1
|
Wei L, Liu X, Tan Z, Zhang B, Wen C, Tang Z, Zhou Y, Zhang H, Chen Y. Chlorogenic acid mitigates avian pathogenic Escherichia coli-induced intestinal barrier damage in broiler chickens via anti-inflammatory and antioxidant effects. Poult Sci 2025; 104:105005. [PMID: 40086255 PMCID: PMC11953978 DOI: 10.1016/j.psj.2025.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on intestinal health in broilers challenged with avian pathogenic Escherichia coli (APEC). One hundred and eighty one-day-old male broiler chicks were divided into three groups with six replicates of ten chicks each for a 21-day trial. The birds in the control and APEC groups were fed a basal diet, while birds in the CGA-treated group received a basal diet supplemented with 1000 mg/kg of CGA. At 14 days, birds in the APEC and CGA groups were administered with an APEC suspension Compared with the APEC group, CGA incorporation decreased mortality and cecal Escherichia coli colonies in bacterially challenged broilers (P < 0.05). Additionally, CGA reduced the relative weight of the heart, liver, kidney, gizzard, proventriculus, and intestine, as well as serum triglyceride level and alanine aminotransferase activity in APEC-challenged broilers (P < 0.05). Supplementing CGA reduced the concentrations of interferon-γ, tumor necrosis factor-α, interleukin-1β, and/or interleukin-6 in serum, duodenum, jejunum, and/or ileum in APEC-challenged broilers presumably through the inactivation of the toll-like receptor 4/myeloid differentiation factor 88 pathway (P < 0.05). CGA administration reduced serum diamine oxidase activity and d-lactate and endotoxin concentrations, but increased the ratio between villus height and crypt depth in duodenum and jejunum of APEC-infected chickens, accompanied by the restored intestinal expression of tight junction proteins (claudin-1, claudin-2, occludin, and zonula occludens-1) and genes involved in apoptosis (B cell lymphoma-2 associated X protein, B cell lymphoma-2, and cysteine-requiring aspartate protease 9) (P < 0.05). Additionally, CGA increased superoxide dismutase, glutathione peroxidase, and catalase activities, and glutathione levels in serum and intestinal mucosa, but inhibited the accumulation of intestinal malondialdehyde in APEC-challenged broilers possibly via activating the nuclear factor-erythroid 2-related factor-2/heme oxygenase-1 pathway (P < 0.05). The results suggested that CGA alleviated APEC-induced intestinal damage in broilers by inhibiting inflammation and oxidative stress. However, its potential application in practical poultry production is contingent upon both its efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Leyi Wei
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinghuo Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zichao Tan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bingying Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhigang Tang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
2
|
Xiao Y, Ai M, Miao J, Yan S, Du Y, Zhang J, Tang C, Zhang K. Effects of chili meal supplementation on productive performance, intestinal health, and liver lipid metabolism of laying hens fed low-protein diets. Poult Sci 2025; 104:105001. [PMID: 40073638 PMCID: PMC11950995 DOI: 10.1016/j.psj.2025.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to explore the effects of chili meal (CM), a by-product of chili pepper oil extraction, on the productive performance, intestinal health, and lipid metabolism of laying hens fed low-protein (LP) diets. A total of 384 Hy-Line brown laying hens (32 weeks old) were divided into six groups: control (CON) diet with 16.5 % crude protein (CP), LP diet with 15 % CP, and LP diets supplemented with 3 %, 5 %, 7 %, and 9 % CM. Results showed that dietary CM supplementation of up to 5 % did not negatively affect the productive performance of laying hens fed LP diets. However, the groups receiving 7 % and 9 % CM exhibited a significant increase in the feed-to-egg ratio (P < 0.05). Additionally, dietary CM supplementation effectively enhanced egg yolk color in a dose-dependent manner (P < 0.05). Intestinal morphology analysis indicated that the 5 % CM group had a higher villus height-to-crypt depth ratio than the LP and 9 % CM groups (P < 0.05), with no significant differences among the other groups. Dietary supplementation with 3 %-7 % CM did not significantly affect serum and jejunal antioxidant capacity, and the 9 % CM group exhibited the highest levels of serum and jejunal malondialdehyde among the groups (P < 0.05). Dietary CM supplementation significantly increased anti-inflammatory cytokines (IL-4 and IL-10) and decreased pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum and jejunal tissue of laying hens (P < 0.05). Moreover, CM supplementation significantly altered the cecal microbiota composition in laying hens, increasing the abundance of beneficial bacteria, such as Desulfovibrio and Megamonas. Furthermore, dietary CM supplementation significantly decreased serum triglyceride levels; downregulated liver mRNA levels of ACC, FAS, and SREBP-1C/2; and upregulated the mRNA levels of ACOX1, PPAR-α, Apob, and CPT in laying hens fed LP diets. In conclusion, CM supplementation should not exceed 5 % to avoid negative impacts on performance while supporting intestinal health and lipid metabolism.
