1
|
Malchow J, Molenaar R, Giersberg MF, de Jong IC, Kemp B, Krause ET, Schrader L. Effect of on-farm hatching and elevated platforms on behavior and performance in fast-growing broiler chickens. Poult Sci 2025; 104:104910. [PMID: 39983526 PMCID: PMC11889558 DOI: 10.1016/j.psj.2025.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025] Open
Abstract
Alternative hatching systems compared to conventional hatchery-hatched systems showed positive effects on welfare of broiler chickens. In order to investigate an additional positive effect of elevated platforms, two hatching methods (on-farm [OH] vs. hatchery-hatched [HH]) and two environments from the first day onwards (with elevated platforms [enriched] vs. without elevated platforms [control]) were combined and investigated using a 2 × 2 factorial design. In three consecutive trials, the combination of the four treatments were repeated eight times each. One thousand six hundred fast-growing broiler chickens (Ross strain) were reared in a mixed-sex system. Chick quality was assessed at hatch and performance parameters and behavior parameters were measured during the entire rearing period of 35 d. For the statistical analysis, LME's and GLMM's were used depending on the data. In general, hatching system and housing environment showed no interaction. There were no differences in hatchability between treatment groups (p=0.93). However, OH chickens showed a higher body weight throughout the rearing period (all p<0.001). OH chickens had a lower body temperature than HH chickens (p=0.002) during the rearing period. OH chickens compared to HH chickens tended to show a higher usage of elevated platform at night (p=0.07). The enriched groups showed higher activity (p<0.0001), but no improved walking ability (p=0.82) than the control groups. The differences in performance and behavior were low between hatching systems and may be related to the short period of feed and water deprivation and the lack of long commercial processing and transportation procedures in the HH treatment group in our experiment. Overall, both on-farm hatching and elevated platforms can lead to an improvement of performance and activity parameters and, thus, an improvement of certain aspects of animal welfare but both factors do not seem to interact with each other.
Collapse
Affiliation(s)
- Julia Malchow
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany.
| | - Roos Molenaar
- Adaption Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Mona F Giersberg
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht, University Utrecht, The Netherlands
| | - Ingrid C de Jong
- Department Animal Welfare and Health, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Bas Kemp
- Adaption Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| |
Collapse
|
2
|
Hanna H, Richmond A, Lavery U, O’Connell NE. Health, welfare and lifetime performance implications of alternative hatching and early life management systems for broiler chickens. PLoS One 2024; 19:e0303351. [PMID: 38889125 PMCID: PMC11185489 DOI: 10.1371/journal.pone.0303351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
Broiler chicks are typically hatched in a hatchery, exposing them to handling and transportation before being placed on the farm where (dry) feed and water is offered. This study compared different early life systems, including: (1) typical practice (control), (2) typical practice with wet feed offered upon placement, (3) access to water at the hatchery, (4) access to feed and water at the hatchery, (5) hatching on the farm. Birds were placed in groups of approximately 500 (day 0), with six replicates per treatment. Measures were taken between placement and slaughter (day 39) and included chick quality (navel and red hock scores), body weight, feed conversion ratio (FCR), mortality, gait and litter conditions scores, and behavioral and post-mortem assessments. There were no apparent treatment effects on gait score, play behaviour or novel object test measures, and no consistent effects on litter quality. Chick quality was only evaluated in Treatments 1 and 5 and was numerically worse in Treatment 5. Body weight at slaughter was lowest in Treatment 2, and did not differ between other treatments. Overall FCR was lowest (best) in Treatment 1, and did not differ between other treatments. There was higher overall mortality in Treatments 3 and 4 than in other treatments apart from Treatment 5. Treatment 4 appeared to promote feeding behaviour upon placement, and Treatment 5 birds rested the most, significantly more than in Treatment 2. Treatment 5 birds had the greatest bursa weights, and tibial dyschondroplasia appeared worse in Treatment 4. There were no consistent effects of early access to feed and water on gastrointestinal tract weight measures at slaughter. Compared to the control, there were few benefits in providing feed and/or water in the hatchery, or wet feed. Some benefits of in-house hatching were found, but negative effects were also apparent.
