1
|
Lacomba‐Arnau E, Martínez‐Molina A, Barrós‐Loscertales A. Structural Cerebellar and Lateral Frontoparietal Networks are altered in CUD: An SBM Analysis. Addict Biol 2025; 30:e70021. [PMID: 40072344 PMCID: PMC11899759 DOI: 10.1111/adb.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups. Source-based Morphometry (SBM) takes this a step further by incorporating the Independent Component Analysis to detect shared patterns of grey matter variation, all without requiring prior selection of regions of interest. However, SBM has yet to be employed in the study of structural alteration patterns related to cocaine addiction. Therefore, we performed this analysis to explore alterations in structural covariance specific to cocaine addiction. Our study involved 40 individuals diagnosed with Cocaine Use Disorder (CUD) and 40 matched healthy controls. Participants with CUD completed clinical questionnaires assessing the severity of their dependence and other relevant clinical variables. Following the adjustment for age-related effects, we observed notable disparities between groups in two structural independent components, which we identified as the structural cerebellar network and the structural lateral frontoparietal network, which display opposing trends. Specifically, the individuals with CUD exhibited a heightened contribution to the cerebellar network but simultaneously demonstrated a reduced contribution to the lateral frontoparietal network compared to the healthy controls. These findings unveil distinctive covariance patterns of neuroregulation linked with cocaine addiction, which indicates an interruption in the typical structural development in an affected lateral frontoparietal network, while suggesting an extended pattern of neuroregulation within the cerebellar network in individuals with CUD.
Collapse
Affiliation(s)
- Elena Lacomba‐Arnau
- Departament de Psicologia, Sociologia i Treball SocialUniversitat de LleidaLleidaSpain
- Department of Precision HealthLuxembourg Institute of HealthStrassenLuxembourg
| | | | | |
Collapse
|
2
|
Guo Y, Liu T, Xu X, Li T, Xiong X, Chen H, Huang W, Zhang X, Chen F. Large-scale structural covariance networks changes relate to executive function deficit in betel quid-dependent chewers. Brain Imaging Behav 2025; 19:32-40. [PMID: 39424762 DOI: 10.1007/s11682-024-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Previous studies demonstrate deficits in executive function for betel quid-dependent (BQD) patients. Large-scale structural covariance network (SCN) based on gray matter (GM) morphometry may be able to explore the neural mechanism of executive dysfunction in BQD individuals. This study aims to identify spatial covariance patterns of GM volume and to investigate their association with executive dysfunction in BQD individuals. Sixty-four BQD individuals and 48 sex- and age-matched healthy controls (HCs) underwent T1-weighted structural MRI examination and executive function assessments, including the Backward Digit Span (BDS) test and Stroop Color and Word (SCW) test. Seventy SCNs based on GM volume covariance patterns were defined using independent component analysis. An SCN-based classifier was constructed to differentiate between BQD and HC individuals. Receiver operating characteristic (ROC) curves were applied to evaluate the performance of the SCN-based classifier. Linear regression analyses were performed to investigate the association between SCN network indices and executive function indices. Six SCNs had higher classifications for differentiating between BQD and HC individuals. The area under the ROC curve of the SCN-based classifier was 0.812 in the training set and 0.771 in the testing set. Furthermore, linear regression analyses demonstrated that the network indices in the thalamus were associated with BDS scores adjusted for age, sex, and education. Large-scale SCNs could provide potential imaging markers for differentiating BQD and HC groups. The loss of network index in the thalamus was associated with working memory, indicating that SCNs could reveal executive dysfunction in BQD individuals.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Tao Liu
- Department of Geriatric Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China.
| | - Xiaoling Xu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Tiansheng Li
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Xiaoli Xiong
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | | | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China.
