1
|
Zhang Z, Zhang P, He F, Hou Y, Geng X, Xu R, Li R, Tian Y, Li W, Sun G, Jiang R, Liu X, Han R, Li G, Kang X, Li D. Integrated analysis of tyrosine-induced MiRNA and mRNA expression profiles in melanocytes reveals the regulatory role of miR-1560-3p in melanin deposition in Xichuan black-bone chickens. BMC Genomics 2025; 26:348. [PMID: 40197172 PMCID: PMC11974055 DOI: 10.1186/s12864-025-11543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Tyrosine is a prerequisite for melanin biosynthesis and plays a crucial role in the growth and development of melanocytes, but the underlying mechanism is still unclear. In our previous research, we added 10- 9-10- 6 mol/L tyrosine to the melanocytes of black-bone chickens and found that 10- 6 mol/L tyrosine significantly increased the tyrosinase content in melanocytes. METHODS In this study, melanocytes from Xichuan black-bone chickens were used as research objects, 10- 6 mol/L tyrosine was added for transcriptome sequencing. By analyzing miRNA and mRNA expression profiles, the miRNA-mRNA network was constructed, the targeting relationship was demonstrated by double luciferase reporting experiments, and the influence of tyrosine-mediated miRNA-mRNA network on melanin deposition was verified by constructing overexpression and interference vectors. RESULTS We found that tyrosine promoted the proliferation and migration of melanocytes, and expression profile analysis identified 57 differentially expressed mRNAs (DEGs) and 19 differentially expressed miRNAs (DEMs). Fifty miRNA‒mRNA target gene pairs were identified via coexpression network analysis of the DEGs and the DEMs that were predicted to target various genes. Notably, VIP gene was reported to be involved in the development and deposition of melanoma cells. The binding of VIP to miR-1560-3p was further validated by a dual-luciferase reporter assay. In addition, test confirmed that miR-1560-3p inhibited the proliferation and migration of melanocytes and reduced the tyrosinase content. In conclusion, we found that tyrosine may affects melanin deposition in Xichuan black-bone chickens by affecting the miR-1560-3p-VIP axis. The results of this study provide experimental evidence for elucidating the mechanism of tyrosine in melanin deposition in black-bone chickens, and may serve as a reference for future investigations.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Fumin He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yingdong Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiaowen Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Ruilong Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Ruiting Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Li P, Yang Y, Ning B, Tian Y, Wang L, Zeng W, Lu H, Zhang T. Transcriptome analysis of multiple tissues and identification of tissue-specific genes in Lueyang black-bone chicken. Poult Sci 2025; 104:104986. [PMID: 40068570 PMCID: PMC11932687 DOI: 10.1016/j.psj.2025.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Systematically constructing a gene expression atlas of poultry tissues is critically important for advancing poultry research and production. In this study, the gene expression profiles of 9 major tissues of Lueyang black-bone chicken were successfully constructed by transcriptome sequencing technology. Through in-depth analysis of transcriptome data, a total of 10 housekeeping genes (HKGs) and 87 marker genes (MGs) were identified. Furthermore, by applying weighted gene co-expression network analysis (WGCNA), we delineated nine tissue-specific modules and 90 hub genes, offering novel insights into the regulatory networks underlying tissue-specific gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that HKGs were predominantly involved in maintaining fundamental cellular functions, with significant enrichment in pathways related to oxidative phosphorylation, cell cycle regulation, and DNA replication. MGs were closely associated with tissue-specific physiological functions, providing valuable insights into the molecular mechanisms governing tissue functionality. Notably, through multidimensional validation, EEF1A1 and FTH1 were confirmed to exhibit cross-tissue expression stability, establishing them as ideal reference genes for multi-tissue qPCR experiments in chickens. Additionally, we successfully identified tissue marker genes, including TNNT2, PIT54, SFTPC, and PGM1, which are specific to the heart, liver, lung, and breast muscle, respectively. The results of this study have important scientific value in expanding reference gene selection and elucidating tissue-specific molecular mechanisms, and provide solid theoretical support and technical guidance for poultry breeding improvement and production practice optimization.
