1
|
Yu X, Hu Y, Li Q, Lv Y, Tang H, Wen L, Cheng Y, Chen Z, Zhang T, Wu H. Overview of various protein engineering strategies to improve the catalytic activity, thermostability, and acid/base stability of β-glucanase. Int J Biol Macromol 2025; 308:142685. [PMID: 40164248 DOI: 10.1016/j.ijbiomac.2025.142685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/02/2025]
Abstract
β-Glucan is highly valued in the food and medical industries due to its various physiological functions. However, its aqueous solution tends to have high viscosity, which negatively impacts the brewing and feed industries. By hydrolyzing β-glucosidic bonds, β-glucanase could reduce the adverse effects of β-glucan. For this reason, β-glucanase is widely utilized in the brewing and animal feed production. The limited thermal and acid stability of β-glucanase restricts its applications in industrial settings. Therefore, it is of great importance to enhance the stability of existing β-glucanases through protein engineering. This review summarizes current integrated technical methods for the molecular modification of β-glucanases, including error-prone PCR, site-saturation mutagenesis, DNA recombination, sequence alignment, N- and C-terminal modifications, surface charge optimization, intermolecular force optimization, and rigidity of flexible regions. The aim is to provide a theoretical basis and practical guidance for the further modification of β-glucanases.
Collapse
Affiliation(s)
- Xun Yu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yang Hu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Qiaoling Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Ying Lv
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Hui Tang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhang
- College of Food and Quality Engineering, Nanning University, Nanning, Guangxi 530200, China.
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
| |
Collapse
|
2
|
Yao H, Yin J, Nie S. Structural characteristics and biological activities of polysaccharides from barley: a review. Food Funct 2024; 15:3246-3258. [PMID: 38446134 DOI: 10.1039/d3fo05793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially β-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley β-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.
Collapse
Affiliation(s)
- Haoyingye Yao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
3
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Poudel I, Hodge VR, Wamsley KGS, Roberson KD, Adhikari PA. Effects of protease enzyme supplementation and varying levels of amino acid inclusion on productive performance, egg quality, and amino acid digestibility in laying hens from 30 to 50 weeks of age. Poult Sci 2023; 102:102465. [PMID: 36680862 PMCID: PMC10014340 DOI: 10.1016/j.psj.2022.102465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
An experiment was conducted to evaluate the effects of protease supplementation and reduced digestible amino acid (dAA)/ crude protein (CP) level on productive performance, AA digestibility, and egg quality parameters in Hy-Line W-36 laying hen from 30 to 50 wk of age. A total of 768 hens (12 replicates of 8 hens per treatment) were equally and randomly allocated into 8 experimental diets in a 4 × 2 factorial arrangement of dAA/CP level (100, 95, 90, and 85% of breeder recommendation) and protease (exclusion or inclusion). Protease was added at 60 g/metric ton of feed in the inclusion group. Hens were housed in raised-wire cages with a stocking density of 870 cm2/bird. The adequate (100%) diet was based on corn and soybean meal and formulated based on the digestible (d) Lys and dAAs (dMet, dThr, dTrp, dTSAA, dIle, and dVal) to meet 100% of the current management guide recommendation. Variations in dAA/CP (95, 90, and 85% diets) were accomplished by reducing the 100% dAA by 5, 10, and 15%, respectively. All diets were supplemented with phytase at 500 phytase units (FTU)/kg. Data were analyzed using PROC GLM of SAS 9.4. There was a main effect of dAA/CP level on 85% diet where it had a lower mean hen-day egg production (HDEP, P < 0.01), egg mass (EM, P < 0.01), and higher feed conversion ratio (FCR, P < 0.001). Higher egg weight (P < 0.01) was observed in 95 and 100% dAA/CP level diets. However, Haugh unit (P < 0.01) and albumen height (P < 0.01) were higher in 85 and 90% diets. The inclusion of protease reduced the feed consumption (P = 0.0247), FCR for dozens of eggs (P = 0.0049) from 30 to 49 wk of age without affecting the HDEP or EM. Protease supplementation and dAA/CP level had an effect on the apparent ileal digestibility (AID) of CP (P = 0.019), Lys (P < 0.01), Thr (P < 0.01), Trp (P = 0.017), and Val (P < 0.01). Addition of protease significantly increased egg income (P = 0.033) and return on investment (P = 0.00223) from 30 to 37 wk of age. At 38 to 50 wk of age, dAA/CP level had a significant effect on egg income (P < 0.001), feed cost (P < 0.001), and return on investment (P < 0.001). This experiment indicates that the inclusion of protease in 90 and 95% lower dAA/CP diets could help improve the digestibility of CP, and key amino acids and maintain productive performance of corn and soybean meal-based diets in Hy-Line W-36 laying hen from 30 to 50 wk of age.
Collapse
Affiliation(s)
- I Poudel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762 USA
| | - V R Hodge
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762 USA
| | - K G S Wamsley
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762 USA
| | | | - P A Adhikari
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762 USA.
| |
Collapse
|
5
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|