1
|
Gaona rodríguez CA, Barragán HB, Vásquez aguilar NC, Trejo AM, Ramírez MC, Hernández CR, Rodríguez HG, Sáenz EO, Hernández escareño JJ. Effect of Replacing Inorganic Copper, Zinc, and Selenium with Chelated Minerals on Productive Performance, Nutrient Utilization, Tibia Morphology, and Intestinal Histology of Growing Japanese Quail ( Coturnix japonica). J Poult Sci 2025; 62:2025003. [PMID: 39830137 PMCID: PMC11733153 DOI: 10.2141/jpsa.2025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
This study evaluated the impact of replacing inorganic mineral sources of Cu, Zn, and Se with chelated organic minerals (OM) on performance, nutrient and mineral utilization rates, and intestinal morphometry in growing Japanese quails (Coturnix japonica). A total of 150 nine-day-old quails were randomly assigned to receive one of the following diets over 4 weeks: CTRL (100% inorganic minerals), OM33 (replacement of 33% inorganic minerals), OM67 (replacement of 67% inorganic minerals), and OM100 (100% organic minerals). Quails fed the OM67 diet exhibited higher (P < 0.05) viability, daily weight gain, and live weight than the other groups, with no significant difference in feed intake or feed efficiency across treatments. The utilization rates of Cu and Fe were lower in the OM33 group. The CTRL group presented the lowest tibial weight (P < 0.05). Growing quails fed the OM67 diet contained the highest intestinal villi in the duodenum, jejunum, and ileum. In conclusion, the partial replacement (up to 67%) of inorganic mineral with OM in the diet of growing quails can enhance their productive performance and intestinal histological traits.
Collapse
Affiliation(s)
- Carlos A. Gaona rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Agronomía,
Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral. Escobedo, NL, México
| | - Hugo Bernal Barragán
- Universidad Autónoma de Nuevo León, Facultad de Agronomía,
Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral. Escobedo, NL, México
| | - Nydia C. Vásquez aguilar
- Universidad Autónoma de Nuevo León, Facultad de Agronomía,
Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral. Escobedo, NL, México
| | - Adriana Morales Trejo
- Universidad Autónoma de Baja California, Instituto de
Ciencias Agrícolas, Álvaro Obregón S/N, Colonia Nueva, CP 21100, Mexicali, BC,
México
| | - Miguel Cervantes Ramírez
- Universidad Autónoma de Baja California, Instituto de
Ciencias Agrícolas, Álvaro Obregón S/N, Colonia Nueva, CP 21100, Mexicali, BC,
México
| | - Cecilia Ramírez Hernández
- Universidad Autónoma de Nuevo León, Facultad de Medicina
Veterinaria y Zootecnia, Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral.
Escobedo, NL, México
| | - Humberto González Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias
Forestales, Carretera Nacional No. 85, Cd. Victoria – Monterrey, km 145, CP 67700,
Linares, NL, México
| | - Emilio Olivares Sáenz
- Universidad Autónoma de Nuevo León, Facultad de Agronomía,
Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral. Escobedo, NL, México
| | - Jesús J. Hernández escareño
- Universidad Autónoma de Nuevo León, Facultad de Medicina
Veterinaria y Zootecnia, Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral.
Escobedo, NL, México
| |
Collapse
|
2
|
Li L, Ma M, Zuo G, Xiao J, Chen J, He X, Song Z. Effect of manganese amino acid complexes on growth performance, meat quality, breast muscle and bone development in broilers. Br Poult Sci 2024; 65:582-594. [PMID: 38994893 DOI: 10.1080/00071668.2024.2346640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 07/13/2024]
Abstract
1. This study was conducted to investigate the effects of dietary supplementation of manganese (Mn) amino acid complexes on growth performance, Mn deposition, meat quality, breast muscle and bone development of broilers.2. A total of 504, one-day-old male Arbor Acres broilers were randomly divided into seven treatments; control diet (CON; basal diet, no extra Mn addition), manganese diet (MnN as Numine®-Mn; CON + 40, 80, 120 or 160 mg Mn/kg), manganese-S group (MnS; CON + 120 mg Mn/kg as MnSO4·H2O), manganese-A diet (MnA as Mn from hydrolysed feather meal; CON + 40 mg Mn/kg as MnA).3. There were no significant differences for average daily gain (ADG) or feed intake (ADFI) among diets during the feed phases (p > 0.05). The FCR in the starter and over the whole period were quadratically affected by dietary MnN dosage and gave the lowest FCR at 80 mg/kg (p < 0.05). The Mn content of thigh muscle, jejunum, heart, pancreas, liver and tibia increased linearly with MnN addition (p < 0.05).4. For meat quality, MnN significantly increased colour (a*), pH45 min and pH24 h, reduced shear force, drip loss and pressure loss of breast muscle (p < 0.05).5. Moreover, MnN significantly upregulated MYOD expression at d 21 and SOD expression at d 42, decreased MuRF1 and Atrogin-1 mRNA level at d 42 in breast muscle. Transcriptome analysis revealed that the regulating effect of MnN on muscle development significantly enriched signalling pathways such as adhesion, ECM-receptor, MAPK, mTOR and AMPK. Furthermore, dietary MnN significantly affected tibia length and growth plate development (p < 0.05) and promoted growth plate chondrocytes by increasing SOX-9, Runx-2, Mef2c, TGF-β, Ihh, Bcl-2 and Beclin1 and decreasing Bax and Caspase-3 (p < 0.05) expression which affect longitudinal tibial development.6. In conclusion, Mn amino acid complexes could improve growth performance, tissue Mn deposition, breast muscle development, meat quality and bone development.