Collapse
Affiliation(s)
- Pan Li
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Yufei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Bo Ning
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Yingmin Tian
- School of Mathematics and Computer Science, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| |
Collapse
|
3
|
Zhu Y, Yakhkeshi S, Yusuf A, Zhang X. Frontiers and emerging topics in a century of Silkie chicken research: insights, challenges, and opportunities. Poult Sci 2025; 104:105030. [PMID: 40101517 PMCID: PMC11960645 DOI: 10.1016/j.psj.2025.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Silkie chickens are a unique breed renowned for their pigmentation, food and medicine homology properties, and distinctive appearance, making them highly valuable in exhibitions, as pets, in medicinal cuisine, and as a model for melanin research. Despite their vast potential, the growing volume of publications and patents related to Silkie chicken highlights the critical need for systematic organization, summarization, and analysis of this wealth of information. For the first time, this study employs bibliometric tools to summarize and analyze 114 years of research on Silkie chicken. Our study demonstrates that academic studies primarily focus on their nutritional value, melanin production, and genetic mechanisms, while patents emphasize food formulations, breeding methods, and purebred identification. Although there has been significant growth in publications and citations since 2001, international collaboration remains limited. This study presents the need for integrated and multidisciplinary research to unlock the full potential of Silkie chicken and provides a foundational framework for future studies and applications.
Collapse
Affiliation(s)
- Yaojun Zhu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Anas Yusuf
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Huang R, Deng X, Wu J, Luo W. Genetic and metabolic factors influencing skin yellowness in yellow-feathered broilers. Poult Sci 2025; 104:104534. [PMID: 39561557 PMCID: PMC11617219 DOI: 10.1016/j.psj.2024.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The degree of yellowness of the skin is an important factor affecting the market popularity and sales price of yellow-feathered broilers. Despite its commercial importance, the specific pigments and genetic mechanisms involved remain unclear. This study identified lutein as the primary carotenoid in the skin and established serum lutein concentration as a molecular marker for predicting skin yellowness in carcasses. Through RNA sequencing of broilers with varying yellowness, we identified key genes like CYP26A1, CYP1B1, CYP2C18, CYP2W1, HSD17B2, AOX1, KMO, PLIN1, and RET, which may regulate carotenoid absorption and deposition. Additionally, a single nucleotide polymorphism in the CYP1A1 gene was significantly associated with skin yellowness in Ma-Huang chickens. Overall, this study examined the primary pigment types that influence the skin yellowness of yellow-feathered broilers, emphasizing that lutein can serve as a molecular marker for skin yellowness and providing insights into the regulatory factors that regulate skin yellowness. These findings provide essential theoretical support for the breeding of skin color traits in yellow-feathered broilers.
Collapse
Affiliation(s)
- Rongqin Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xianqi Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Leng D, Yang M, Miao X, Huang Z, Li M, Liu J, Wang T, Li D, Feng C. Dynamic changes in the skin transcriptome for the melanin pigmentation in embryonic chickens. Poult Sci 2025; 104:104210. [PMID: 39693959 PMCID: PMC11720608 DOI: 10.1016/j.psj.2024.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 12/20/2024] Open
Abstract
Dermal hyperpigmentation stands out among the various skin pigmentation phenotypes in chickens, where most other pigmentation variants affect feather color and patterning predominantly. Despite numerous black chicken breeds worldwide, only a select few exhibit comprehensive black pigmentation, which encompasses the skin, meat, flesh, and bones. The process of skin melanin pigmentation is intricate and develops successively. Historically, research has concentrated primarily on specific developmental points or stages, but fewer studies have examined the entire transcriptome across the timeline of the development of the embryo integument. In our investigation, we undertook the sequencing of chicken embryo skin samples from d 4 to d 13 of incubation. Our results showed that melanoblasts continued to migrate from E4 to the epidermis until E12. Beginning with E6, melanin was synthesized and transferred to epidermal cells and feather follicles in large quantities, and genes such as DCT, TYR, TYRP1, and MITF played a key role in this process, which is significantly different from that of white-skinned chickens. There were 854 differentially expressed genes between E7 and E8. At this stage, melanocytes formed dendritic forms and transferred melanin to keratinocytes, while the dorsal skin became visibly dark. In addition, CDH3, which is a core factor involved in a variety of biological processes, may have an important impact on skin melanin pigmentation. Collectively, our findings unveiled a phased relationship between the canonical pathway and the noncanonical pathway from E4 to E13. These analyses illuminated the gene regulatory mechanism and provided foundational data that pertained to pigmentation in chickens.
