1
|
Calik A, Niraula A, Dong B, Blue CEC, Fenster DA, Dalloul RA. Iohexol-based assessment of intestinal permeability in broilers challenged with Eimeria maxima, Clostridium perfringens or both. Front Physiol 2024; 15:1520346. [PMID: 39759108 PMCID: PMC11695284 DOI: 10.3389/fphys.2024.1520346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Impaired intestinal integrity in broilers reduces performance and health, highlighting the importance of accurately measuring intestinal permeability (IP) to maintain gut health. The objective of this study was to evaluate the efficiency of iohexol as an IP marker in broilers challenged with Eimeria maxima, Clostridium perfringens, or both during both peak challenge (day [d] 21) and recovery (d 28) periods. One-day-old male Ross 708 birds (n = 56) were distributed into 4 treatment groups: NC (no-challenge control); EM (challenged with 5,000 E. maxima sporulated oocysts/bird on d 15); CP (challenged with 1.0 × 108 CFUs/bird of C. perfringens on d 19 and d 20); and EM + CP (challenged by co-infection of E. maxima and C. perfringens as described). On d 21 and d 28, each bird received an iohexol dose of 64.7 mg/kg body weight via oral gavage. One hour later, blood samples were collected from 14 birds (12 in EM) per group on d 21 and from 7 birds (6 in EM) on d 28. For lesion scoring and ileum collection, 7 birds per group (6 birds in EM) were sampled on each d 21 and d 28. Birds in the EM and EM + CP groups had lower body weight gain (BWG) compared to the NC and CP groups on d 19-21 (P ≤ 0.05). These birds also exhibited significantly greater lesion scores and markedly higher serum iohexol levels on d 21 (P ≤ 0.05). However, no significant differences in serum iohexol levels were observed among treatment groups following recovery on d 28. Moreover, significant differentials were observed in the mRNA abundance of key tight junction proteins (CLDN1, CLDN2, and ZO3), pro-inflammatory cytokines (IL-1β, IFNγ, and IL-22), and gut health markers (GLP2, OLFM4, and MUC2) in the EM and EM + CP groups compared to the NC and CP groups on d 21. In conclusion, this study demonstrates that iohexol is an effective marker for assessing IP in broilers under different enteric challenge conditions.
Collapse
Affiliation(s)
- Ali Calik
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Abhisek Niraula
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Bingqi Dong
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Candice E. C. Blue
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Davis A. Fenster
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Rami A. Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Su L, Huang S, Huang Y, Bai X, Zhang R, Lei Y, Wang X. Effects of Eimeria challenge on growth performance, intestine integrity, and cecal microbial diversity and composition of yellow broilers. Poult Sci 2024; 103:104470. [PMID: 39504824 PMCID: PMC11570961 DOI: 10.1016/j.psj.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The invasion of Eimeria causes damage to the intestinal barrier, nutrient leakage, and microbial imbalance in poultry. We aimed to investigate the effects of Eimeria infection on growth performance, intestinal integrity, and cecal microbial diversity and composition of yellow broilers. A total of 180 male yellow broilers were randomly divided into an unchallenged control and an Eimeria challenge treatment group within 18 floor pens (10 chicks/pen, 9 replicate pens/group). On day 10, 90 chicks received a cocktail of E. maxima, E. acervulina, and E. tenella oocysts (105/chick) to induce coccidial infection, and the other 90 received an aliquot of PBS. The Eimeria challenge resulted in increased bird feed consumption and FCR from day 11 to 21 (all P < 0.01). Higher fecal Eimeria counts, duodenal, jejunal, and cecal lesions were observed in the challenge group on day 12, 15, 15, 18 respectively (all P < 0.05). Furthermore, the infected birds had larger livers and small intestines, deeper villus crypt, and decreased expression of Claudin-1 on day 21 (all P < 0.05). The 16S rRNA sequencing indicated that alpha diversity (Sobs, Shannon, Simpson, Ace, or Chao) of cecal microbials was not affected by Eimeria challenge (all P > 0.05). However, the PCoA and LEfSe analyses indicated that the Eimeria challenge altered microbial distribution by decreasing the abundance of Firmicutes and enriching the abundance of Proteobacteria at the phylum level. At the genus level, Clostridia vadin BB60 and Lachnospiraceae NK4A136 group were reduced, while Escherichia-Shigella were enriched in the challenged yellow broilers (all P < 0.05). Correlation analyses demonstrated that the birds with higher Lachonospiraceae NK4A136 group and Clostridia vadin BB60, and lower Escherichia-Shigella in their cecal content gained more BW and reached a lower FCR from day 11 to 21 (all P < 0.05). In conclusion, Eimeria infection compromised feed efficiency of yellow broilers by damaging intestinal barrier and shifting cecal microbiota towards colonizers associated with poor performance. Restoring the dysbiotic microbiome could be a potential strategy for improving feed efficiency in yellow broilers under coccidial challenge.
Collapse
Affiliation(s)
- Linjie Su
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China, 610041
| | - Shuping Huang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China, 610041
| | - Yanling Huang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China, 610041; Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Xue Bai
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China, 610041; Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Runhui Zhang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China, 610041
| | - Yan Lei
- SiXie Enterprise Management Consulting Co. LTD, Chengdu 610074, China
| | - Xi Wang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China, 610041; Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
3
|
Jiang X, Liu H, You Y, Zhong G, Ruan Z, Liao J, Zhang H, Pan J, Tang Z, Hu L. Multi-omics reveals the protective effects of curcumin against AFB1-induced oxidative stress and inflammatory damage in duckling intestines. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109815. [PMID: 38061615 DOI: 10.1016/j.cbpc.2023.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Aflatoxin B1 (AFB1) is the most prevalent and toxic class of aflatoxins, which is considered a significant risk factor for food safety. Curcumin, a phytoconstituent with anti-inflammatory and antioxidant properties, has potential therapeutic value for intestinal inflammatory diseases. In this study, the duckling model susceptible to AFB1 was selected for toxicity testing, aiming to explore the effect of curcumin on AFB1 enterotoxicity and its possible mechanism of action. The results showed that curcumin promoted the growth and development of ducklings and mitigated the changes in morphology and permeability serological index (DAO and D-LA) after AFB1 exposure. Curcumin also mitigated AFB1-induced oxidative stress by activating the Nrf2 pathway, and ameliorated intestinal inflammation by inhibiting the NF-κB/IκB signaling pathway and boosting intestinal autophagy. In terms of gut flora and their metabolites, we found that curcumin supplementation significantly increased the intestinal flora's abundance index and diversity index compared to the AFB1 group, mitigating the decline in the abundance of Actinobacteria and the rise in that of harmful bacteria Clostridia. Furthermore, untargeted metabolomic analysis revealed that the protective effect of curcumin on the intestine was mainly through the regulation of AFB1-induced disorders of lipid metabolism, involving linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Overall, the enteroprotective effects of curcumin may be of significant value in the future for treating chronic AFB1 poisoning and also provide new therapeutic ideas for other mycotoxicosis.
Collapse
Affiliation(s)
- Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Medical Devices Research &Testing Center of South China University of Technology, Laboratory Animal Research Center of South China University of Technology, Guangzhou 510006, China
| | - Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City 264005, Shandong Province, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou 510520, Guangdong Province, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|