Collapse
Affiliation(s)
- L Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - M Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - G Zuo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
- Technical R&D Department, Beijing Deyuanshun Biotechnology Co, Ltd, Beijing, China
| | - J Xiao
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - J Chen
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - X He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - Z Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| |
Collapse
|
3
|
Helbawi E, Abd El-Latif SA, Toson MA, Banach A, Mohany M, Al-Rejaie SS, Elwan H. Impacts of Biosynthesized Manganese Dioxide Nanoparticles on Antioxidant Capacity, Hematological Parameters, and Antioxidant Protein Docking in Broilers. ACS OMEGA 2024; 9:9396-9409. [PMID: 38434868 PMCID: PMC10905714 DOI: 10.1021/acsomega.3c08775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Using green tomato extract, a green approach was used to synthesize manganese oxide nanoparticles (MnO2NPs). The synthesis of MnO2NPs was (20.93-36.85 nm) confirmed by energy-dispersive X-ray (EDX), scanning and transmission electron microscopy (SEM and TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-vis) analyses. One hundred fifty-day-old Arbor Acres broiler chicks were randomly divided into five groups. The control group received a diet containing 60 mg Mn/kg (100% NRC broiler recommendation). The other four groups received different levels of Mn from both bulk MnO2 and green synthesized MnO2NPs, ranging from 66 to 72 mg/kg (110% and 120% of the standard level). Each group comprised 30 birds, in three replicates of 10 birds each. Generally, the study's results indicate that incorporating MnO2NPs as a feed additive had no negative effects on broiler chick growth, antioxidant status, and overall physiological responses. The addition of MnO2NPs, whether at 66 or 72 mg/kg, led to enhanced superoxide dismutase (SOD) activity in both serum and liver tissues of the broiler chicks. Notably, the 72 mg MnO2NPs group displayed significantly higher SOD activity compared to the other groups. The study was further justified through docking. High throughput targeted docking was performed for proteins GHS, GST, and SOD with MnO2. SOD showed an effective binding affinity of -2.3 kcal/mol. This research sheds light on the potential of MnO2NPs as a safe and effective feed additive for broiler chicks. Further studies are required to explore the underlying mechanisms and long-term effects of incorporating MnO2NPs into broiler feed, to optimize broiler production and promote its welfare.
Collapse
Affiliation(s)
- Esraa
S. Helbawi
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - S. A. Abd El-Latif
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - Mahmoud A. Toson
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - Artur Banach
- Department
of Biology and Biotechnology of Microorganisms, Institute of Biological
Sciences, Faculty of Medicine, The John
Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamada Elwan
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| |
Collapse
|
4
|
Chen J, Yan F, Kuttappan V, Cook K, Buresh B, Roux M, Hancock D, Vázquez-Añón M. Effect of methionine and trace minerals (zinc, copper and manganese) supplementation on growth performance of broilers subjected to Eimeria challenge. Front Physiol 2022; 13:991320. [PMID: 36479344 PMCID: PMC9720122 DOI: 10.3389/fphys.2022.991320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Coccidiosis is a major intestinal challenge that causes economic loss to the broiler industry. Two battery cage studies were conducted to evaluate the effect of trace minerals, source and dose of methionine on growth performance and gut health of broilers subjected to Eimeria challenge. Experiment #1 consisted of 9 treatments of 2 × 2 × 2 factorial design + 1 arrangement with main factors of methionine (Met) sources (DL-Met vs. 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa)), total sulfur amino acid (TSAA) levels (high vs. low; ±5% of recommended level), and sources of trace minerals (TM) Zn:Cu:Mn in the form Inorganic trace minerals (ITM) in sulfates (80:20:100ppm) vs. mineral methionine hydroxy-analogue bis-chelate (MMHAC, 40:10:50ppm), each with 8 pens of 10 birds. Experiment #2 consisted of 2 treatments--ITM [ZnSO4:tribasic copper chloride (TBCC):MnSO4 110:125:120ppm] and MMHAC (Zn:Cu:Mn, 40:30:40ppm), each with 36 pens of 10 birds. All birds except for treatment 9 in experiment #1 were orally gavaged with 1x, 4x and 16x recommended dose of coccidiosis vaccine on d0, d7 and d14, respectively. Data were subjected to one-way and/or three-way ANOVA, and means were separated by Fisher's protected LSD test with significance at p ≤ 0.05. In experiment #1, factorial analysis revealed the main effects of TSAA level and TM, but not Met source. High TSAA level improved body weight and cumulative feed intake at 14, 20, and 27d. MMHAC improved body weight at 14, and 27d; feed intake at 14, 20, and 27d; and cumulative FCR at 27d vs. sulfates. One-way ANOVA analysis showed that birds fed MMHAC and high levels of TSAA regardless of Met source had similar body weight as unchallenged birds on d27. In experiment #2, MMHAC improved body weight and cumulative FCR, and reduced jejunal IL-17A gene expression on d28. In summary, in broilers subjected to Eimeria challenge, supplementation of the reduced levels of bis-chelated trace minerals MMHAC improved growth performance compared to high levels of ITM (sulfates or TBCC), which might partially result from better immune response, high levels of TSAA improved growth performance, Met source had no effect. Supplementation of both bis-chelated trace minerals MMHAC and high levels of TSAA could overcome the growth performance challenge issue due to coccidiosis.
Collapse
Affiliation(s)
- J. Chen
- Novus International Inc., St. Charles, MO, United States
| | | | | | | | | | | | | | | |
Collapse
|