecular dynamics simulations. Through this comprehensive review, we aim to provide a thorough analysis of research related to the binding mechanisms between odor molecules and olfactory receptors from the perspectives of structural biology and molecular dynamics simulations. Finally, we will provide an outlook on the future of research in the field of olfactory receptor sensory mechanisms.
Collapse
Affiliation(s)
- Jingtao Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qidong Zhang
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Wu Fan
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qingzhao Shi
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jian Mao
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jianping Xie
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Guobi Chai
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Sangchooli A, Zare-Bidoky M, Fathi Jouzdani A, Schacht J, Bjork JM, Claus ED, Prisciandaro JJ, Wilson SJ, Wüstenberg T, Potvin S, Ahmadi P, Bach P, Baldacchino A, Beck A, Brady KT, Brewer JA, Childress AR, Courtney KE, Ebrahimi M, Filbey FM, Garavan H, Ghahremani DG, Goldstein RZ, Goudriaan AE, Grodin EN, Hanlon CA, Haugg A, Heilig M, Heinz A, Holczer A, Van Holst RJ, Joseph JE, Juliano AC, Kaufman MJ, Kiefer F, Khojasteh Zonoozi A, Kuplicki RT, Leyton M, London ED, Mackey S, McClernon FJ, Mellick WH, Morley K, Noori HR, Oghabian MA, Oliver JA, Owens M, Paulus MP, Perini I, Rafei P, Ray LA, Sinha R, Smolka MN, Soleimani G, Spanagel R, Steele VR, Tapert SF, Vollstädt-Klein S, Wetherill RR, Witkiewitz K, Yuan K, Zhang X, Verdejo-Garcia A, Potenza MN, Janes AC, Kober H, Zilverstand A, Ekhtiari H. Parameter Space and Potential for Biomarker Development in 25 Years of fMRI Drug Cue Reactivity: A Systematic Review. JAMA Psychiatry 2024; 81:414-425. [PMID: 38324323 PMCID: PMC11304510 DOI: 10.1001/jamapsychiatry.2023.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Importance In the last 25 years, functional magnetic resonance imaging drug cue reactivity (FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. However, no FDCR-derived biomarkers have been approved for treatment development or clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived biomarkers. Objective To summarize the state of the field of FDCR, assess their potential for biomarker development, and outline a clear process for biomarker qualification to guide future research and validation efforts. Evidence Review The PubMed and Medline databases were searched for every original FDCR investigation published from database inception until December 2022. Collected data covered study design, participant characteristics, FDCR task design, and whether each study provided evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or severity biomarkers for 1 or more addictive disorders. Findings There were 415 FDCR studies published between 1998 and 2022. Most focused on nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 individuals with past or current substance use disorders. Most studies could potentially support biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, with 24 (96%) finding significant associations between FDCR markers and treatment outcomes. Conclusions and Relevance Based on this systematic review and the proposed biomarker development framework, there is a pathway for the development and regulatory qualification of FDCR-based biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures, potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical judgments.