Collapse
Affiliation(s)
- Yudi Xiao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingming Ai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Junhong Miao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuhui Yan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yifan Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
3
|
Liu Y, Wang Z, Xi W, Yuan J, Zhang K, Liu H, Zhao J, Wang Y. Lactiplantibacillus plantarum improves the growth performance and meat quality of broilers by regulating the cecal microbiota and metabolites. Front Microbiol 2025; 16:1519552. [PMID: 39935642 PMCID: PMC11811115 DOI: 10.3389/fmicb.2025.1519552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Gut microbiota can digest and ferment feed into metabolites to influence the meat quality. Probiotics are used to regulate the gut microbiota. In this study, a total of 360 broilers were assigned to 4 treatments (10 broilers per cage): control (Con), low dose of Lactiplantibacillus plantarum HW1 (Lp_L), medium dose of Lp (Lp_M) and high dose of Lp (Lp_H) for a 42-day experimental period. Results showed that the Lp treatments improved the growth performance, carcass traits, breast meat quality, and also influenced the fatty acids composition, including the decrease of n-6PUFA/n-3PUFA, and the increase of C18:3n3, ∑n-3PUFA and PUFA/SFA. The lipid metabolism-related gene expressions in the liver showed that Lp treatments increased the expression of AMPK, CPT-1α, PPARα, ATGL and also decreased the expression of PPARγ, SREBP-1c, ACC, FAS, LPL, and SCD. Moreover, the abundances of gut microbiota, such as Synergistaceae and Synergistes were influenced by the Lp treatments. Functional prediction of the gut microbiota indicated that pathways, including pancreatic secretion and spliceosome were enriched by the Lp treatments. Untargeted metabolomics revealed that the Lp treatments altered the content of metabolites, such as 6-ketomyristic acid and indole-3-acetamide. These metabolites were enriched in pathways including fatty acid metabolism. Correlation analyses revealed potential interactions between growth performance and meat quality, as well as gut microbiota (Synergistes, etc.) and metabolites (6-ketomyristic acid, etc.). Overall, our data show that the Lp treatments significantly improved the growth performance, carcass traits and meat quality of broilers by regulating fatty acids, gut microbiota and metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Tapingkae W, Srinual P, Khamtavee P, Pintalerd N, Chaiyaso T, Yachai M, Kanmanee C, Lumsangkul C, Srinual O. The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets. Animals (Basel) 2025; 15:244. [PMID: 39858244 PMCID: PMC11758653 DOI: 10.3390/ani15020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Coffee cherry pulp (CCP) is a by-product of coffee bean production. CCP contains amounts of phenolic compounds that are beneficial for animals. This study evaluated the impact of coffee cherry pulp extract (CCPE) supplementation on growth performance, meat quality, carcass characteristics, serum biochemistry, cecum microbial population, intestinal morphology, and immune and antioxidant responses of broilers. Five hundred 1-day-old Ross 308 chicks were randomly assigned to five groups: a basal diet control, a basal diet with antibiotic growth promoters at 0.25 g/kg, and groups supplemented with CCPE at 0.5, 1.0, and 2.0 g/kg diet over 35 days. The results showed that throughout the experimental period, the groups supplemented with CCPE improved their final weight, average daily gain, and feed conversion ratio (p < 0.05). CCPE at 1.0 and 2.0 g/kg diet reduced the average daily feed intake (p < 0.05). In addition, CCPE at 0.5 g/kg reduced levels of serum alanine transaminase and aspartate aminotransferase (p < 0.05). Triglyceride levels were the lowest in CCPE 2.0 (p < 0.05). In the group supplemented with CCPE at all levels, the high-density lipoprotein levels significantly increased (p < 0.05). Drip loss in the breast at 24 and 48 h decreased (p < 0.05). Additionally, live weight, defeathered weight, and carcass weight significantly increased (p < 0.05). Furthermore, CCPE improved intestinal morphology, especially villus height and the villus height per crypt depth ratio (p < 0.05). CCPE supplementation also reduced pathogenic bacteria, increased Lactobacillus spp. (p < 0.05), and increased the expression of immune-related genes and antioxidant activity in the liver and intestines (p < 0.05). Therefore, the use of CCPE as an alternative to antibiotics in broiler feed improved growth performance and health parameters in broilers. It provides a sustainable and environmentally friendly option for supplementary feed, contributing to more efficient poultry nutrition management.