Collapse
Affiliation(s)
- Hugo Hanna
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, Northern Ireland, United Kingdom
- Moy Park Ltd, Portadown, Craigavon, Northern Ireland, United Kingdom
| | - Anne Richmond
- Moy Park Ltd, Portadown, Craigavon, Northern Ireland, United Kingdom
| | - Ursula Lavery
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, Northern Ireland, United Kingdom
- Moy Park Ltd, Portadown, Craigavon, Northern Ireland, United Kingdom
| | - Niamh E. O’Connell
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Jerab JG, Chantziaras I, Van Limbergen T, Van Erum J, Boel F, Hoeven E, Dewulf J. Antimicrobial Use in On-Farm Hatching Systems vs. Traditional Hatching Systems: A Case Study. Animals (Basel) 2023; 13:3270. [PMID: 37893994 PMCID: PMC10603674 DOI: 10.3390/ani13203270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
On-farm hatching is a relatively new method in the broiler industry, in which fertilized broiler eggs are transported to the farms at the stage of 17-19 days of incubation. Once hatched, the broiler chicks have direct access to feed and water. Previous studies have shown on-farm hatching to increase animal welfare and intestinal development. However, no studies have yet aimed to quantify and compare the antimicrobial use in on-farm hatched flocks with that of traditionally hatched flocks. In this study, information on antimicrobial use (AMU) was collected from 211 Belgian conventional broiler farms, including data from 2244 traditionally hatched flocks and 227 on-farm (NestBorn) hatched flocks. On-farm hatched flocks had significantly (p < 0.001) more antimicrobial-free flocks (n = 109, 48.01%) compared to traditional flocks (n = 271, 12.08%) and a 44% lower (p < 0.01) treatment incidence (TI) at flock level (TI 8.40 vs. TI 15.13). Overall, the farms using traditional hatching had 5.6 times (95% CI 3.6-8.7) higher odds to use antimicrobials than the farms using on-farm hatching. Treated on-farm hatched flocks received three times less lincomycin-spectinomycin (linco-spectin) and less (routine) treatments at the start of the production round. However, both traditional and on-farm flocks experienced outbreaks later in the production round. These results show that on-farm hatching can contribute to the reduction in antimicrobial use in conventional broiler production.
Collapse
Affiliation(s)
- Julia G. Jerab
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| | | | - Johan Van Erum
- Pehestat BV, Dwarsstraat 5, 3560 Lummen, Belgium; (T.V.L.); (J.V.E.)
| | - Filip Boel
- Belgabroed, Steenweg op Hoogstraten 141, 2330 Merksplas, Belgium;
| | | | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| |
Collapse
|
4
|
Giersberg MF, Molenaar R, de Jong IC, De Baere K, Kemp B, Brand HVD, Rodenburg TB. Group level and individual activity of broiler chickens hatched in 3 different systems. Poult Sci 2023; 102:102706. [PMID: 37126966 PMCID: PMC10172891 DOI: 10.1016/j.psj.2023.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Information on the behavior of chickens hatched in different systems is limited and inconsistent across different studies. Changes in broiler activity can be measured automatically and continuously. The aim of this study was to assess the effects of 3 hatching systems on flock activity using a commercial tracking system, and to compare these findings to individual activity measured under experimental conditions. As this experiment was part of a larger study, it was possible to investigate the effects of vaccination on individual activity. In study 1, flock activity was measured in chickens that hatched either conventionally in the hatchery (HH), in a system which provided nutrition in the hatcher (HF), or on-farm (OH). Chickens were reared in 2 batches, in 12 pens/batch (1,155 animals/pen). One camera recorded top-view images of each pen. A daily activity index (moved pixels/total pixels × 100) was calculated by automated image analysis. In study 2, individual activity was measured under experimental conditions using an ultra-wideband (UWB) system. Chickens from the 3 hatching systems were reared in 3 pens (1 pen/treatment, 30 animals/pen). At d14, UWB-tags were attached to 5 chickens/pen, which tracked the distances moved (DM). In study 1, group level activity showed a significant age × hatching system interaction (F8,752= 5.83, P < 0.001). HH and HF chickens showed higher activity levels than OH chickens in wk 1, 4, and 5. In wk 3, higher activity levels were measured in HH compared to HF, and in HF compared to OH pens. In contrast, HH chickens in small groups in study 2 showed lower DM than HF and OH chickens in wk 3 (P < 0.001). DM did not differ between treatments before vaccination, however, thereafter, HH chickens showed longer DM, whereas HF and OH chickens moved less. The results indicate that hatching system affected broiler activity at specific ages. Effects found at flock level could not be reproduced by individual measurements in study 2, although stocking density was comparable.