Collapse
Affiliation(s)
- Dong Leng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Maosen Yang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Zhiying Huang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Mengmeng Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jia Liu
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Deng C, Li M, Wang T, Duan W, Guo A, Ma G, Yang F, Dai F, Li Q. Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken. Br Poult Sci 2024; 65:652-664. [PMID: 38922310 DOI: 10.1080/00071668.2024.2367228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
Collapse
Affiliation(s)
- C Deng
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, China
| | - T Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| | - W Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - A Guo
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - G Ma
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Yang
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Q Li
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co. Ltd., Kunming, China
| |
Collapse
|
7
|
Ji G, Zhang M, Ju X, Liu Y, Shan Y, Tu Y, Zou J, Shu J, Li H, Zhao W. Dynamic Transcriptome Profile Analysis of Mechanisms Related to Melanin Deposition in Chicken Muscle Development. Animals (Basel) 2024; 14:2702. [PMID: 39335292 PMCID: PMC11428610 DOI: 10.3390/ani14182702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The pectoral muscle is an important component of skeletal muscle. The blackness of pectoral muscles can directly affect the economic value of black-boned chickens. Although the genes associated with melanogenesis in mammals and birds have been thoroughly investigated, only little is known about the key genes involved in muscle hyperpigmentation during embryonic development. Here, we analyzed melanin deposition patterns in the pectoral muscle of Yugan black-boned chickens and compared differentially expressed genes (DEGs) between the muscles of Wenchang (non-black-boned chickens) and Yugan black-boned chickens on embryonic days 9, 13, 17, and 21. Melanin pigments were found to gradually accumulate in the muscle fibers over time. Using RNA-seq, there were 40, 97, 169, and 94 genes were identified as DEGs, respectively, between Yugan black-boned chicken muscles and Wenchang chickens at embryonic day 9, 13, 17, and 21 stages (fold change ≥2.0, false discovery rate (FDR) < 0.05). Thirteen DEGs, such as MSTRG.720, EDNRB2, TYRP1, and DCT, were commonly identified among the time points observed. These DEGs were mainly involved in pigmentation, melanin biosynthetic and metabolic processes, and secondary metabolite biosynthetic processes. Pathway analysis of the DEGs revealed that they were mainly associated with melanogenesis and tyrosine metabolism. Moreover, weighted gene co-expression network analysis (WGCNA) was used to detect core modules and central genes related to melanogenesis in the muscles of black-boned chickens. A total of 24 modules were identified. Correlation analysis indicated that one of them (the orange module) was positively correlated with muscle pigmentation traits (r > 0.8 and p < 0.001). Correlations between gene expression and L* values of the breast muscle were investigated in Yugan and Taihe black-boned chickens after hatching. The results confirmed that EDNRB2, GPNMB, TRPM1, TYR, and DCT expression levels were significantly associated with L* values (p < 0.01) in black-boned chickens (p < 0.05). Our results suggest that EDNRB2, GPNMB, TRPM1, TYR, and DCT are the essential genes regulating melanin deposition in the breast muscle of black-boned chickens. MSTRG.720 is a potential candidate gene involved in melanin deposition in the breast muscles of Yugan black-boned chickens.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Weidong Zhao
- Taihe Fengsheng Agricultural and Livestock Co., Ltd., Ji’an 343732, China
| |
Collapse
|
8
|
Chen C, Li J, Li Z, Nong Y, Wang J, Wang Z, Li Z. Whole-genome resequencing reveals melanin deposition candidate genes of Luning chicken. BMC Genomics 2024; 25:858. [PMID: 39271972 PMCID: PMC11401408 DOI: 10.1186/s12864-024-10774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Melanin in the black-bone chicken's body is considered the material basis for its medicinal effects and is an economically important trait. Therefore, improving the melanin content is a crucial focus in the breeding process of black-bone chickens. Luning chickens are black-bone chickens, with black beaks, skin, and meat. To investigate the genetic diversity and molecular mechanisms of melanin deposition in Luning chickens, we conducted whole-genome resequencing to analyze their breeding history and identify candidate genes influencing their black phenotype, along with transcriptome sequencing of dorsal skin tissues of male Luning chickens. RESULTS Population structure analysis revealed that Luning chickens tend to cluster independently and are closely related to Tibetan chickens. Runs of homozygosity analysis suggested