Collapse
Affiliation(s)
- Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (P.S.); (P.K.); (C.K.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatchari Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (P.S.); (P.K.); (C.K.)
| | - Pimporn Khamtavee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (P.S.); (P.K.); (C.K.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Naret Pintalerd
- Highland Research and Training Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thanongsak Chaiyaso
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Mongkol Yachai
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand;
| | - Chanidapha Kanmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (P.S.); (P.K.); (C.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (P.S.); (P.K.); (C.K.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Sun Y, Li Z, Yan M, Zhao H, He Z, Zhu M. Responses of Intestinal Antioxidant Capacity, Morphology, Barrier Function, Immunity, and Microbial Diversity to Chlorogenic Acid in Late-Peak Laying Hens. Animals (Basel) 2024; 14:2957. [PMID: 39457887 PMCID: PMC11503754 DOI: 10.3390/ani14202957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study examined the influence of chlorogenic acid (CGA) on gut antioxidant status, morphology, barrier function, immunity, and cecal microbiota in late-peak laying hens. A total of 240 Hy-Line Brown hens, aged 43 weeks, were randomly assigned to four groups, the basal diet +0, 400, 600, and 800 mg/kg CGA, for 12 weeks. The results revealed that CGA significantly reduced ileal H2O2 and malondialdehyde levels; increased duodenal height, ileal villus height, and villus height-to-crypt depth ratio; while decreasing jejunal crypt depth. The 600 and 800 mg/kg CGA significantly upregulated the duodenal, jejunal, and ileal ZO-1 and occludin gene expression; increased IgG levels in serum and ileum; and upregulated ileal IgA gene expression. The 600 mg/kg CGA significantly upregulated CD3D and CD4 gene expression, while downregulating IL-1β gene expression in duodenum, jejunum, and ileum. Moreover, CGA changed the gut microbiota structure. The SCFA-producing bacteria unclassified_f__Peptostreptococcaceae, unclassified_f_Oscillospiraceae, Pseudoflavonifractor, Lachnospiraceae_FCS020_group, Oscillospira, Elusimicrobium, Eubacterium_ventriosum_group, Intestinimonas, and norank_f_Coriobacteriales_Incertae_Sedis were significantly enriched in the 400, 600, and/or 800 mg/kg CGA groups. The bacteria Lactobacillus, Bacillus, and Akkermansia were significantly enriched in the 600 mg/kg CGA group. Conclusively, dietary CGA (600-800 mg/kg) improved intestinal antioxidant status, morphology, barrier and immune function, and beneficial microbiota growth in late-peak laying hens.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haitong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhengxing He
- Dantu Borough Animal Disease Prevention and Control Center, Zhenjiang 212100, China;
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
6
|
Bi R, Yang M, Liu X, Guo F, Hu Z, Huang J, Abbas W, Xu T, Liu W, Wang Z. Effects of chlorogenic acid on productive and reproductive performances, egg quality, antioxidant functions, and intestinal microenvironment in aged breeder laying hens. Poult Sci 2024; 103:104060. [PMID: 39033574 PMCID: PMC11326894 DOI: 10.1016/j.psj.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
This study investigated the effects of dietary chlorogenic acid (CGA) on the productive and reproductive performance, egg quality, antioxidant function, and intestinal microenvironment of laying hens. Thus, 162 healthy Hy-Line Brown breeding hens (63 weeks old) were randomly allocated to 3 groups, each receiving a basal diet plus supplementation: 0, 250, and 500 mg/kg CGA, respectively. Per the in vitro test, CGA had obvious inhibitory effects on Salmonella enteritis and avian pathogenic Escherichia coli and strong free radical scavenging ability. Per the breeder laying hen experiment, the CGA diets had no significant influence on egg production or reproductive performance (P < 0.05). Nevertheless, compared with the control diet, 250 mg/kg CGA significantly increased eggshell thickness, egg weight, yolk color, and Haugh unit (P < 0.05). Compared with the control diet and 500 mg/kg CGA, 250 mg/kg CGA significantly (P < 0.05) elevated antioxidant capacity by reducing serum malondialdehyde content, upregulating heme oxygenase-1, and downregulating heat shock proteins mRNA levels in the ileum. Compared with the control diet and 500 mg/kg CGA, 250 mg/kg CGA (P < 0.05) enhanced intestinal barrier function, shown by the upregulation of ileal Occludin and Mucin-2 mRNA levels; furthermore, 250 mg/kg CGA (P < 0.05) increased anti-apoptotic capacity by increasing B-cell leukemia/lymphoma 2 gene expression and downregulated Bcl2 Associated X mRNA levels in the liver and ileum of late breeder laying hens (P < 0.05). Lastly, 250 mg/kg CGA (P < 0.05) increased cecal g_CHKCI001 and short-chain fatty acid-producing bacteria g_Prevotellaceae UCG-001, positively related to gut health, and in the cecum, 500 mg/kg CGA significantly (P < 0.05) increased g_Shuttleworthia abundance, negatively related to gut health. Our findings suggest that dietary inclusion of 250 mg/kg CGA promotes egg quality, intestinal microbial composition, gut barrier integrity, and the antioxidant capacity of aged breeder laying hens.