Collapse
Affiliation(s)
- Mona F Giersberg
- Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80163, 3508 TD Utrecht, The Netherlands.
| | - Roos Molenaar
- Adaptation Physiology Group, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Ingrid C de Jong
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Kris De Baere
- Experimental Poultry Centre, Province of Antwerp, Geel 2440, Belgium
| | - Bas Kemp
- Adaptation Physiology Group, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - T Bas Rodenburg
- Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80163, 3508 TD Utrecht, The Netherlands; Adaptation Physiology Group, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
5
|
Effects of hatching system on chick quality, welfare and health of young breeder flock offspring. Poult Sci 2023; 102:102448. [PMID: 36641993 PMCID: PMC9846018 DOI: 10.1016/j.psj.2022.102448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alternative hatching systems have been developed for broiler chickens to provide immediately feed and water after hatch and reduce the number or severity of early life stressors. Besides beneficial effects of these alternative hatching systems on chick quality and performance, broiler health and welfare may be positively affected as well. Especially offspring from young broiler breeder flocks may benefit, as they have been shown to be more sensitive to preturbations than offspring from older breeder flocks. This study evaluated effects of hatching systems on chick quality, health and welfare of young breeder flock offspring, using 3 different hatching systems: conventional hatchery-hatched (HH), hatchery-fed (HF), and on-farm hatching (OH). A total of 24 pens were used in a completely randomized block design, with 8 pens per hatching system and 30 chickens per pen. Chick quality at hatch and performance until 35 d of age was improved in the HF and OH compared to HH treatment, but only minor effects were found on the welfare indicators: footpad dermatitis, hock burn, cleanliness, skin lesion and gait score. No effect was observed on the dynamics of a humoral immune response after NCD vaccination, given at d 0 and 14 of age, as no differences between NCD titers were found at d 18. Animals were vaccinated with a live attenuated infectious bronchitis vaccine virus (IBV) at d 28 to address treatment related differences to disease resilience. The expressions of inflammation and epithelial integrity related genes in the trachea and histo-pathological changes in the trachea were examined at 3 d after vaccine administration. No differences between treatment groups were observed. Although beneficial effects of HF and OH systems were found for young breeder flock offspring on chick quality at hatch and body weight posthatch, only one effect of alternative hatching systems on welfare and health indicators were found. No effect of hatching system on humoral immune response or disease resilience was found.
Collapse
|
6
|
EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt CG, Herskin MS, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Tiemann I, de Jong I, Gebhardt‐Henrich SG, Keeling L, Riber AB, Ashe S, Candiani D, García Matas R, Hempen M, Mosbach‐Schulz O, Rojo Gimeno C, Van der Stede Y, Vitali M, Bailly‐Caumette E, Michel V. Welfare of broilers on farm. EFSA J 2023; 21:e07788. [PMID: 36824680 PMCID: PMC9941850 DOI: 10.2903/j.efsa.2023.7788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
This Scientific Opinion considers the welfare of domestic fowl (Gallus gallus) related to the production of meat (broilers) and includes the keeping of day-old chicks, broiler breeders, and broiler chickens. Currently used husbandry systems in the EU are described. Overall, 19 highly relevant welfare consequences (WCs) were identified based on severity, duration and frequency of occurrence: 'bone lesions', 'cold stress', 'gastro-enteric disorders', 'group stress', 'handling stress', 'heat stress', 'isolation stress', 'inability to perform comfort behaviour', 'inability to perform exploratory or foraging behaviour', 'inability to avoid unwanted sexual behaviour', 'locomotory disorders', 'prolonged hunger', 'prolonged thirst', 'predation stress', 'restriction of movement', 'resting problems', 'sensory under- and overstimulation', 'soft tissue and integument damage' and 'umbilical disorders'. These WCs and their animal-based measures (ABMs) that can identify them are described in detail. A variety of hazards related to the different husbandry systems were identified as well as ABMs for assessing the different WCs. Measures to prevent or correct the hazards and/or mitigate each of the WCs are listed. Recommendations are provided on quantitative or qualitative criteria to answer specific questions on the welfare of broilers and related to genetic selection, temperature, feed and water restriction, use of cages, light, air quality and mutilations in breeders such as beak trimming, de-toeing and comb dubbing. In addition, minimal requirements (e.g. stocking density, group size, nests, provision of litter, perches and platforms, drinkers and feeders, of covered veranda and outdoor range) for an enclosure for keeping broiler chickens (fast-growing, slower-growing and broiler breeders) are recommended. Finally, 'total mortality', 'wounds', 'carcass condemnation' and 'footpad dermatitis' are proposed as indicators for monitoring at slaughter the welfare of broilers on-farm.