potential inbreeding in the Luning chicken and Tibetan chicken population. By combining genetic differentiation index (Fst) and nucleotide diversity (θπ) ratios, we pinpointed selected regions associated with melanin deposition. Gene annotation identified 540 genes with the highest Fst value in LOC101750371 and LOC121108313, located on the 68.24-68.58 Mb interval of chromosome Z. Combining genomic and transcriptomic data, we identified ATP5E, EDN3, and LOC101750371 as candidate genes influencing skin color traits in black-bone chickens. CONCLUSIONS This study characterized the evolutionary history of Luning chickens and preliminarily excavated candidate genes influencing the genetic mechanism of pigmentation in black-bone chickens, providing valuable insights for the study of animal melanin deposition.
Collapse
Affiliation(s)
- Chuwen Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jie Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhiyi Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yi Nong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiayan Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China.
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
9
|
Zhang M, Xu X, Chen Y, Wei C, Zhan S, Cao J, Guo J, Dai D, Wang L, Zhong T, Zhang H, Li L. Transcriptomic and Metabolomic Analyses Reveal Molecular Regulatory Networks for Pigmentation Deposition in Sheep. Int J Mol Sci 2024; 25:8248. [PMID: 39125816 PMCID: PMC11311981 DOI: 10.3390/ijms25158248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Domestic animals have multiple phenotypes of skin and coat color, which arise from different genes and their products, such as proteins and metabolites responsible with melanin deposition. However, the complex regulatory network of melanin synthesis remains to be fully unraveled. Here, the skin and tongue tissues of Liangshan black sheep (black group) and Liangshan semi-fine-wool sheep (pink group) were collected, stained with hematoxylin-eosin (HE) and Masson-Fontana, and the transcriptomic and metabolomic data were further analyzed. We found a large deposit of melanin granules in the epidermis of the black skin and tongue. Transcriptome and metabolome analysis identified 744 differentially expressed genes (DEGs) and 443 differentially expressed metabolites (DEMs) between the pink and black groups. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses revealed the DEGs and DEMs were mainly enriched in the pathways of secondary metabolic processes, melanin biosynthesis processes, melanin metabolism processes, melanosome membranes, pigment granule membranes, melanosome, tyrosine metabolism, and melanogenesis. Notably, we revealed the gene ENSARG00020006042 may be a family member of YWHAs and involved in regulating melanin deposition. Furthermore, several essential genes (TYR, TYRP1, DCT, PMEL, MLANA, SLC45A2) were significantly associated with metabolite prostaglandins and compounds involved in sheep pigmentation. These findings provide new evidence of the strong correlation between prostaglandins and related compounds and key genes that regulate sheep melanin synthesis, furthering our understanding of the regulatory mechanisms and molecular breeding of pigmentation in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Perini F, Cendron F, Lasagna E, Cassandro M, Penasa M. Genomic insights into shank and eggshell color in Italian local chickens. Poult Sci 2024; 103:103677. [PMID: 38593544 PMCID: PMC11004871 DOI: 10.1016/j.psj.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Eggshell and shank color in poultry is an intriguing topic of research due to the roles in selection, breed recognition, and environmental adaptation. This study delves into the genomics foundations of shank and eggshell pigmentation in Italian local chickens through genome-wide association studies analysis to uncover the mechanisms governing these phenotypes. To this purpose, 483 animals from 20 local breeds (n = 466) and 2 commercial lines (n = 17) were considered and evaluated for shank and eggshell color. All animals were genotyped using the Affymetrix Axiom 600 K Chicken Genotyping Array. As regards shank color, the most interesting locus was detected on chromosome Z, close to the TYRP1 gene, known to play a key role in avian pigmentation. Additionally, several novel loci and genes associated with shank pigmentation, skin pigmentation, UV protection, and melanocyte regulation were identified (e.g., MTAP, CDKN2A, CDKN2B). In eggshell, fewer significant loci were identified, including SLC7A11 and MITF on chromosomes 4 and 12, respectively, associated with melanocyte processes and pigment synthesis. This comprehensive study shed light on the genetic architecture underlying shank and eggshell color in Italian native chicken breeds, contributing to a better understanding of this phenomenon which plays a role in breed identification and conservation, and has ecological and economic implications.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy.