| |
Collapse
|
3
|
Yang Z, Klugah-Brown B, Ding G, Zhou W, Biswal BB. Brain structural differences in cocaine use disorder: Insights from multivariate and neurotransmitter analyses. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111159. [PMID: 39366518 DOI: 10.1016/j.pnpbp.2024.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Cocaine use disorder (CUD) is a chronic and relapsing neuropsychiatric disorder characterized by structural and functional brain lesions, posing a significant public health challenge. While the disruptive effects of cocaine on neurotransmitter systems (receptors/transporters) have been well established, the patterns of brain structural abnormalities in CUD and its interaction with other factors remain an ongoing topic of investigation. We employed source-based morphometry (SBM), a multivariate approach on 50 CUD participants and 50 matched healthy controls from the public SUDMEX CONN dataset. This method allowed us to identify co-varying patterns of brain tissue volume differences, and further explore the effect of average cocaine dosage through moderation analysis. Spatial correlation analysis was also performed to examine micro-macro structural consistency between tissue volume variations and chemoarchitectural distribution of dopamine and serotonin. Our SBM analysis findings were consistent with reward-related neuroadaptations in the striato-thalamo-cortical and limbic pathways and also exhibited co-localization with the distribution of dopamine and serotonin systems. The moderation analysis suggested that the average dosage positively strengthens cocaine consumption years' effect on brain structures. By integrating our findings of gray and white matter volume differences and corresponding neurotransmitter profiles, this comprehensive view not only strengthens our understanding of the brain's structural abnormalities in CUD, but also reveals potential mechanisms underlying its development and progression.
Collapse
Affiliation(s)
- Zhenzhen Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China.
| | - Guobin Ding
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Wenchao Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA.
| |
Collapse
|
4
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Poireau M, Segobin S, Maillard A, Clergue-Duval V, Icick R, Azuar J, Volle E, Delmaire C, Bloch V, Pitel AL, Vorspan F. Brain alterations in Cocaine Use Disorder: Does the route of use matter and does it relate to the treatment outcome? Psychiatry Res Neuroimaging 2024; 342:111830. [PMID: 38820804 DOI: 10.1016/j.pscychresns.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
AIMS Cocaine Use Disorder (CUD) is an important health issue, associated with structural brain abnormalities. However, the impact of the route of administration and their predictive value for relapse remain unknown. METHODS We conducted an anatomical MRI study in 55 CUD patients (26 CUD-Crack and 29 CUD-Hydro) entering inpatient detoxification, and 38 matched healthy controls. In patients, a 3-months outpatient follow-up was carried out to specify the treatment outcome status (relapser when cocaine was consumed once or more during the past month). A Voxel-Based Morphometry approach was used. RESULTS Compared with controls, CUD patients had widespread gray matter alterations, mostly in frontal and temporal cortices, but also in the cerebellum and several sub-cortical structures. We then compared CUD-Crack with CUD-Hydro patients and found that crack-cocaine use was associated with lower volume in the right inferior and middle temporal gyri, and the right fusiform gyrus. Cerebellar vermis was smaller during detoxification in subsequent relapsers compared to three-months abstainers. CONCLUSIONS Patients with CUD display widespread cortical and subcortical brain shrinkage. Patients with preferential crack-cocaine use and subsequent relapsers showed specific gray matter volume deficits, suggesting that different patterns of cocaine use and different clinical outcome are associated with different brain macrostructure.
Collapse
Affiliation(s)
- Margaux Poireau
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, APHP.NORD, Paris, F-75010, France; INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France; FHU NOR-SUD (Network of Research in Substance Use Disorders), Paris, France.