Collapse
Affiliation(s)
- Arshiya Sangchooli
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Mehran Zare-Bidoky
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fathi Jouzdani
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph Schacht
- Department of Psychiatry, University of Colorado School of Medicine, Aurora
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, Richmond
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park
| | - James J Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, State College
| | - Torsten Wüstenberg
- Field of Focus IV, Core Facility for Neuroscience of Self-Regulation (CNSR), Heidelberg University, Heidelberg, Germany
| | - Stéphane Potvin
- Department of Psychiatry and Addiction, Université de Montréal, Montréal, Quebec, Canada
| | - Pooria Ahmadi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alex Baldacchino
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen T Brady
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Judson A Brewer
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | | | | | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anneke E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- BrainsWay Inc, Winston-Salem, North Carolina
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Ruth J Van Holst
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | | | - Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington
| | - F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - William H Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Kirsten Morley
- Specialty of Addiction Medicine, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hamid R Noori
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Jason A Oliver
- TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Max Owens
- Department of Psychiatry, University of Vermont, Burlington
| | | | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Parnian Rafei
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Lara A Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | - Vaughn R Steele
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui, China
| | | | - Marc N Potenza
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Amy C Janes
- Cognitive and Pharmacological Neuroimaging Unit, National Institute on Drug Abuse, Baltimore, Maryland
| | - Hedy Kober
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
3
|
Kunas SL, Stuke H, Heinz A, Ströhle A, Bermpohl F. Evidence for a hijacked brain reward system but no desensitized threat system in quitting-motivated smokers: An fMRI study. Addiction 2022; 117:701-712. [PMID: 34312937 DOI: 10.1111/add.15651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Several aspects of how quitting-motivated tobacco use disorder (TUD) subjects and never-smokers differ in terms of reward and threat processing remain unresolved. We aimed to examine aberrant reward and threat processes in TUD and the association with smoking characteristics. DESIGN A between- and within-subjects functional magnetic resonance imaging (fMRI) experiment with a 2 (groups) × 4 (stimulus type) factorial design. The experimental paradigm had four conditions: pictures of (1) cigarettes served as drug-related-positive cues, (2) food as alternative reward cues, (3) long-term consequences of smoking as drug-related-negative cues and (4) neutral pictures as control. SETTING/PARTICIPANTS Adult participants (n = 38 TUD subjects and n = 42 never-smokers) were recruited in Berlin, Germany. MEASUREMENTS As contrasts of primary interest, the interactions of group × stimulus-type were assessed. Significance threshold correction for multiple testing was carried out with the family-wise error method. Correlation analyses were used to test the association with smoking characteristics. FINDINGS The 2 × 2 interaction of smoking status and stimulus type revealed activations in the brain reward system to drug-related-positive cues in TUD subjects (between-subjects effect: P-values ≤ 0.036). As a response to drug-related-negative cues, TUD subjects showed no reduced activation of the aversive brain network. Within the TUD group, a significant negative association was found between response of the aversive brain system to drug-related-negative cues (within-subjects effect: P-values ≤ 0.021) and the number of cigarettes smoked per day (right insula r = -0.386, P = 0.024; left insula r = -0.351, P = 0.042; right ACC r = -0.359, P = 0.037). CONCLUSIONS Moderate smokers with tobacco use disorder appear to have altered brain reward processing of drug-related-positive (but not negative) cues compared with never smokers.
Collapse
Affiliation(s)
- Stefanie L Kunas
- Campus Charité Mitte, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiner Stuke
- Campus Charité Mitte, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Heinz
- Campus Charité Mitte, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Ströhle
- Campus Charité Mitte, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Bermpohl
- Campus Charité Mitte, Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Efectos de algunas señales visuales y olfativas sobre el consumo de cigarrillo y el ansia para fumar. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2021. [DOI: 10.33881/2027-1786.rip.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Las señales inductoras para el consumo (SIC) son uno de los factores que inciden en que un fumador encienda, o no, el próximo cigarrillo. Las SIC impactan más a los fumadores no dependientes de la nicotina (FND) que a los fumadores dependientes (FD). Los FND no son dependientes de la nicotina y sus niveles de monóxido de carbono tienden a ser más bajos. Los FD muestran niveles de nicotina y monóxido de carbono más altos (dependientes). Este estudio evaluó el nivel de ansia de los individuos frente a imágenes relacionadas con el producto (cigarrillos y cajetilla de cigarrillos) y si existen diferencias entre inductores visuales y olfativos en relación con el consumo de cigarrillo. Los FD muestran niveles de nicotina y monóxido de carbono más altos. Los participantes mostraron mayor ansia ante las imágenes que presentaban cigarrillos saliendo de la cajetilla. No se hallaron diferencias entre inductores visuales y olfativos en relación con el consumo de cigarrillo. No obstante, la ocurrencia de fumar fue mayor en FD que en FND. Por eso, es importante clasificar el tipo de fumador en futuras investigaciones que pretendan evaluar esta población.
Collapse
|
5
|
McClintock TS, Khan N, Alimova Y, Aulisio M, Han DY, Breheny P. Encoding the Odor of Cigarette Smoke. J Neurosci 2020; 40:7043-7053. [PMID: 32801155 PMCID: PMC7480249 DOI: 10.1523/jneurosci.1144-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022] Open
Abstract
The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.