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06121, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| |
Collapse
|
11
|
Liu Y, Li G, Guo Z, Zhang H, Wei B, He D. Transcriptome analysis of sexual dimorphism in dorsal down coloration in goslings. BMC Genomics 2024; 25:505. [PMID: 38778258 PMCID: PMC11110362 DOI: 10.1186/s12864-024-10394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Zhanbao Guo
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | - Huiling Zhang
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Baozhi Wei
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China.
| |
Collapse
|
12
|
Aboelhassan DM, Darwish HR, Mansour H, Abozaid H, Ghaly IS, Radwan HA, Hassan ER, Farag IM. Polymorphisms and expressions of ADSL, MC4R and CAPN1 genes and their effects on economic traits in Egyptian chicken breeds. Mol Biol Rep 2023; 51:4. [PMID: 38071695 PMCID: PMC10710965 DOI: 10.1007/s11033-023-08999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023]
Abstract
In recent years, strategic plans for poultry production have emphasized quantitative traits, particularly body weight and carcass traits (meat yield), in response to overpopulation challenges. Candidate genes such as adenylosuccinate lyase (ADSL), melanocortin-4-receptor (MC4R), and calpain 1 (CAPN1) have played vital roles in this context due to their associations with muscle growth and body composition. This study aims to investigate the influence of polymorphisms and gene expressions of the aforementioned genes on body weight (BW), growth rate (GR), breast weight (BrW), and thigh weight (TW) across four distinct chicken breeds: Fayoumi, Matrouh, Mamourah, and Leghorn. The use of PCR-SSCP analysis revealed genetic polymorphisms through the identification of various patterns (genotypes) within the three examined genes. The ADSL, MC4R, and CAPN1 genes exhibited five, three, and two different genotypes, respectively. These polymorphisms displayed promising connections with enhancing economically significant production traits, particularly BW, BrW and TW. Furthermore, gene expression analyses were conducted on breast and thigh tissues obtained from the chicken breeds at 60 days of age, where ADSL and MC4R exhibited a noteworthy up-regulation in Fayoumi and Matrouh breeds, and down-regulation in Mamourah and Leghorn. In contrast, CAPN1 expression decreased across most breeds with a slight increase noted in Fayoumi breed. In conclusion, this investigation underscores the substantial impact of ADSL, MC4R, and CAPN1 genes on economically important production traits within Egyptian domestic chicken breeds. Consequently, these genes emerge as significant molecular markers, holding potential utility in avian selection and breeding programs aimed at enhancing productive performance.
