1
|
Atallah E, Trehiou S, Alquier-Bacquie V, Lasserre F, Arroyo J, Molette C, Remignon H. Development of hepatic steatosis in male and female mule ducks after respective force-feeding programs. Front Physiol 2024; 15:1392968. [PMID: 38974520 PMCID: PMC11224645 DOI: 10.3389/fphys.2024.1392968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024] Open
Abstract
Male and female mule ducks were subjected to a force-feeding diet to induce liver steatosis as it is generally done only with male ducks for the production of foie gras. The different biochemical measurements indicated that the course of hepatic steatosis development was present in both sexes and associated with a huge increase in liver weight mainly due to the synthesis and accumulation of lipids in hepatocytes. In livers of male and female ducks, this lipid accumulation was associated with oxidative stress and hypoxia. However, certain specific modifications (kinetics of lipid droplet development and hepatic inflammation) indicate that female ducks may tolerate force-feeding less well, at least at the hepatic level. This is in contradiction with what is generally reported concerning hepatic steatosis induced by dietary disturbances in mammals but could be explained by the very specific conditions imposed by force-feeding. Despite this, force-feeding female ducks seems entirely feasible, provided that the final quality of the product is as good as that of the male ducks, which will remain to be demonstrated in future studies.
Collapse
Affiliation(s)
- Elham Atallah
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Sabrina Trehiou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Valérie Alquier-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | | | | | - Hervé Remignon
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
- INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
2
|
Wang Y, Song L, Ning M, Hu J, Cai H, Song W, Gong D, Liu L, Smith J, Li H, Huang Y. Identification of alternative splicing events related to fatty liver formation in duck using full-length transcripts. BMC Genomics 2023; 24:92. [PMID: 36858953 PMCID: PMC9976415 DOI: 10.1186/s12864-023-09160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of most common diseases in the world. Recently, alternative splicing (AS) has been reported to play a key role in NAFLD processes in mammals. Ducks can quickly form fatty liver similar to human NAFLD after overfeeding and restore to normal liver in a short time, suggesting that ducks are an excellent model to unravel molecular mechanisms of lipid metabolism for NAFLD. However, how alternative splicing events (ASEs) affect the fatty liver process in ducks is still unclear. RESULTS Here we identify 126,277 unique transcripts in liver tissue from an overfed duck (77,237 total transcripts) and its sibling control (69,618 total transcripts). We combined these full-length transcripts with Illumina RNA-seq data from five pairs of overfed ducks and control individuals. Full-length transcript sequencing provided us with structural information of transcripts and Illumina RNA-seq data reveals the expressional profile of each transcript. We found, among these unique transcripts, 30,618 were lncRNAs and 1,744 transcripts including 155 lncRNAs and 1,589 coding transcripts showed significantly differential expression in liver tissues between overfed ducks and control individuals. We also detected 27,317 ASEs and 142 of them showed significant relative abundance changes in ducks under different feeding conditions. Full-length transcript profiles together with Illumina RNA-seq data demonstrated that 10 genes involving in lipid metabolism had ASEs with significantly differential abundance in normally fed (control) and overfed ducks. Among these genes, protein products of five genes (CYP4F22, BTN, GSTA2, ADH5, and DHRS2 genes) were changed by ASEs. CONCLUSIONS This study presents an example of how to identify ASEs related to important biological processes, such as fatty liver formation, using full-length transcripts alongside Illumina RNA-seq data. Based on these data, we screened out ASEs of lipid-metabolism related genes which might respond to overfeeding. Our future ability to explore the function of genes showing AS differences between overfed ducks and their sibling controls, using genetic manipulations and co-evolutionary studies, will certainly extend our knowledge of genes related to the non-pathogenic fatty liver process.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Han Cai
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Weitao Song
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, No. 58 Cangjie Road, Hanjiang District, Yangzhou, 349019093, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Huifang Li
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, No. 58 Cangjie Road, Hanjiang District, Yangzhou, 349019093, China.
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Remignon H, Burgues P. Evolution of oxidative stress markers in livers of ducks during force-feeding. Sci Rep 2023; 13:1046. [PMID: 36658173 PMCID: PMC9852233 DOI: 10.1038/s41598-022-27271-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Mule ducks have been force-fed to develop a hepatic steatosis, also called "foie gras", which is similar to the non-alcoholic fatty liver disease (NAFLD) described in humans and mammals. However, in hepatic steatosis resulting from force-feeding of ducks, very little is known about the fine biochemical events that occur due to the enormous and very rapid increase in total lipids that mainly accumulate in hepatocytes. To begin to reduce this lack of knowledge associated with the development of this specific hepatic steatosis, liver samples were taken at different times to follow the overall biochemical transformation of the liver as well as different markers of oxidative stress, hypoxia and apoptosis. The results indicate that the lipid content increases rapidly in the liver throughout the force-feeding period while the protein content decreases. The amount of hydroxyproline remains constant indicating that no liver fibrosis develops during the force-feeding period. On the contrary, all the tested biomarkers of cellular oxidative stress increase rapidly but without any visible disorder in the coordination of paired activities. At the same time, hypoxia-inducible factors also increase indicating that a hypoxia situation is gradually occurring in hepatocytes. This leads, in addition to the lipotoxicity induced by the accumulation of lipids, to an increased number of liver cells to enter into apoptosis. A relative variability in the level of these cellular responses was also observed indicating that, probably, certain animals support the development of this steatosis differently. This leads us to imagine that the physiological status of these birds may differ widely for reasons that remain to be clarified.