Collapse
Affiliation(s)
- Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meixue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangze Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- Mufeng Layer Breeding Co., LTD, Zhuozhou City, Hebei Province 072750, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Yu J, Yang H, Wang J, Chen S, Huang Z, Wang J, Wang Z. Effects of gossypol acetate on growth, serum biochemical parameters, and intestinal health of goslings. Poult Sci 2024; 103:104025. [PMID: 39003791 PMCID: PMC11298947 DOI: 10.1016/j.psj.2024.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Free gossypol (FG), the primary antinutritional component in cottonseed meal, can adversely affect the growth and health of poultry. Although younger geese are particularly sensitive to FG, the precise effects of FG on geese remain elusive. This study aimed to investigate the effects of gossypol acetate (GA), a form of FG, on the growth, serum biochemical parameters, and intestinal health of goslings. Seventy-two healthy male goslings, aged 7-day-old with similar body weight (BW), were randomly divided into 3 groups: a control group and 2 GA-treated groups (GA25 and GA50), which were orally administered GA (25 and 50 mg/kg BW) daily for 14 d. The results showed that oral administration of GA significantly suppressed BW, altered serum parameters, and impaired intestinal health in a dose- and time-dependent manner. Specifically, GA adversely affected intestinal morphology, induced oxidative stress, and inflammation, diminished immune function, and increased intestinal permeability and apoptosis of intestinal cells, consequently impairing nutrient absorption and utilization of goslings. Overall, these data indicate that GA adversely affects the growth, serum parameters, and intestinal health of goslings, providing valuable information further to understand the toxic effects of gossypol on goslings.
Collapse
Affiliation(s)
- Jun Yu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, China
| | - Shi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zixin Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Jun Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
8
|
Zha P, Liu W, Zhou Y, Chen Y. Protective effects of chlorogenic acid on the intestinal barrier of broiler chickens: an immunological stress model study. Poult Sci 2024; 103:103949. [PMID: 38917604 PMCID: PMC11251075 DOI: 10.1016/j.psj.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3β, as well as the translocation of nuclear β-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
9
|
Fu G, Zhang M, Huang Y, Han R, Qi K, Yin L, Zhao D, Huang Y, Ma T, Wang L. Effects of different addition levels of CHM-JM113 on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. Front Vet Sci 2024; 11:1388173. [PMID: 38812557 PMCID: PMC11133612 DOI: 10.3389/fvets.2024.1388173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of the present study was to investigate the effects of different levels of a Chinese herbal medicine formulation combined with JM113 (CHM-JM113) on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. The AA broiler chicks were randomly allocated to 5 treatments as follows: a basic diet for the control group, the basic diet supplemented with 0.25% CHM-JM113, 0.5% CHM-JM113, 1% CHM-JM113 and 2% CHM-JM113 for the treatment group, respectively. The results showed that the addition of CHM-JM113 to the diet significantly reduced the mortality (p < 0.01) and improved the European Broiler Index (EBI) (p < 0.05), whereas it had no significance on growth performance of AA broilers (p > 0.05). Comparing the control group, 0.5 and 1% CHM-JM113 group significantly improved the organ index of liver, spleen and bursa (p < 0.05). In terms of intestinal morphology and structure, the addition of different levels of CHM-JM113 increased VH and VH/CD ratio, decreased CD in the small intestine compared to the control group, with 1 and 2% of the additive dose being more effective (p < 0.05). Chinese herbal medicine and probiotics as natural antioxidants also significantly increased the content of SOD in serum of 21-day-old broilers (p < 0.01), and significantly decreased the content of MDA in serum (p < 0.01). At 42 days of age, the addition of 1 and 2% CHM-JM113 significantly increased the content of SOD (p < 0.01) and significantly decreased the content of MDA in the organism (p < 0.01), accompanied by a significant increase in T-AOC and CAT content. In the study of the effect of CHM-JM113 on intestinal immunity, compared with the control group, we found that 1% or 2% CHM-JM113 had a better effect on the expression of occludin and claudin-1 in the intestinal segments of broilers (p < 0.05). For the expression of GATA-3, 0.5% CHM-JM113 may have a better effect (p < 0.05). CHM-JM113 may be used as an antibiotic alternative in broiler production.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengyu Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yuanyuan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Breeding Branch, Muyuan Foods Co., Ltd., Nanyang, China
| | - Runyu Han
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kaixuan Qi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lidong Yin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongchen Zhao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yueyan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lihong Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
10
|