Collapse
Affiliation(s)
- Dalia M Aboelhassan
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33st El Bohouth, Dokki, Giza, 12622, Egypt.
| | - Hassan R Darwish
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33st El Bohouth, Dokki, Giza, 12622, Egypt
| | - Hayam Mansour
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33st El Bohouth, Dokki, Giza, 12622, Egypt
| | - Hesham Abozaid
- Department of Animal Production, Agricultural and Biology Institute, National Research Centre, Giza, 12622, Egypt
| | - Inas S Ghaly
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33st El Bohouth, Dokki, Giza, 12622, Egypt
| | - Hasnaa A Radwan
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33st El Bohouth, Dokki, Giza, 12622, Egypt
| | - Eman R Hassan
- Department of Poultry Disease, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Ibrahim M Farag
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33st El Bohouth, Dokki, Giza, 12622, Egypt
| |
Collapse
|
13
|
Dobson JL, Pike TW, Gonzalez-Rodriguez J, Soulsbury CD. Identifying and locating carotenoids in supra-orbital combs of male black grouse (Lyurus tetrix) using Raman and transmission electron microscopy: A histological study using rehydrated tissue samples. J Morphol 2023; 284:e21652. [PMID: 37990765 DOI: 10.1002/jmor.21652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023]
Abstract
Colourful signals have long been implicated as indicators of individual quality in animals. Bare-skin signals are an understudied aspect of avian colouration compared with plumage studies, despite displaying rapid changes in size and colour in response to different environmental or physiological stressors. Even fewer studies have focused on the underlying histology of these structures and the importance this plays in the resulting skin colour. Using the Black Grouse (Lyrurus tetrix), we identified the underlying structure of individual dermal spikes, which make up the red supra-orbital comb (a known integumentary signal of male quality), and highlight visual structural differences between combs of different sizes. In addition, we used Raman spectroscopy to indicate the presence of carotenoids within the tissue, something that had previously only been inferred through characteristic reflectance patterns. An increased understanding of the structural basis of colour of featherless parts of the skin opens up exciting new avenues for interpreting the information content of integumentary signals.
Collapse
Affiliation(s)
- Jessica L Dobson
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, Brayford Pool, UK
| | - Thomas W Pike
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, Brayford Pool, UK
| | - Jose Gonzalez-Rodriguez
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln, Brayford Pool, UK
| | - Carl D Soulsbury
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, Brayford Pool, UK
| |
Collapse
|
14
|
Zi X, Ge X, Zhu Y, Liu Y, Sun D, Li Z, Liu M, You Z, Wang B, Kang J, Dou T, Ge C, Wang K. Transcriptome Profile Analysis Identifies Candidate Genes for the Melanin Pigmentation of Skin in Tengchong Snow Chickens. Vet Sci 2023; 10:vetsci10050341. [PMID: 37235424 DOI: 10.3390/vetsci10050341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Tengchong Snow chickens are one of the most precious, black-boned chickens in Yunnan province and usually produce black meat. However, we found a small number of white meat traits in the chicken population during feeding. In order to determine the pattern of melanin deposition and the molecular mechanism of formation in the Tengchong Snow chicken, we measured the luminance value (L value) and melanin content in the skin of black meat chickens (Bc) and white meat chickens (Wc) using a color colorimeter, ELISA kit, and enzyme marker. The results showed that the L value of skin tissues in black meat chickens was significantly lower than that of white meat chickens, and the L value of skin tissues gradually increased with an increase in age. The melanin content of skin tissues in black meat chickens was higher than that of white meat chickens, and melanin content in the skin tissues gradually decreased with an increase in age, but this difference was not significant (p > 0.05); the L value of skin tissues in black meat chickens was negatively correlated with melanin content, and the correlation coefficient was mostly above -0.6. In addition, based on the phenotypic results, we chose to perform the comparative transcriptome profiling of skin tissues at 90 days of age. We screened a total of 44 differential genes, of which 32 were upregulated and 12 were downregulated. These DEGs were mainly involved in melanogenesis, tyrosine metabolism and RNA transport. We identified TYR, DCT, and EDNRB2 as possible master effector genes for skin pigmentation in Tengchong Snow black meat chickens through DEGs analysis. Finally, we measured the mRNA of TYR, DCT, MC1R, EDNRB2, GPR143, MITF, and TYRP1 genes through a quantitative real-time polymerase chain reaction (qPCR) and found that the mRNA of all the above seven genes decreased with increasing age. In conclusion, our study initially constructed an evaluation system for the black-boned traits of Tengchong Snow chickens and found key candidate genes regulating melanin deposition, which could provide an important theoretical basis for the selection and breeding of black-boned chickens.