Collapse
Affiliation(s)
- Herve Remignon
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, UPS, 31300, Toulouse, France. .,INP-ENSAT, Université de Toulouse, 31320, Castanet-Tolosan, France.
| | - Pierre Burgues
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, UPS, 31300, Toulouse, France
| |
Collapse
|
4
|
Slightly different metabolomic profiles are associated with high or low weight duck foie gras. PLoS One 2022; 17:e0255707. [PMID: 35763459 PMCID: PMC9239462 DOI: 10.1371/journal.pone.0255707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the evolution of fatty liver metabolism of ducks is a recurrent issue for researchers and industry. Indeed, the increase in weight during the overfeeding period leads to an important change in the liver metabolism. However, liver weight is highly variable at the end of overfeeding within a batch of animals reared, force-fed and slaughtered in the same way. For this study, we performed a proton nuclear magnetic resonance (1H-NMR) analysis on two classes of fatty liver samples, called low-weight liver (weights between 550 and 599 g) and high-weight liver (weights above 700 g). The aim of this study was to identify the differences in metabolism between two classes of liver weight (low and high). Firstly, the results suggested that increased liver weight is associated with higher glucose uptake leading to greater lipid synthesis. Secondly, this increase is probably also due to a decline in the level of export of triglycerides from the liver by maintaining them at high hepatic concentration levels, but also of hepatic cholesterol. Finally, the increase in liver weight could lead to a significant decrease in the efficiency of aerobic energy metabolism associated with a significant increase in the level of oxidative stress. However, all these hypotheses will have to be confirmed in the future, by studies on plasma levels and specific assays to validate these results.
Collapse
|
5
|
Massimino W, Andrieux C, Biasutti S, Davail S, Bernadet MD, Pioche T, Ricaud K, Gontier K, Morisson M, Collin A, Panserat S, Houssier M. Impacts of Embryonic Thermal Programming on the Expression of Genes Involved in Foie gras Production in Mule Ducks. Front Physiol 2021; 12:779689. [PMID: 34925068 PMCID: PMC8678469 DOI: 10.3389/fphys.2021.779689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
Embryonic thermal programming has been shown to improve foie gras production in overfed mule ducks. However, the mechanisms at the origin of this programming have not yet been characterized. In this study, we investigated the effect of embryonic thermal manipulation (+1°C, 16 h/24 h from embryonic (E) day 13 to E27) on the hepatic expression of genes involved in lipid and carbohydrate metabolisms, stress, cell proliferation and thyroid hormone pathways at the end of thermal manipulation and before and after overfeeding (OF) in mule ducks. Gene expression analyses were performed by classic or high throughput real-time qPCR. First, we confirmed well-known results with strong impact of OF on the expression of genes involved in lipid and carbohydrates metabolisms. Then we observed an impact of OF on the hepatic expression of genes involved in the thyroid pathway, stress and cell proliferation. Only a small number of genes showed modulation of expression related to thermal programming at the time of OF, and only one was also impacted at the end of the thermal manipulation. For the first time, we explored the molecular mechanisms of embryonic thermal programming from the end of heat treatment to the programmed adult phenotype with optimized liver metabolism.