Liu H, Meng H, Du M, Lv H, Wang Y, Zhang K. Chlorogenic acid ameliorates intestinal inflammation by inhibiting NF-κB and endoplasmic reticulum stress in lipopolysaccharide-challenged broilers. Poult Sci 2024; 103:103586. [PMID: 38442474 PMCID: PMC11067738 DOI: 10.1016/j.psj.2024.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Xu D, Wang X, Shi W, Bao Y. Lonicera flos and Curcuma longa L. extracts improve growth performance, antioxidant capacity and immune response in broiler chickens. Front Vet Sci 2024; 11:1388632. [PMID: 38681856 PMCID: PMC11045969 DOI: 10.3389/fvets.2024.1388632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Alternatives to antibiotics are urgently needed to maintain broiler growth and health. The present study was conducted to evaluate the effects of Lonicera flos and Curcuma longa L. extracts (LCE) as antibiotic substitutes on growth performance, antioxidant capacity and immune response in broilers. A total of 480 one-day-old female broilers (WOD168) were allocated to 3 treatments with 5 replicates of 32 birds for 35 days. The 3 treatments were: an antibiotic-free basal diet (control, CON), CON +50 mg/kg spectinomycin hydrochloride and 25 mg/kg lincomycin hydrochloride (ANT), CON +500 mg/kg LCE (LCE). During the entire experimental period, supplementation of ANT and LCE increased (p < 0.01) average daily gain (ADG) and decreased (p < 0.05) feed conversion ratio (FCR), thereby resulting in greater final body weight (BW) compared with CON. Dietary LCE supplementation increased (p < 0.05) serum (glutathione peroxidase) GSH-Px, (superoxide dismutase) SOD and total antioxidant capacity (T-AOC) activities, and decreased (p < 0.05) serum malonaldehyde (MDA) concentration at day 35 compared with CON. There was no significant difference in serum catalase (CAT) activity among treatments. Birds in LCE group had lower (p < 0.05) MDA concentration and higher SOD activity in liver than those in CON and ANT groups at day 35. Birds in LCE group had higher (p < 0.05) phagocytic index and serum antibody titers to Newcastle disease virus (NDV) than those in CON group. Lower (p < 0.05) concentrations of pro-inflammatory cytokines and higher (p < 0.05) concentrations of anti-inflammatory cytokines in serum and liver were observed in birds fed LCE diet than those fed CON diet. In conclusion, dietary supplementation of LCE improved growth performance by enhancing antioxidant capacity, strengthening immune system and alleviating inflammation, which has potential as antibiotic alternatives.
Collapse
Affiliation(s)
- Dahai Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
- Hebei Provincial Traditional Chinese Veterinary Medicine Technology Innovation Center, Baoding, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
| |
Collapse
|
12
|
Liu H, Liu W, Ai M, Hao X, Zhang Q, Ren J, Zhang K. Effects of β-mannanase supplementation on productive performance, inflammation, energy metabolism, and cecum microbiota composition of laying hens fed with reduced-energy diets. Poult Sci 2024; 103:103521. [PMID: 38367470 PMCID: PMC10882124 DOI: 10.1016/j.psj.2024.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
The objective of this study is to investigate the beneficial effects and underlying mechanism of dietary β-mannanase supplementation on the productive performance of laying hens fed with metabolic energy (ME)-reduced diets. A total of 448 Hy-Line gray laying hens were randomly assigned to seven groups. Each group had 8 replicates with 8 hens. The groups included a control diet (CON) with a ME of 2750 kcal/Kg, diets reduced by 100 kcal/Kg or 200 kcal/Kg ME (ME_100 or ME_200), and diets with 0.15 g/Kg or 0.2 g/Kg β-mannanase (ME_100+β-M_0.15, ME_100+β-M_0.2, ME_200+β-M_0.15, and ME_200+β-M_0.2). The productive performance, egg quality, intestinal morphology, inflammatory response, mRNA expression related to the Nuclear factor kappa B (NF-κB) and AMPK pathway, and cecum microbiome were evaluated in this study. ME-reduced diets negatively impacted the productive performance of laying hens. However, supplementation with β-mannanase improved FCR, decreased ADFI, and restored average egg weight to the level of the CON group. ME-reduced diets increased the levels of interleukin-1β (IL-1β) and IL-6 while decreasing the levels of IL-4 and IL-10 in the jejunum of laying hens. However, dietary β-mannanase supplementation improved jejunum morphology, reduced pro-inflammatory cytokine concentrations, and increased levels of anti-inflammatory factors in laying hens fed with ME-reduced diets. The mRNA levels of IL-6, IFN-γ, TLR4, MyD88, and NF-κB in the jejunum of ME-reduced diets were significantly higher than that in CON, dietary β-mannanase supplementation decreased these genes expression in laying hens fed with ME-reduced diets. Moreover, dietary β-mannanase supplementation also decreased the mRNA levels of AMPKα and AMPKγ, and increased the abundance of mTOR in the jejunum of laying hens fed with ME-reduced diets. Cecum microbiota analysis revealed that dietary β-mannanase increased the abundance of various beneficial bacteria (e.g., g_Pseudoflavonifractor, g_Butyricicoccus, and f_Lactobacillaceae) in laying hens fed with ME-reduced diets. In conclusion, dietary β-mannanase supplementation could improve the productive performance of laying hens fed with a ME-reduced diet by improving intestinal morphology, alleviating intestinal inflammation, changing energy metabolism-related signaling pathways, and increasing cecum-beneficial microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mingming Ai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Hao
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Qian Zhang
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Jingle Ren
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Shang GJ, Liu SY, Zhu R, Li DL, Meng ST, Wang YT, Wu LF. Chlorogenic acid improves common carp (Cyprinus carpio) liver and intestinal health through Keap-1/Nrf2 and NF-κB signaling pathways: Growth performance, immune response and antioxidant capacity. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109378. [PMID: 38272333 DOI: 10.1016/j.fsi.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1β were decreased. The IL-10 and TGF-β were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.