Collapse
Affiliation(s)
- Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- Shenzhen Hualong Sunda Information Technology Co., Ltd., Shenzhen 518000, China
| | - Yixuan Zhu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dawei Sun
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengqian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengrong You
- Zhaotong Animal Husbandry and Veterinary Technology Extension Station, Zhaotong 657000, China
| | - Bo Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
15
|
Ling X, Wang Q, Zhang J, Zhang G. Genome-Wide Analysis of the KLF Gene Family in Chicken: Characterization and Expression Profile. Animals (Basel) 2023; 13:ani13091429. [PMID: 37174466 PMCID: PMC10177326 DOI: 10.3390/ani13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The kruppel-like factor (KLF) gene family is a group of transcription factors containing highly conserved zinc-finger motifs, which play a crucial role in cell proliferation and differentiation. Chicken has been widely used as a model animal for analyzing gene function, however, little is known about the function of the KLF gene family in chickens. In this study, we performed genome-wide studies of chicken KLF genes and analyzed their biological and expression characteristics. We identified 13 KLF genes from chickens. Our phylogenetic, motif, and conserved domain analyses indicate that the KLF gene family has remained conserved through evolution. Synteny analysis showed the collinear relationship among KLFs, which indicated that they had related biomolecular functions. Interaction network analysis revealed that KLFs worked with 20 genes in biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that KLF2 was involved in Apelin and Forkhead Box O (FOXO) signaling pathways. Moreover, qPCR showed that 13 KLF genes were expressed in the nine selected tissues and displayed various gene expression patterns in chickens. RNA-seq showed that KLF3 and KLF10 genes were differentially expressed in the normal and high-fat diet fed groups, and KLF4, KLF5, KLF6, KLF7, KLF9, KLF12, and KLF13 genes were differentially expressed between undifferentiated and differentiated chicken preadipocytes. Besides, RNA-seq also showed that KLF genes displayed different expression patterns in muscle at 11 and 16 embryonic days old, and in 1-day-old chickens. These results indicated that the KLF genes were involved in the development of muscle and fat in chickens. Our findings provide some valuable reference points for the subsequent study of the function of KLF genes.
Collapse
Affiliation(s)
- Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Qifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
16
|
Zhang P, Cao Y, Fu Y, Zhu H, Xu S, Zhang Y, Li W, Sun G, Jiang R, Han R, Li H, Li G, Tian Y, Liu X, Kang X, Li D. Revealing the Regulatory Mechanism of lncRNA-LMEP on Melanin Deposition Based on High-Throughput Sequencing in Xichuan Chicken Skin. Genes (Basel) 2022; 13:2143. [PMID: 36421818 PMCID: PMC9690664 DOI: 10.3390/genes13112143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 08/27/2023] Open
Abstract
The therapeutic, medicinal, and nourishing properties of black-bone chickens are highly regarded by consumers in China. However, some birds may have yellow skin (YS) or light skin rather than black skin (BS), which causes economic losses every year. Long noncoding RNAs (lncRNAs) are widely present in living organisms, and they perform various biological functions. Many genes associated with BS pigmentation have been discovered, but the lncRNAs involved and their detailed mechanisms have remained untested. We detected 56 differentially expressed lncRNAs from the RNA-seq of dorsal skin (BS versus YS) and found that TCONS_00054154 plays a vital role in melanogenesis by the combined analysis of lncRNAs and mRNAs. We found that the full length of the TCONS_00054154 sequence was 3093 bp by RACE PCR, and we named it LMEP. Moreover, a subcellular localization analysis identified that LMEP is mainly present in the cytoplasm. After the overexpression and the interference with LMEP, the tyrosinase content significantly increased and decreased, respectively (p < 0.05). In summary, we identified the important lncRNAs of chicken skin pigmentation and initially determined the effect of LMEP on melanin deposition.