Collapse
|
7
|
de Jong IC, Schokker D, Gunnink H, van Wijhe M, Rebel JMJ. Early life environment affects behavior, welfare, gut microbiome composition, and diversity in broiler chickens. Front Vet Sci 2022; 9:977359. [PMID: 36213407 PMCID: PMC9534479 DOI: 10.3389/fvets.2022.977359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to identify whether early-life conditions in broiler chickens could affect their behavior and welfare, and whether or not this was associated with an altered gut microbiome composition or diversity. Broilers were tested in a 2 x 2 factorial design with hatching conditions [home pen (OH) or at the hatchery (HH)] and enrichment (dark brooder (EE) or no brooder (NE) until 14 days of age) as factors (N = 6 per treatment combination). Microbiota composition was measured in the jejunum on days (d) 7, 14, and 35 and in pooled fecal samples on day 14. A novel environment test (NET) was performed on days 1 and 11, and the behavior was observed on days 6, 13, and 33. On day 35, composite asymmetry was determined and footpad dermatitis and hock burn were scored. In their home pen, HH showed more locomotion than OH (P = 0.05), and NE were sitting more and showed more comfort behavior than EE at all ages (P <0.001 and P = 0.001, respectively). On days 6 and 13 NE showed more eating and litter pecking while sitting, but on day 33 the opposite was found (age*enrichment: P = 0.05 and P <0.01, respectively). On days 1 and 11, HH showed more social reinstatement in the NET than OH, and EE showed more social reinstatement than NE (P <0.05). Composite asymmetry scores were lower for EE than NE (P <0.05). EE also had less footpad dermatitis and hock burn than NE (P <0.001). Within OH, NE had a more diverse fecal and jejunal microbiome compared to EE on day 14 (feces: observed richness: P = 0.052; jejunum: observed richness and Shannon: P <0.05); the principal component analysis (PCA) showed differences between NE and EE within both HH and OH in fecal samples on day 14, as well as significant differences in bacterial genera such as Lactobacillus and Lachnospiraceae (P <0.05). On day 35, PCA in jejunal samples only showed a trend (P = 0.068) for differences between NE vs. EE within the OH. In conclusion, these results suggest that especially the dark brooder affected the behavior and had a positive effect on welfare as well as affected the composition and diversity of the microbiome. Whether or not the behavior was modulated by the microbiome or vice versa remains to be investigated.
