1
|
Mushtaq M, Ali B, Ali M, BiBi N, Raut R, Suliman GM, Swelum AA. Different levels of single-strain probiotic (Bacillus subtilis) with proteolytic enzyme (serratiopeptidase) can be used as an alternative to antibiotic growth promoters in broiler. Poult Sci 2024; 103:103400. [PMID: 38295498 PMCID: PMC10844863 DOI: 10.1016/j.psj.2023.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
In the current study, the proteolytic enzyme (serratiopeptidase) was used to enhance the efficacy of Bacillus subtilis (B. subtilis) probiotic as a growth promotor in broiler chicken. The effects of serratiopeptidase on the efficacy of different levels of B. subtilis as a growth promotor in broiler chicks were evaluated regarding growth performance traits, villus histomorphometric characterization, and intestinal microbiota count. Day-old broiler chicks (n = 120) were allocated into 4 groups having 3 replicates/group. In the control group (C), the basal diet was kept without supplementation. In treatment groups (P100, P150, and P200), the basal diet was supplemented with 100, 150, and 200 mg probiotics, respectively besides 30 mg proteolytic enzyme in the 3 treated groups for 4 wk. The performance parameters were significantly affected by the supplementation of serratiopeptidase to the B. subtilis treatment groups. Feed intake (FI), body weight gain (WG), feed conversion ratio (FCR), and dressing percent were significantly improved in the treatment groups as compared to the control group. Significantly, the lowest feed intake was recorded for the P200 group. The highest body weight gain and dressing percentage were recorded for the P200 group. An improved FCR was recorded in the P200 group (1.7) as compared to the control group. The different levels of B. subtilis supplemented with serratiopeptidase revealed significant improvements (P<0.05) in the morphology of the intestine by showing increases in villus height and width and crypt depth of the small intestine. The microbial count revealed that E. coli and salmonella colonies were significantly reduced in the P200 group as compared to the control and other treatment groups. In conclusion, the supplementation of B. subtilis with serratiopeptidase as a growth promoter in broiler chicks significantly improved the overall performance, and intestinal health and reduced microbial load contributing to optimizing the performance of broiler chickens. The greatest improvement was observed in the P200 group fed with B. subtilis as a probiotic and serratiopeptidase enzyme (200 mg:30 mg).
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Baseerat Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Majid Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Neelam BiBi
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rabin Raut
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 3720 USA
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Sun H, Gu T, Li G, Chen L, Tian Y, Xu W, Zeng T, Lu L. Effects of Compound Probiotics on Growth Performance, Serum Biochemical and Immune Indices, Antioxidant Capacity, and Intestinal Tissue Morphology of Shaoxing Duck. Animals (Basel) 2022; 12:ani12223219. [PMID: 36428446 PMCID: PMC9686755 DOI: 10.3390/ani12223219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
This experiment was conducted to investigate the effects of compound probiotics on growth performance, serum biochemical and immune indices, antioxidant capacity, and the intestinal tissue morphology of Shaoxing ducks. A total of 640 1-day-old healthy Shaoxing ducks of similar body weight were randomly divided into two treatment groups with eight replicates each and forty ducks per replicate. The ducks were fed a basal diet (Ctrl) or a basal diet supplemented with 0.15% compound probiotics (CP) for 125 d. The results revealed that the live body weight (BW; day 85 and 125) and the average daily gain (ADG; 28−85 and 85−125 d) of the CP group were significantly higher (p < 0.05) than those of the Ctrl group. In the CP group, total protein and total cholesterol contents were significantly increased (p < 0.05) on days 28 and 85, while triglyceride and low-density lipoprotein contents were significantly decreased (p < 0.05) on day 85. Furthermore, interferon-γ content was significantly increased (p < 0.05) in the CP group on days 28, 85, and 125. Interleukin-2 content was significantly increased (p < 0.05) in the CP group on days 28 and 85. Interleukin-4 content was significantly decreased (p < 0.05) in the CP group on day 85. Moreover, in the CP group, superoxide dismutase content was significantly increased (p < 0.05) on days 28 and 125, and glutathione peroxidase content was significantly increased (p < 0.05) on day 125. The crypt depth (CD) in the duodenum of the CP group was significantly decreased (p < 0.05) on days 28 and 125, whereas the villus height (VH) in the jejunum of the CP group was significantly increased (p < 0.05) on days 85 and 125. The VH/CD ratio in the ileum of the CP group was significantly increased (p < 0.05) on days 28 and 85. The VH in the ileum of the CP group was significantly increased (p < 0.05) on day 28. The CD in the ileum of the CP group was significantly decreased (p < 0.05) on day 28. In summary, the compound probiotics improved the growth performance, increased serum biochemical and immune indices, increased antioxidant capacity, and improved the intestinal tissue morphology of Shaoxing ducks.