Collapse
Affiliation(s)
- Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanfang Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yawei Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Huiyuan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuohui Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
17
|
Fan Y, Wu X, Li Y, Han H, Zhang Y, Yang J, Liu Y. Effect of polymorphisms in the 5’-flanking sequence of MC1R on feather color in Taihang chickens. Poult Sci 2022; 101:102192. [PMID: 36283141 PMCID: PMC9593195 DOI: 10.1016/j.psj.2022.102192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
MC1R plays an important role in the regulation of the formation, transfer, and deposition of melanin in animals and is important for determining coat color. Many studies have reported on single nucleotide polymorphisms (SNPs) in the coding sequence of MC1R. However, few studies have investigated the polymorphisms in the 5’-flanking sequence of MC1R. In this study, we sequenced 2000 bp of the 5’-flanking sequence of MC1R in 300 Taihang chickens with brown feathers (MTH) and 300 Taihang chickens with black feathers (HTH). The sequencing results showed that 4 SNPs (MC1R g.18838722 G > C, g.18838624 T > C, g.18838694 G > A, and g.18838624 C > T) were located in the 5’-flanking sequence of MC1R between the MTH and HTH groups. Association analysis showed that there was a significant correlation between the 4 SNPs and feather color in Taihang chickens. The correlation between MC1R g.18838624 T >C and feather color of Taihang chicken was 100%, of which the CC (E1) genotype is MTH and the TT (E2) genotype is HTH. Furthermore, there was a significant correlation between MC1R g.18838624 T > C and egg production at 302 d. E1 (184.14 ± 0.674) was significantly higher than that in E2 (181.75 ± 0.577) (P < 0.05). Luciferase reporter assays were used to detect the transcriptional activity of MC1R with different SNP genotypes. The results showed that the luciferase activity of E2 was significantly higher than that of E1 (P < 0.05). In addition, transcription factor-binding site predictions showed that E2 creates a new binding site for ZEB1. RT‒qPCR results revealed that the expression of MC1R in E2 was significantly lower than that in E1 (P < 0.05), and the expression of ZEB1 in E2 was significantly higher than that in E1 (P < 0.05). Overexpression and shRNA experiments demonstrated that ZEB1 regulates the expression of MC1R in DF1 cells. ZEB1 has a negative regulatory effect on the transcriptional activity of MC1R; it inhibits the expression of MC1R and affects the feather color of Taihang chickens. This study provides new insight into the molecular mechanism of feather color formation and the transcriptional regulation of MC1R in Taihang chickens.
Collapse
|
18
|
The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods 2022; 11:foods11131870. [PMID: 35804685 PMCID: PMC9265630 DOI: 10.3390/foods11131870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
This study investigated the effects of dietary supplementation with different levels of purple corn pigment (PCP) on the growth performance, blood biochemical indices, meat quality, muscle amino acids, and fatty acids of growing chickens. A total of 288 (8 weeks of age) growing Chishui black-bone chickens (body weight, 940 ± 80 g; mean ± standard deviation) were randomly divided into 4 groups using a completely randomized design. The four diet groups were as follows: (1) control, basal diet; (2) treatment 1, treatment 2, and treatment 3, which were basal diet with 80, 160, and 240 mg/kg PCP, respectively. The results showed that compared with the control group, the feeding of anthocyanins significantly (p < 0.05) increased the average daily feed intake and average daily gain in chickens. Moreover, chickens receiving 80 mg/kg PCP significantly increased (p < 0.05) plasma total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, high-density lipoprotein cholesterol, and albumin concentrations relative to the control group. For meat quality, dietary supplementation with PCP significantly (p < 0.05) reduced the drip loss and water loss rate in breast muscle. Additionally, chickens receiving PCP tended to increase (p < 0.05) the levels of most individual amino acids, essential amino acids, and umami amino acids in the muscle. Specifically, the addition of 80 mg/kg PCP significantly improved (p < 0.05) total polyunsaturated fatty acids in chicken muscle. Accordingly, the consumption of anthocyanin-rich PCP by the growing chickens had the potential to increase the growth performance, enhance antioxidant and immune capacities, increase meat quality, and improve essential and umami amino acids as well as unsaturated fatty acids in the muscle.
Collapse
|