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), 14000 Caen, France
| | - Angéline Maillard
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, APHP.NORD, Paris, F-75010, France; INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France
| | - Virgile Clergue-Duval
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, APHP.NORD, Paris, F-75010, France; INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France
| | - Romain Icick
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, APHP.NORD, Paris, F-75010, France; INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France
| | - Julien Azuar
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, APHP.NORD, Paris, F-75010, France; INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France
| | - Emmanuelle Volle
- FRONT-Lab, ICM, Institut du Cerveau, Hôpital Pitié-Salpêtrière, 47 bd de l'Hôpital, 75013 Paris, France
| | - Christine Delmaire
- INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France; Service de Neuroradiologie, Fondation Ophtalmologique Rothschild, 75019 Paris, France
| | - Vanessa Bloch
- INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France; FHU NOR-SUD (Network of Research in Substance Use Disorders), Paris, France; Service de Pharmacie à Usage Intérieur, Hôpital Fernand Widal, APHP.NORD, Paris, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France; Institut Universitaire de France (IUF), France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, APHP.NORD, Paris, F-75010, France; INSERM UMR-S 1144 Therapeutic Optimization in Neuropsychopharmacology, Université Paris Cité, Paris, F-75006, France; FHU NOR-SUD (Network of Research in Substance Use Disorders), Paris, France
| |
Collapse
|
6
|
Bittencourt AML, da Silveira BLB, Tondo LP, Rothmann LM, Franco AR, Ferreira PEMS, Viola TW, Grassi-Oliveira R. Cingulate cortical thickness in cocaine use disorder: mediation effect between early life stress and cocaine consumption. Acta Neuropsychiatr 2024; 36:78-86. [PMID: 36416534 PMCID: PMC10203054 DOI: 10.1017/neu.2022.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The cingulate gyrus is implicated in the neurobiology of addiction, such as chronic cocaine consumption. Early life stress (ELS) is an important moderator of cocaine use disorder (CUD). Therefore, we investigated the effect of CUD on cingulate cortical thickness and tested whether a history of ELS could influence the effects of CUD. METHODS Participants aged 18-50 years (78 with CUD due to crack cocaine consumption and 53 healthy controls) underwent magnetic resonance imaging and the cingulate thickness (rostral anterior, caudal anterior, posterior, and isthmus regions) was analysed. The clinical assessment comprised the Childhood Trauma Questionnaire (CTQ) and the Addiction Severity Index. Group comparisons adjusting by sex, age, and education were performed. Mediation models were generated where lifetime cocaine use, CTQ score, and cortical thickness corresponded to the independent variable, intermediary variable, and outcome, respectively. RESULTS Group comparisons revealed significant differences in six out of eight cingulate cortices, showing lower thickness in the CUD group. Furthermore, years of regular cocaine use was the variable most associated with cingulate thickness. Negative correlations were found between CTQ scores and the isthmus cingulate (right hemisphere), as well as with the rostral anterior cingulate (left hemisphere). In the mediation analysis, we observed a significant negative direct effect of lifetime cocaine use on the isthmus cingulate and an indirect effect of cocaine use mediated by CTQ score. CONCLUSION Our findings suggest that a history of ELS could aggravate the negative effects of chronic cocaine use on the cingulate gyrus, particularly in the right isthmus cingulate cortex.
Collapse
Affiliation(s)
- Augusto Martins Lucas Bittencourt
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
- School of Medicine, Catholic University of Pelotas (UCPel), 96015560, Pelotas, Brazil
| | | | - Lucca Pizzato Tondo
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
| | - Leonardo Melo Rothmann
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
| | - Alexandre Rosa Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Thiago Wendt Viola
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
- Department of Clinical Medicine – Translational Neuropsychiatry Unit, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
7
|
Vike NL, Bari S, Kim BW, Katsaggelos AK, Blood AJ, Breiter HC. Characterizing major depressive disorder and substance use disorder using heatmaps and variable interactions: The utility of operant behavior and brain structure relationships. PLoS One 2024; 19:e0299528. [PMID: 38466739 PMCID: PMC10927130 DOI: 10.1371/journal.pone.0299528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Rates of depression and addiction have risen drastically over the past decade, but the lack of integrative techniques remains a barrier to accurate diagnoses of these mental illnesses. Changes in reward/aversion behavior and corresponding brain structures have been identified in those with major depressive disorder (MDD) and cocaine-dependence polysubstance abuse disorder (CD). Assessment of statistical interactions between computational behavior and brain structure may quantitatively segregate MDD and CD. METHODS Here, 111 participants [40 controls (CTRL), 25 MDD, 46 CD] underwent structural brain MRI and completed an operant keypress task to produce computational judgment metrics. Three analyses were performed: (1) linear regression to evaluate groupwise (CTRL v. MDD v. CD) differences in structure-behavior associations, (2) qualitative and quantitative heatmap assessment of structure-behavior association patterns, and (3) the k-nearest neighbor machine learning approach using brain structure and keypress variable inputs to discriminate groups. RESULTS This study yielded three primary findings. First, CTRL, MDD, and CD participants had distinct structure-behavior linear relationships, with only 7.8% of associations overlapping between any two groups. Second, the three groups had statistically distinct slopes and qualitatively distinct association patterns. Third, a machine learning approach could discriminate between CTRL and CD, but not MDD participants. CONCLUSIONS These findings demonstrate that variable interactions between computational behavior and brain structure, and the patterns of these interactions, segregate MDD and CD. This work raises the hypothesis that analysis of interactions between operant tasks and structural neuroimaging might aide in the objective classification of MDD, CD and other mental health conditions.