Collapse
Affiliation(s)
- Guo-Jun Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Ying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Deng-Lai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Tong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yin-Tao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
14
|
Lv H, Li P, Wang Z, Gao M, Li G, Nie W, Xiao L, Lv Z, Guo Y. Effects of Dietary Supplemental Chlorogenic Acid and Baicalin on the Growth Performance and Immunity of Broilers Challenged with Lipopolysaccharide. Life (Basel) 2023; 13:1645. [PMID: 37629502 PMCID: PMC10455899 DOI: 10.3390/life13081645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary supplemental chlorogenic acid and baicalin (CAB) on the growth performance and immunity of broilers challenged with lipopolysaccharide (LPS). This study was designed as a factorial arrangement of 2 dietary CAB treatments × 2 LPS treatments. Birds challenged with or without LPS were fed with a basic diet (CON) and (LPS), the level of CAB diet containing 500 mg/kg CAB(CAB) and (CAB + LPS). The feeding trial lasted for 42 days. Results showed that there was a negative effect on average daily weight gain (ADG) and average body weight of broilers during the animal trial with LPS challenge. The levels of diamine oxidase (DAO), lysozyme (LYZ), immunoglobulin G (IgG), and IgA in the serum, the contents of IL-1β and TNF-α in the spleen were elevated with LPS treated. Additionally, LPS treatment tended to reduce the jejunal villi height (VH) and total superoxide dismutase (T-SOD) in the serum. Dietary supplemental 500 mg/kg CAB increased the body weight and ADG and improved the feed conversion ratio (FCR) during the trial period. In addition, dietary 500 mg/kg CAB elevated the ratio of VH to crypt depth in the jejunum and reduced the content of protein carbonyl. Beyond that, the levels of IgG and IgA in the serum and transforming growth factor (TGF-β) in the spleen were up-regulated with 500 mg/kg CAB supplementation. In conclusion, dietary CAB was beneficial for growth performance and immunity of broilers challenged with lipopolysaccharide.
Collapse
Affiliation(s)
- Huiyuan Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zhiming Wang
- Beijing Centre Biology Co., Ltd., Daxing District, Beijing 102218, China;
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Wei Nie
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Lei Xiao
- Hubei Lan Good Microbial Technology Co., Ltd., Yichang 443100, China;
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| |
Collapse
|
15
|
Tan H, Zhen W, Bai D, Liu K, He X, Ito K, Liu Y, Liu Y, Zhang Y, Zhang B, Ma Y. Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress. Poult Sci 2023; 102:102623. [PMID: 36972676 PMCID: PMC10050632 DOI: 10.1016/j.psj.2023.102623] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Immune stress exerts detrimental effects on growth performance and intestinal barrier function during intensive animal production with ensuing serious economic consequences. Chlorogenic acid (CGA) is used widely as a feed additive to improve the growth performance and intestinal health of poultry. However, the effects of dietary CGA supplementation on amelioration of the intestinal barrier impairment caused by immune stress in broilers are unknown. This study investigated the effects of CGA on growth performance, intestinal barrier function, and the inflammatory response in lipopolysaccharide (LPS) mediated immune-stressed broilers. Three hundred and twelve 1-day-old male Arbor Acres broilers were divided randomly into 4 groups with 6 replicates of thirteen broilers. The treatments included: i) saline group: broilers injected with saline and fed with basal diet; ii) LPS group: broilers injected with LPS and fed with basal diet; iii) CGA group: broilers injected with saline and feed supplemented with CGA; and iv) LPS+CGA group: broilers injected with LPS and feed supplemented with CGA. Animals in the LPS and LPS+CGA groups were injected intraperitoneally with an LPS solution prepared with saline from 14 d of age for 7 consecutive days, whereas broilers in the other groups were injected only with saline. LPS induced a decrease in feed intake of broilers during the stress period, but CGA effectively alleviated this decrease. Moreover, CGA inhibited the reduction of villus height and improved the ratio of villus height to crypt depth in the duodenum of broilers 24 and 72 h after LPS injection. In addition, dietary CGA supplementation significantly restored the expression of cation-selective and channel-forming Claudin2 protein 2 h after LPS injection in the ileum. LPS enhanced the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the small intestine, but this enhancement was blocked by CGA supplementation. The expression of interleukin-10 (IL-10) increased with LPS injection and CGA promoted the production of IL-10. CGA addition downregulated the expression of intestinal interleukin-6 (IL-6) of broilers under normal rearing conditions. However, CGA supplementation upregulated the expression of IL-6 of broilers 72 h after LPS injection. The data demonstrate that dietary supplementation with CGA alleviates intestinal barrier damage and intestinal inflammation induced by LPS injection during immune stress thereby improving growth performance of broilers.