Collapse
|
3
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|
4
|
Khabirov A, Avzalov R, Tsapalova G, Andreeva A, Basharov A. Effect of a probiotic containing lactobacilli and bifidobacteria on the metabolic processes, litter microbiocenosis, and production indicators of broiler Pekin ducklings. Vet World 2022; 15:998-1005. [PMID: 35698502 PMCID: PMC9178582 DOI: 10.14202/vetworld.2022.998-1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The use of antibiotics is prohibited in poultry feeding in many countries worldwide, which has resulted in the emergence of antibiotic-resistant bacteria. Therefore, probiotic supplements are a good alternative in these circumstances. Probiotics, including Bifidobacterium adolescentis and Lactobacillus acidophilus, can reduce the development of resistance and stimulate the growth of broiler ducklings. This study aimed to evaluate properties of the probiotic supplement containing these bacteria. Materials and Methods: We studied the response of broiler ducklings to the addition of a dietary probiotic supplement containing lactobacilli and bifidobacteria until they reached 7 weeks of age. All birds participating in the experiment received probiotic supplements on days 1-7, 15-21, 29-35. The state of the ducklings was assessed on day 21. At the age of 21 and 42 days, 4-5 ml of blood was drawn from the wing vein of 10 randomly selected birds (5 in each group). Blood samples were analyzed for total protein, concentration of glucose, hemoglobin, calcium and inorganic phosphorus, as well as the number of erythrocytes and leukocytes. Enzymatic calorimetric method, molybdate method, and haemocytometry according to Nutt method and haemoglobin cyanide method were used to analyze blood samples. Results: The live weight of the experimental ducklings increased by 5.0%, showing a positive effect of probiotic supplementation, whereas their feed consumption per kilogram of weight gain decreased. Their hemoglobin content and red blood cell count increased. Although the number of lactobacilli and bifidobacteria increased, the number of Escherichia coli cells decreased 2.15-fold (p<0.05). The addition of the probiotic supplement contributed to improving the digestibility of protein and fat by 1.6%, fiber by 3.4%, and nitrogen-free extractive substances by 4.7%. The broiler ducklings had high meat quality indicators, including dressing percentage, which increased by 5.4%, whereas the fat content decreased by 1.3%. Conclusion: The introduction of the probiotic supplement in the diet of broiler ducklings improved their growth indicators and increased the number of lactobacilli and bifidobacteria while decreasing the number of E. coli cells in the intestine. It not only improved the meat quality but also increased the profit from $0.392 per bird in the control group to $0.472 per bird in the experimental group. Therefore, this probiotic supplement is a good alternative for raising ducklings in large enterprises and farms. The study limitations may be that the results are only applicable to broiler ducklings. The use of lactobacilli may yield different results in other bird breeds or broiler ducklings in different age groups.