Collapse
Affiliation(s)
- Nicole L. Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sumra Bari
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Byoung Woo Kim
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Aggelos K. Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Computer Science, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
| | - Anne J. Blood
- Department of Psychiatry, Mood and Motor Control Laboratory (MAML), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry, Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital and Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Hans C. Breiter
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Psychiatry, Mood and Motor Control Laboratory (MAML), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry, Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital and Harvard School of Medicine, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | |
Collapse
|
8
|
Ceceli AO, Huang Y, Kronberg G, Malaker P, Miller P, King SG, Gaudreault PO, McClain N, Gabay L, Vasa D, Newcorn JH, Ekin D, Alia-Klein N, Goldstein RZ. Common and distinct fronto-striatal volumetric changes in heroin and cocaine use disorders. Brain 2023; 146:1662-1671. [PMID: 36200376 PMCID: PMC10319776 DOI: 10.1093/brain/awac366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022] Open
Abstract
Different drugs of abuse impact the morphology of fronto-striatal dopaminergic targets in both common and unique ways. While dorsal striatal volume tracks with addiction severity across drug classes, opiates impact ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAcc) neuroplasticity in preclinical models, and psychostimulants alter inhibitory control, rooted in cortical regions such as the inferior frontal gyrus (IFG). We hypothesized parallel grey matter volume changes associated with human heroin or cocaine use disorder: lower grey matter volume of vmPFC/NAcc in heroin use disorder and IFG in cocaine use disorder, and putamen grey matter volume to be associated with addiction severity measures (including craving) across both. In this cross-sectional study, we quantified grey matter volume (P < 0.05-corrected) in age/sex/IQ-matched individuals with heroin use disorder (n = 32, seven females), cocaine use disorder (n = 32, six females) and healthy controls (n = 32, six females) and compared fronto-striatal volume between groups using voxel-wise general linear models and non-parametric permutation-based tests. Overall, individuals with heroin use disorder had smaller vmPFC and NAcc/putamen volumes than healthy controls. Bilateral lower IFG grey matter volume patterns were specifically evident in cocaine versus heroin use disorders. Correlations between addiction severity measures and putamen grey matter volume did not reach nominal significance level in this sample. These results indicate alterations in dopamine-innervated regions (in the vmPFC and NAcc) in heroin addiction. For the first time we demonstrate lower IFG grey matter volume specifically in cocaine compared with heroin use disorder, suggesting a signature of reduced inhibitory control, which remains to be tested directly using select behavioural measures. Overall, results suggest substance-specific volumetric changes in human psychostimulant or opiate addiction, with implications for fine-tuning biomarker and treatment identification by primary drug of abuse.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Greg Kronberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pazia Miller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah G King
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Natalie McClain
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lily Gabay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Devarshi Vasa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Defne Ekin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Trevisan N, Di Camillo F, Ghiotto N, Cattarinussi G, Sala M, Sambataro F. The complexity of cortical folding is reduced in chronic cocaine users. Addict Biol 2023; 28:e13268. [PMID: 36825487 PMCID: PMC10078524 DOI: 10.1111/adb.13268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Cocaine use is a worldwide health problem with psychiatric, somatic and socioeconomic complications, being the second most widely used illicit drug in the world. Despite several structural neuroimaging studies, the alterations in cortical morphology associated with cocaine use and addiction are still poorly understood. In this study, we compared the complexity of cortical folding (CCF), a measure that aims to summarize the convoluted structure of the cortex between patients with cocaine addiction (n = 52) and controls (n = 36), and correlated it with characteristics of addiction and impulsivity. We found that patients with cocaine addiction had greater impulsivity and showed reduced CCF in a cluster that encompassed the left insula and the supramarginal gyrus (SMG) and in one in the left medial orbitofrontal cortex. Finally, the CCF in the left medial orbitofrontal cortex was correlated with the age of onset of cocaine addiction and with attentional impulsivity. Overall, our findings suggest that chronic cocaine use is associated with changes in the cortical surface in the fronto-parieto-limbic regions that underlie emotional regulation and these changes are associated with earlier cocaine use. Future longitudinal studies are warranted to unravel the association of these changes with the diathesis for the disorder and with the chronic use of this substance.