Collapse
Affiliation(s)
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Yelena Alimova
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Madeline Aulisio
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Dong Y Han
- Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
6
|
Abstract
The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.
Collapse
|
7
|
de Celis-Alonso B, Hidalgo-Tobón SS, Barragán-Pérez E, Castro-Sierra E, Dies-Suárez P, Garcia J, Moreno-Barbosa E, Arias-Carrión O. Different Food Odors Control Brain Connectivity in Impulsive Children. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:63-77. [PMID: 30394220 DOI: 10.2174/1871527317666181105105113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Impulsivity is a complex multi-dimensional combination of behaviors which include: ineffective impulse control, premature decision-making and inability to delay gratification. OBJECTIVE The aim of this work was to explore how food odor perception and its emotional value is affected in impulsive children. METHODS Here we compared two cohorts of impulsive and control children with ages between 10 and 16 years. Both groups underwent a functional magnetic resonance imaging experiment, in which foodrelated odor-cues were presented to all of them. RESULTS Differences in regions of blood oxygen level dependent activation, as well as connectivity, were calculated. Activations were significant for all odors in the impulsive group in the temporal lobe, cerebellum, supplementary motor area, frontal cortex, medial cingulate cortex, insula, precuneus, precentral, para-hippocampal and calcarine cortices. CONCLUSION Connectivity results showed that the expected emotional reward, based on odor perceived and processed in temporal lobes, was the main cue driving responses of impulsive children. This was followed by self-consciousness, the sensation of interaction with the surroundings and feelings of comfort and happiness, modulated by the precuneus together with somatosensory cortex and cingulum. Furthermore, reduced connectivity to frontal areas as well as to other sensory integration areas (piriform cortex), combined to show different sensory processing strategies for olfactory emotional cues in impulsive children. Finally, we hypothesize that the cerebellum plays a pivotal role in modulating decision-making for impulsive children.
Collapse
Affiliation(s)
- Benito de Celis-Alonso
- Facultad de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla. Puebla, Puebla, Mexico, Address: Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
| | - Silvia S Hidalgo-Tobón
- Departamento de Imagenologia, Hospital Infantil de Mexico "Federico Gomez", Ciudad de Mexico, Mexico, Address: Calle Dr. Marquez 162, Cuauhtemoc, 06720 Ciudad de Mexico, CDMX, Mexico.,Departamento de Fisica, Universidad Autonoma Metropolitana - Iztapalapa, Ciudad de Mexico, Mexico, Address: Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc, 09340 Ciudad de Mexico, CDMX, Mexico
| | - Eduardo Barragán-Pérez
- Departamento de Neurologia, Hospital Infantil de Mexico "Federico Gomez", Ciudad de Mexico, Mexico, Address: Calle Dr. Marquez 162, Cuauhtemoc, 06720 Ciudad de Mexico, CDMX, Mexico
| | - Eduardo Castro-Sierra
- Departamento de Imagenologia, Hospital Infantil de Mexico "Federico Gomez", Ciudad de Mexico, Mexico, Address: Calle Dr. Marquez 162, Cuauhtemoc, 06720 Ciudad de Mexico, CDMX, Mexico
| | - Pilar Dies-Suárez
- Departamento de Imagenologia, Hospital Infantil de Mexico "Federico Gomez", Ciudad de Mexico, Mexico, Address: Calle Dr. Marquez 162, Cuauhtemoc, 06720 Ciudad de Mexico, CDMX, Mexico
| | - Julio Garcia
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada, Address: 2500 University Dr. NW Calgary, Alberta, Canada
| | - Eduardo Moreno-Barbosa
- Facultad de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla. Puebla, Puebla, Mexico, Address: Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueno/Centro de Innovacion Medica Aplicada, Hospital General "Dr. Manuel Gea Gonzalez", Address: Calzada de Tlalpan 4800, Belisario Dominguez Secc. 16, 14080 Tlalpan, CDMX, Mexico
| |
Collapse
|
8
|
Goodyear K. Multisensory Environments to Measure Craving During Functional Magnetic Resonance Imaging. Alcohol Alcohol 2019; 54:193-195. [PMID: 30920596 DOI: 10.1093/alcalc/agz021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/14/2022] Open
Abstract
There are limited functional magnetic resonance imaging (fMRI) studies that measure alcohol craving with multisensory environments. Researchers are faced with a two-fold challenge: to recreate a naturalistic environment during an MRI scan and to produce paradigms that mimic real-life conditions involved with craving. Craving is a multifaceted psychological construct and techniques such as fMRI provide an alternative way to measure craving and to have a better understanding of its complexity. Most studies to date have implemented visual stimuli to measure craving and only a few studies have investigated gustation and olfaction. Moving forward, there needs to be greater attention on the ways in which we measure craving and the use of multisensory environments during fMRI. By going beyond examining subjective craving responses, and investigating neurobiological responses such as brain activity during fMRI, can potentially lead to better treatments for alcohol use disorder. Further, there needs to be additional consideration on standardizing how we measure craving, which will allow for a more unified approach amongst researchers.