Collapse
Affiliation(s)
- William Massimino
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Charlotte Andrieux
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Sandra Biasutti
- Univ Pau & Pays Adour, E2S UPPA, IUT Génie Biologique, Mont-de-Marsan, France
| | - Stéphane Davail
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | | | - Tracy Pioche
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Gontier
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Anne Collin
- BOA, INRAE, Université de Tours, Nouzilly, France
| | - Stéphane Panserat
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Marianne Houssier
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
6
|
Hepatic Proteomic Analysis Reveals That Enhanced Carboxylic Acid Metabolism and Oxidoreduction Promote Muscle and Fat Deposition in Muscovy Duck. Animals (Basel) 2021; 11:ani11082180. [PMID: 34438637 PMCID: PMC8388526 DOI: 10.3390/ani11082180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Liver plays an important role in lipid synthesis and muscle growth in poultry. The current study measured the growth traits and the proteome of Muscovy duck liver at 14, 28, 42, and 56 days, aiming at exploring the key regulatory proteins for intramuscular fat deposition and muscle growth. The results showed that Muscovy duck grew most rapidly at 28 vs. 42 days of age, subcutaneous and abdominal fat were deposited rapidly, but intramuscular fat content decreased. At the same time, the abundance of liver proteins regarding the tricarboxylic acid cycle and oxidoreduction increased significantly. This study provides a profile of the fat deposition and liver proteome for Muscovy duck. Abstract Liver is responsible for 90% of lipid synthesis in poultry; thus, it plays an important role in the growth of Muscovy ducks, which have a high fat deposition ability in a time-dependent manner. Therefore, male Muscovy ducks at 14, 28, 42, and 56 days were selected for body weight (BW), carcass weight (CW), subcutaneous fat thickness (SFT), abdominal fat weight (AFW), intramuscular fat content (IMF), and breast muscle fiber (BMF) diameter and density determination. Two-dimensional electrophoresis (2-DE) combining liquid chromatography linked to tandem mass spectrometry (LC-MS/MS) was used to analyze proteomic changes in liver at each stage. The BW, CW, AFW, SFT, and BMF diameter and density were significantly increased, while IMF content was significantly decreased at 28 to 42 days of age (p < 0.05). There were 57 differentially abundant protein (DEP) spots representing 40 proteins identified among the ages, in which 17, 41 and 4 spots were differentially abundant at 14 vs. 28, 28 vs. 42, and 42 vs. 56, respectively. Gene Ontology enrichment analysis found that DEPs were mostly enriched in the oxidation-reduction process, carboxylic acid metabolism, etc. Protein–protein interaction showed that catalase (CAT), triosephosphate isomerase (TPI), and protein disulfide-isomerase (PDI) were the key proteins responsible for the growth of Muscovy duck. In conclusion, 28 to 42 days of age is the crucial period for Muscovy ducks, and the ability of metabolism and antioxidants were significantly enhanced in liver.
Collapse
|
7
|
Mozduri Z, Lo B, Marty-Gasset N, Masoudi AA, Arroyo J, Morisson M, Canlet C, Bonnet A, Bonnefont CMD. Application of Metabolomics to Identify Hepatic Biomarkers of Foie Gras Qualities in Duck. Front Physiol 2021; 12:694809. [PMID: 34305649 PMCID: PMC8293271 DOI: 10.3389/fphys.2021.694809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Foie gras is a traditional dish in France that contains 50 to 60% of lipids. The high-fat content of the liver improves the organoleptic qualities of foie gras and reduces its technological yield at cooking (TY). As the valorization of the liver as foie gras products is strongly influenced by the TY, classifying the foie gras in their potential technological quality before cooking them is the main challenge for producers. Therefore, the current study aimed to identify hepatic biomarkers of foie gras qualities like liver weight (LW) and TY. A group of 120 male mule ducks was reared and overfed for 6–12 days, and their livers were sampled and analyzed by proton nuclear magnetic resonance (1H-NMR). Eighteen biomarkers of foie gras qualities were identified, nine for LW and TY, five specific to LW, and four specific to TY. All biomarkers were strongly negatively correlated to the liver weights and positively correlated to the technological yield, except for the lactate and the threonine, and also for the creatine that was negatively correlated to foie gras technological quality. As a result, in heavy livers, the liver metabolism was oriented through a reduction of carbohydrate and amino acid metabolisms, and the plasma membrane could be damaged, which may explain the low technological yield of these livers. The detected biomarkers have been strongly discussed with the metabolism of the liver in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Zohre Mozduri
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Bara Lo
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Julien Arroyo
- ASSELDOR, Station d'Expérimentation Appliquée et de Démonstration sur l'oie et le Canard, La Tour de Glane, Coulaures, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Cécile Canlet
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom Platform, MetaToul-Me, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | |
Collapse
|
8
|
Lo B, Marty-Gasset N, Pichereaux C, Bravo C, Manse H, Domitile R, Rémignon H. Proteomic Analysis of Two Weight Classes of Mule Duck " foie gras" at the End of an Overfeeding Period. Front Physiol 2020; 11:569329. [PMID: 33041868 PMCID: PMC7528769 DOI: 10.3389/fphys.2020.569329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
The weight of the liver is one of the important selection criteria in the quality of “foie gras”. This factor is highly variable despite the fact that individuals are reared, overfed and slaughtered in the same way. In this study, we performed an analysis of the proteome profile of two weight classes of light (between 550 and 599 g) and heavy (more than 700 g) livers. For the analysis of the proteic extracts, a liquid chromatographic analysis coupled with mass spectrometry was carried out. In low-weight livers, aerobic energy metabolism, protein metabolism and lipid metabolism oriented toward export and beta-oxidation were overexpressed. On the contrary, high weight livers were characterized by anaerobic energy metabolism and a more active protein catabolism associated with cell apoptosis and reorganization of the cell structure.
Collapse
Affiliation(s)
- Bara Lo
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | - Nathalie Marty-Gasset
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | - Carole Pichereaux
- Centre National de la Recherche Scientifique, Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité, Toulouse, France.,Centre National de la Recherche Scientifique, Université de Toulouse - UPS, Institut de Pharmacologie et Biologie Structurale, Toulouse, France
| | - Céline Bravo
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | - Hélène Manse
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | | | - Hervé Rémignon
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| |
Collapse
|