Collapse
Affiliation(s)
- Nicolò Trevisan
- Department of Neuroscience (DNS), University of Padova, Padua, Italy.,Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Di Camillo
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Niccolò Ghiotto
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy.,Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Maddalena Sala
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy.,Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
10
|
Xu H, Xu C, Guo Y, Hu Y, Bai G, Du M. Abnormal neuroanatomical patterns as potential diagnostic biomarkers for cocaine use disorder. Addict Biol 2023; 28:e13348. [PMID: 37855070 DOI: 10.1111/adb.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Cocaine use disorder (CUD) is a global health problem with serious consequences for both individuals and society. Previous studies on abnormal anatomical patterns in CUD have mainly used voxel-based morphometry to investigate grey matter volume changes, while surface-based morphometry (SBM) has been found to provide detail information on cortical thickness (CT), surface area and cortical meancurve, which can contribute to a better understanding of structural brain changes associated with CUD. In this study, SBM was conducted to investigate abnormal neuroanatomical patterns in CUD and whether these abnormal patterns could be used as potential diagnostic biomarkers for CUD. Sixty-eight CUD individuals and 52 matched healthy controls were enrolled, and all participants performed once MRI scanning and clinical assessments. We found that CUD individuals exhibited altered morphological indicators across widespread brain regions and these abnormal anatomical alterations were significantly predictive of CUD status. Furthermore, the CT reduction of right insula was significantly associated with years of cocaine use in CUD. These findings revealed the association of abnormal anatomical patterns in specific brain regions in CUD, which further improve the understanding of CUD pathophysiology and provide the alternative diagnostic biomarkers for CUD.
Collapse
Affiliation(s)
- Hui Xu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Cheng Xu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meimei Du
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Odoardi S, Biosa G, Mestria S, Valentini V, De Giovanni N, Cittadini F, Strano Rossi S. DRUG-IMPAIRED DRIVING AND TRAFFIC COLLISIONS: STUDY ON A CROSS SECTION OF THE ITALIAN POPULATION. Drug Test Anal 2022; 15:477-483. [PMID: 36082405 DOI: 10.1002/dta.3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
The present study focuses on the association between road accidents and the presence of drugs of abuse markers in the biological fluids of the drivers. Biological fluids collected from 1,236 drivers involved in road accidents (54 fatal and 1,182 non-fatal crashes) in the Rome area were analysed for alcohol and psychotropic drugs, as required by judicial authorities. The substance most frequently detected was alcohol (in 19% of non-fatal and 32% of fatal crashes), followed by cannabinoids (12% of non-fatal crashes) and cocaine (9% of non-fatal and 20% of fatal crashes). The results obtained for cocaine and cannabinoids in blood and urine were compared. We observed the absence or low concentrations of the active drug in blood (cocaine was often below 5 ng/mL and THC below 1 ng/mL), whereas urinary concentrations of metabolites were generally high (benzoylecgonine 250 - above 5000 ng/mL, THCCOOH 15-270 ng/mL). The risk of being involved in a road accident if cocaine or cannabis markers were present in the urine specimens was evaluated compared to a control population. The odds ratios calculated, being 8.13 for cannabis and 5.32 for cocaine, suggest a strong association between the presence of these drugs in the urine of drivers and traffic accidents, regardless of their presence in blood samples. The present data suggest that the chance of being involved in a road accident is higher than in the control population even if the subject is no longer "under the influence" of cannabis or cocaine at the time of the accident.