Collapse
Affiliation(s)
- Kimberly Goodyear
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Science, Brown University, Providence, RI, USA.,Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism; and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Shen Z, Huang P, Wang C, Qian W, Yang Y, Zhang M. Increased network centrality as markers of relapse risk in nicotine-dependent individuals treated with varenicline. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:142-147. [PMID: 28185963 DOI: 10.1016/j.pnpbp.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 02/01/2023]
Abstract
Identifying smokers at high risk of relapse could improve the effectiveness of cessation therapies. Although altered regional brain function in smokers has been reported, whether the whole-brain functional organization differs smokers with relapse vulnerability from others remains unclear. Thus, the goal of this study is to investigate the baseline functional connectivity differences between relapsers and quitters. Using resting-state fMRI, we acquired images from 57 smokers prior to quitting attempts. After 12-week treatment with varenicline, smokers were divided into relapsers (n=36) and quitters (n=21) (quitter: continuously abstinent for weeks 9-12). The smoking cessation outcomes were cross-validated by self-reports and expired carbon monoxide. We then used eigenvector centrality (EC) mapping to identify the functional connectivity differences between relapsers and quitters. When compared to quitters, increased EC in the right dorsolateral prefrontal cortex (DLPFC), left middle temporal gyrus (MTG) and cerebellum anterior lobe was observed in relapsers. In addition, a logistic regression analysis of EC data (with DLPFC, MTG and cerebellum included) predicted relapse with 80.7% accuracy. These findings suggest that the DLPFC, MTG and cerebellum may be important substrates of smoking relapse vulnerability. The data also suggest that relapse-vulnerable smokers can be identified before quit attempts, which could enable personalized treatment and improve smoking cessation outcomes.
Collapse
Affiliation(s)
- Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Criscitelli K, Avena NM. The neurobiological and behavioral overlaps of nicotine and food addiction. Prev Med 2016; 92:82-89. [PMID: 27509870 DOI: 10.1016/j.ypmed.2016.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Both cigarette smoking and obesity are significant public health concerns and are associated with increased risk of early mortality. It is well established that the mesolimbic dopamine pathway is an important component of the reward system within the brain and is implicated in the development of addiction. Indeed, nicotine and highly palatable foods are capable of altering dopamine release within this system, engendering addictive like responses in susceptible individuals. Although additional research is warranted, findings from animal and human literature have elucidated many of neuroadaptions that occur from exposure to nicotine and highly palatable foods, leading to a greater understanding of the underlying mechanisms contributing to these aberrant behaviors. In this review we present the findings taken from preclinical and clinical literature of the known effects of exposure to nicotine and highly palatable foods on the reward related circuitry within the brain. Further, we compare the neurobiological and behavioral overlaps between nicotine, highly palatable foods and obesity. Lastly, we examine the stigma associated with smoking, obesity and food addiction, and the consequences stigma has on the overall health and wellbeing of an individual.
Collapse
Affiliation(s)
- Kristen Criscitelli
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|