Collapse
Affiliation(s)
- Ingrid C. de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Ingrid C. de Jong
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Henk Gunnink
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Maudia van Wijhe
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna M. J. Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| |
Collapse
|
8
|
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Viltrop A, Winckler C, Mitchell M, Vinco LJ, Voslarova E, Candiani D, Mosbach‐Schulz O, Van der Stede Y, Velarde A. Welfare of domestic birds and rabbits transported in containers. EFSA J 2022; 20:e07441. [PMID: 36092767 PMCID: PMC9449994 DOI: 10.2903/j.efsa.2022.7441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This opinion, produced upon a request from the European Commission, focuses on transport of domestic birds and rabbits in containers (e.g. any crate, box, receptacle or other rigid structure used for the transport of animals, but not the means of transport itself). It describes and assesses current transport practices in the EU, based on data from literature, Member States and expert opinion. The species and categories of domestic birds assessed were mainly chickens for meat (broilers), end-of-lay hens and day-old chicks. They included to a lesser extent pullets, turkeys, ducks, geese, quails and game birds, due to limited scientific evidence. The opinion focuses on road transport to slaughterhouses or to production sites. For day-old chicks, air transport is also addressed. The relevant stages of transport considered are preparation, loading, journey, arrival and uncrating. Welfare consequences associated with current transport practices were identified for each stage. For loading and uncrating, the highly relevant welfare consequences identified are handling stress, injuries, restriction of movement and sensory overstimulation. For the journey and arrival, injuries, restriction of movement, sensory overstimulation, motion stress, heat stress, cold stress, prolonged hunger and prolonged thirst are identified as highly relevant. For each welfare consequence, animal-based measures (ABMs) and hazards were identified and assessed, and both preventive and corrective or mitigative measures proposed. Recommendations on quantitative criteria to prevent or mitigate welfare consequences are provided for microclimatic conditions, space allowances and journey times for all categories of animals, where scientific evidence and expert opinion support such outcomes.
Collapse
|
9
|
Effect of hatching system and prophylactic antibiotic use on serum levels of intestinal health biomarker diamine oxidase in broilers at an early age. Animal 2022; 16:100493. [DOI: 10.1016/j.animal.2022.100493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023] Open
|
10
|
Wijnen HJ, van der Pol CW, van Roovert-Reijrink IAM, De Smet J, Lammers A, Kemp B, van den Brand H, Molenaar R. Low Incubation Temperature During Late Incubation and Early Feeding Affect Broiler Resilience to Necrotic Enteritis in Later Life. Front Vet Sci 2021; 8:784869. [PMID: 34970618 PMCID: PMC8713642 DOI: 10.3389/fvets.2021.784869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
Resilient animals can cope with environmental disturbances in life with minimal loss of function. Resilience can be enhanced by optimizing early-life conditions. In poultry, eggshell temperature (EST) during incubation and early feeding are two early-life conditions that are found to alter neonatal chick quality as well as immune response in later life. However, whether these early-life conditions affect disease resilience of chickens at later ages has never been studied yet. Hence, we studied the effects of EST [(37.8°C (control) or 36.7°C (lower)] during late incubation (≥embryonic days 17-19.5) and feeding strategy after hatch [immediately (early feeding) or 51-54 h delayed (delayed feeding)] on later-life broiler resilience in a 2 × 2 factorial arrangement. At hatch, 960 broilers of both sexes from a 54-week-old Ross breeder flock were equally divided over 32 pens (eight replicate pens per treatment combination) and grown for 6 weeks. Necrotic enteritis was induced by a single inoculation of Eimeria spp. at d 21 and repeated Clostridium perfringens inoculation (3×/d) during d 21-25. Mortality and body weight (BW) gain were measured daily during d 21-35 as indicators of resilience. Additionally, disease morbidity was assessed (gut lesions, dysbacteriosis, shedding of oocysts, footpad dermatitis, and natural antibody levels in blood). Results showed a lack of interaction between EST and feeding strategy for the vast majority of the variables. A lower EST resulted in lower BW gain at d 5 and 8 post Eimeria inoculation (P = 0.02) and more Eimeria maxima oocysts in feces at d 8 post Eimeria inoculation compared to control EST (P < 0.01). Early feeding tended to lower mortality compared to delayed feeding (P = 0.06), but BW gain was not affected by feeding strategy. Morbidity characteristics were hardly affected by EST or feeding strategy. In conclusion, a few indications were found that a lower EST during late incubation as well as delayed feeding after hatch may each impair later-life resilience to necrotic enteritis. However, these findings were not manifested consistently in all parameters that were measured, and conclusions are drawn with some restraint.
Collapse
Affiliation(s)
- Hendrikus J. Wijnen
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Research Department, HatchTech B.V., Veenendaal, Netherlands
| | | | | | - Joren De Smet
- Clinical Research Organization, Poulpharm BVBA, Izegem, Belgium
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Roos Molenaar
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|