Collapse
Affiliation(s)
- Sara Odoardi
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Giulia Biosa
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Serena Mestria
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Valeria Valentini
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Nadia De Giovanni
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Francesca Cittadini
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Sabina Strano Rossi
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| |
Collapse
|
12
|
Israel B, Wiprovnick AE, Belcher AM, Kleinman MB, Ramprashad A, Spaderna M, Weintraub E. Practical Considerations for Treating Comorbid Posttraumatic Stress Disorder in the Addictions Clinic: Approaches to Clinical Care, Leadership, and Alleviating Shame. Psychiatr Clin North Am 2022; 45:375-414. [PMID: 36055729 DOI: 10.1016/j.psc.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A practical, common-sense framework for recognizing and addressing comorbid posttraumatic stress disorder (PTSD) in the substance use disorder (SUD) clinic is outlined. The article focuses on strategies that can help establish trauma-informed care or augment an existing approach. Interventions are organized around the task of ameliorating shame (or shame sensitivity), which represents a transdiagnostic mediator of psychopathology and, potentially, capacity for change. Countershaming strategies can guide a trauma-responsive leadership approach. Considering the striking rate of underdiagnosis of PTSD among patients with SUD, implementing routine systematic PTSD screening likely represents the single most consequential trauma-informed intervention that SUD clinics can adopt.
Collapse
Affiliation(s)
- Benjamin Israel
- Division of Consultation-Liaison Psychiatry, Department of Psychiatry, University of Maryland School of Medicine, 4801 Yellowwood Ave, Ste 2E1, Baltimore, MD 21209, USA.
| | - Alicia E Wiprovnick
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Annabelle M Belcher
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Mary B Kleinman
- Department of Psychology, University of Maryland at College Park, Biology/Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Avinash Ramprashad
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Max Spaderna
- Division of Addiction Research and Treatment, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Eric Weintraub
- Division of Addiction Research and Treatment, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins (Basel) 2022; 14:toxins14040278. [PMID: 35448887 PMCID: PMC9032145 DOI: 10.3390/toxins14040278] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
Cocaine is one of the most consumed stimulants throughout the world, as official sources report. It is a naturally occurring sympathomimetic tropane alkaloid derived from the leaves of Erythroxylon coca, which has been used by South American locals for millennia. Cocaine can usually be found in two forms, cocaine hydrochloride, a white powder, or ‘crack’ cocaine, the free base. While the first is commonly administered by insufflation (‘snorting’) or intravenously, the second is adapted for inhalation (smoking). Cocaine can exert local anaesthetic action by inhibiting voltage-gated sodium channels, thus halting electrical impulse propagation; cocaine also impacts neurotransmission by hindering monoamine reuptake, particularly dopamine, from the synaptic cleft. The excess of available dopamine for postsynaptic activation mediates the pleasurable effects reported by users and contributes to the addictive potential and toxic effects of the drug. Cocaine is metabolised (mostly hepatically) into two main metabolites, ecgonine methyl ester and benzoylecgonine. Other metabolites include, for example, norcocaine and cocaethylene, both displaying pharmacological action, and the last one constituting a biomarker for co-consumption of cocaine with alcohol. This review provides a brief overview of cocaine’s prevalence and patterns of use, its physical-chemical properties and methods for analysis, pharmacokinetics, pharmacodynamics, and multi-level toxicity.
Collapse
|