Collapse
Affiliation(s)
- Ayrat Khabirov
- Department of Physiology, Biochemistry and Feeding Animals, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," Ufa, Russian Federation
| | - Ruzil Avzalov
- Department of Physiology, Biochemistry and Feeding Animals, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," Ufa, Russian Federation
| | - Gulnara Tsapalova
- Department of Physiology, Biochemistry and Feeding Animals, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," Ufa, Russian Federation
| | - Alexandra Andreeva
- Department of Physiology, Biochemistry and Feeding Animals, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," Ufa, Russian Federation
| | - Almaz Basharov
- Department of Physiology, Biochemistry and Feeding Animals, Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," Ufa, Russian Federation
| |
Collapse
|
5
|
Rivera-Pérez W, Barquero-Calvo E, Chaves AJ. Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poult Sci 2021; 100:101372. [PMID: 34364120 PMCID: PMC8353351 DOI: 10.1016/j.psj.2021.101372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The global poultry trend toward the more responsible use of antibiotics is becoming recurrent and has demanded the need to generate new natural alternatives. Probiotics have gained importance as an option to use as growth promoters. This study aimed to evaluate Bacillus subtillis QST713 as a substitute for an antibiotic growth promoter (BMD). A total of 150 male broilers were assigned to three dietary treatments: 1) control diet (CO), 2) control diet + 500 g/t of BMD (AGP), and 3) control diet + 100 g/t of B. subtilis QST713 (PB), respectively. Each treatment was monitored for 5 wk for the productive variables: body weight, accumulated feed consumption, food conversion, and European efficiency factor. At the end of each week, fresh fecal samples were cultured and quantified for E. coli, Enterococcus spp., and Lactobacillus spp. At the end of the trial, blood samples were analyzed for hemogram and intestinal samples (anterior portion) for histomorphometry. The data were statistically analyzed with an analysis of variance and subjected to a least significant difference test (Tukey). The zootechnical yields were similar in the AGP and PB groups (P ˃ 0.05); both superior to the control group. In the hematological profiles, no difference was observed between the experimental groups. E. coli and Enterococcus counts were significantly lower (P ˂ 0.05), and Lactobacillus counts were significantly (P ˂ 0.05) higher in the PB group, relative to CO and AGP groups. No differences (P ˃ 0.05) were found in bacterial counts between the CO and AGP groups. The intestinal mucosa and villi in the PB group were significantly (P ˂ 0.05) longer and with less deeper crypts than CO and AGP groups. We conclude that B. subtillis QST713, used at the suggested commercial dose (100 g/ton), is an effective growth-promoting alternative to BMD that modulates the microbiota and intestinal architecture, thus producing zootechnical yields consistent with BMD.
Collapse
Affiliation(s)
- Walter Rivera-Pérez
- Tropical Diseases Research Program, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica; Avian Pathology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica
| | - Elías Barquero-Calvo
- Tropical Diseases Research Program, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica
| | - Aida J Chaves
- Avian Pathology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica.
| |
Collapse
|
6
|
Wang W, Zhang H, Yu X, Zhang S. Study of antagonism between some intestinal bacteria with high-speed micellar electrokinetic chromatography. Electrophoresis 2021; 42:1196-1201. [PMID: 33580526 DOI: 10.1002/elps.202000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
In this work, high-speed micellar electrokinetic chromatography with LIF detection was applied to study the antagonism between three intestinal bacteria, Escherichia coli (E. coli), Bacillus licheniformis (B. licheniformis) and Bacillus subtilis (B. subtilis). The fluorescent derivatization for the bacteria was performed by labeling the bacteria with FITC. In a high-speed capillary electrophoresis (HSCE) device, the three bacteria could be completely separated within 4 min under the separation mode MEKC. The BGE was 1 × TBE containing 30 mM SDS and 1.5 × 10-5 g/mL polyethylene oxide. The limits of detection for E. coli, B. licheniformis and B. subtilis were 2.80 × 106 CFU/mL, 1.60 × 106 CFU/mL and 1.90 × 106 CFU/mL respectively. Lastly, the method was applied to investigate the antagonism between the three bacteria. The bacteria were mixed and cultured for 7 days. The samples were separated and determined every day to study the interaction between bacteria. The results showed that B. licheniformis and B. subtilis could not inhibit each other, but they could effectively inhibit the reproduction of E. coli. The method developed in this work was quick, sensitive and convenient, and it had great potential in the application of antagonism study for bacteria.
Collapse
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Huimin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Xiufeng Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
7
|
Krueger LA, Gaydos TA, Sims MD, Spangler DA. Avi-Lution supplemented at 250 or 500 mg per kg in feed decreases the abundance of Salmonella Enteritidis in ceca of layer pullets. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|