Collapse
|
16
|
Zha P, Wei L, Liu W, Chen Y, Zhou Y. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poult Sci 2023; 102:102479. [PMID: 36669355 PMCID: PMC9871335 DOI: 10.1016/j.psj.2023.102479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to (DQ)-induced oxidative stress. In experiment 1, one hundred and ninety-two male one-day-old Ross 308 broiler chicks were distributed into 4 groups and fed a basal diet supplemented with 0, 250, 500, or 1,000 mg/kg CGA for 21 d. In experiment 2, an equivalent number of male one-day-old chicks were allocated to 4 treatments for a 21-d trial: 1) Control group, normal birds fed a basal diet; 2) DQ group, DQ-challenged birds fed a basal diet; and 3) and 4) CGA-treated groups: DQ-challenged birds fed a basal diet supplemented with 500 or 1,000 mg/kg CGA. The intraperitoneal DQ challenge was performed at 20 d. In experiment 1, CGA administration linearly increased 21-d body weight, and weight gain and feed intake during 1 to 21 d (P < 0.05). CGA linearly and/or quadratically increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase activities, elevated glutathione level, and reduced malondialdehyde accumulation in serum, liver, and/or jejunum (P < 0.05). In experiment 2, compared with the control group, DQ challenge reduced body weight ratio (P < 0.05), which was reversed by CGA administration (P < 0.05). DQ challenge increased serum total protein level, aspartate aminotransferase activity, and total bilirubin concentration (P < 0.05), which were normalized when supplementing 500 mg/kg and/or 1,000 mg/kg CGA (P < 0.05). DQ administration elevated hepatic interleukin-1β, tumor necrosis factor-α, and interleukin-6 levels (P < 0.05), and the values of interleukin-1β were normalized to control values when supplementing CGA (P < 0.05). DQ injection decreased serum superoxide dismutase activity, hepatic catalase activity, and serum and hepatic glutathione level, but increased malondialdehyde concentration in serum and liver (P < 0.05), and the values of these parameters (except hepatic catalase activity) were reversed by 500 and/or 1,000 mg/kg CGA. The results suggested that CGA could improve growth performance, alleviate oxidative stress, and ameliorate hepatic inflammation in DQ-challenged broilers.
Collapse
Affiliation(s)
| | | | | | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | |
Collapse
|
17
|
Chen X, Kong Q, Zhao X, Zhao C, Hao P, Irshad I, Lei H, Kulyar MFEA, Bhutta ZA, Ashfaq H, Sha Q, Li K, Wu Y. Sodium acetate/sodium butyrate alleviates lipopolysaccharide-induced diarrhea in mice via regulating the gut microbiota, inflammatory cytokines, antioxidant levels, and NLRP3/Caspase-1 signaling. Front Microbiol 2022; 13:1036042. [PMID: 36386709 PMCID: PMC9664939 DOI: 10.3389/fmicb.2022.1036042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diarrhea is a word-widely severe disease coupled with gastrointestinal dysfunction, especially in cattle causing huge economic losses. However, the effects of currently implemented measures are still not enough to prevent diarrhea. Previously we found that dropped short-chain fatty acids in diarrhea yaks, and butyrate is commonly known to be related to the epithelial barrier function and intestinal inflammation. However, it is still unknown whether sodium acetate/sodium butyrate could alleviate diarrhea in animals. The present study is carried out to explore the potential effects of sodium acetate/sodium butyrate on lipopolysaccharide-induced diarrhea in mice. Fifty ICR mice were randomly divided into control (C), LPS-induced (L), and sodium acetate/sodium butyrate (D, B, A)-treated groups. Serum and intestine samples were collected to examine inflammatory cytokines, antioxidant levels, relative gene expressions via real-time PCR assay, and gut microbiota changes through high-throughput sequencing. Results indicated that LPS decreased the villus height (p < 0.0001), increased the crypt depth (p < 0.05), and lowered the villus height to crypt depth ratio (p < 0.0001), while sodium acetate/sodium butyrate supplementation caused a significant increase in the villus height (p < 0.001), decrease in the crypt depth (p < 0.01), and increase in the villus height to crypt depth ratio (p < 0.001), especially. In mice treated with LPS, it was found that the serum level of IL-1β, TNF-α (p < 0.001), and MDA (p < 0.01) was significantly higher; however, sodium acetate/sodium butyrate supplementation significantly reduced IL-1β (p < 0.001), TNF-α (p < 0.01), and MDA (p < 0.01), respectively. A total of 19 genera were detected among mouse groups; LPS challenge decreased the abundance of Lactobacillus, unidentified F16, unidentified_S24-7, Adlercreutzia, Ruminococcus, unclassified Pseudomonadales, [Ruminococcus], Acetobacter, cc 1, Rhodococcus, unclassified Comamonadaceae, Faecalibacterium, and Cupriavidus, while increased Shigella, Rhodococcus, unclassified Comamonadaceae, and unclassified Pseudomonadales in group L. Interestingly, sodium acetate/sodium butyrate supplementation increased Lactobacillus, unidentified F16, Adlercreutzia, Ruminococcus, [Ruminococcus], unidentified F16, cc 115, Acetobacter, Faecalibacterium, and Cupriavidus, while decreased Shigella, unclassified Enterobacteriaceae, unclassified Pseudomonadales, Rhodococcus, and unclassified Comamonadaceae. LPS treatment upregulated the expressions of ZO-1 (p < 0.01) and NLRP3 (p < 0.0001) genes in mice; however, sodium acetate/sodium butyrate solution supplementation downregulated the expressions of ZO-1 (p < 0.05) and NLRP3 (p < 0.05) genes in treated mice. Also, the LPS challenge clearly downregulated the expression of Occludin (p < 0.001), Claudin (p < 0.0001), and Caspase-1 (p < 0.0001) genes, while sodium acetate/sodium butyrate solution supplementation upregulated those gene expressions in treated groups. The present study revealed that sodium acetate/sodium butyrate supplementation alleviated LPS-induced diarrhea in mice via enriching beneficial bacterium and decreasing pathogens, which could regulate oxidative damages and inflammatory responses via NLRP3/Caspase-1 signaling. The current results may give insights into the prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Xiaoxiao Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pin Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Irfan Irshad
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Hongjun Lei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hassan Ashfaq
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Kun Li,
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu,
| |
Collapse
|
18
|
Chen Y, Zha P, Xu H, Zhou Y. An evaluation of the protective effects of chlorogenic acid on broiler chickens in a dextran sodium sulfate model: a preliminary investigation. Poult Sci 2022; 102:102257. [PMID: 36399933 PMCID: PMC9673092 DOI: 10.1016/j.psj.2022.102257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to dextran sodium sulfate (DSS)-induced intestinal damage. One hundred and forty-four 1-day-old male Arbor Acres broiler chicks were allocated into one of 3 groups with 6 replicates of eight birds each for a 21-d trial. The treatments included: 1) Control group: normal birds fed a basal diet; 2) DSS group: DSS-treated birds fed a basal diet; and 3) CGA group: DSS-treated birds fed a CGA-supplemented control diet. An oral DSS administration via drinking water was performed from 15 to 21 d of age. Compared with the control group, DSS administration reduced 21-d body weight and weight gain from 15 to 21 d, but increased absolute weight of jejunum and absolute and relative weight of ileum (P < 0.05). DSS administration elevated circulating D-lactate concentration and diamine oxidase activity (P < 0.05), which were partially reversed when supplementing CGA (P < 0.05). The oral administration with DSS decreased villus height and villus height/crypt depth ratio, but increased crypt depth in jejunum and ileum (P < 0.05). Compared with the control group, DSS administration increased serum glutathione level and jejunal catalase activity and malonaldehyde accumulation, but decreased jejunal glutathione level (P < 0.05). In contrast, feeding a CGA-supplemented diet normalized serum glutathione and jejunal malonaldehyde levels, and increased jejunal glutathione concentration in DSS-administrated birds (P < 0.05). Additionally, CGA supplementation reduced ileal malonaldehyde accumulation in DSS-treated birds (P < 0.05). DSS challenge increased levels of serum interferon-γ and interleukin-6, jejunal interleukin-1β, tumor necrosis factor-α, and interleukin-6, and ileal interleukin-1β and interleukin-6 when compared with the control group (P < 0.05). The elevated serum interferon-γ and ileal interleukin-6 levels were normalized to control values when supplementing CGA (P < 0.05). The results suggested that CGA administration could partially prevent DSS-induced increased intestinal permeability, oxidative damage, and inflammation in broilers, although it did not improve their growth performance and intestinal morphology.
Collapse
Affiliation(s)
- Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hongrui Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, 450046, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China,Corresponding author:
| |
Collapse
|