1
|
Dwivedi Y, Roy B, Korla PK. Genome-wide methylome-based molecular pathologies associated with depression and suicide. Neuropsychopharmacology 2025; 50:705-716. [PMID: 39645539 PMCID: PMC11845511 DOI: 10.1038/s41386-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Major depressive disorder (MDD) is a debilitating disorder. Suicide attempts are 5-times higher in MDD patients than in the general population. Interestingly, not all MDD patients develop suicidal thoughts or complete suicide. Thus, it is important to study the risk factors that can distinguish suicidality among MDD patients. The present study examined if DNA methylation changes can distinguish suicidal behavior among depressed subjects. Genome-wide DNA methylation was examined in the dorsolateral prefrontal cortex of depressed suicide (MDD+S; n = 15), depressed non-suicide (MDD-S; n = 17), and nonpsychiatric control (C; n = 16) subjects using 850 K Infinium Methylation EPIC BeadChip. The significantly differentially methylated genes were used to determine the functional enrichment of genes for ontological clustering and pathway analysis. Based on the number of CpG content and their relative distribution from specific landmark regions of genes, 32,958 methylation sites were identified across 12,574 genes in C vs. MDD+/-S subjects, 30,852 methylation sites across 12,019 genes in C vs. MDD-S, 41,648 methylation sites across 13,941 genes in C vs. MDD+S, and 49,848 methylation sites across 15,015 genes in MDD-S vs. MDD+S groups. A comparison of methylation sites showed 33,129 unique methylation sites and 5451 genes in the MDD-S group compared to the MDD+S group. Functional analysis suggested oxytocin, GABA, VGFA, TNFA, and mTOR pathways associated with suicide in the MDD group. Altogether, our data show a distinct pattern of DNA methylation, the genomic distribution of differentially methylated sites, gene enrichment, and pathways in MDD suicide compared to non-suicide MDD subjects.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Kumar Korla
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Zhang K, Yang T, Xia Y, Guo X, Chen W, Wang L, Li J, Wu J, Xiao Z, Zhang X, Jiang W, Xu D, Guo S, Wang Y, Shi Y, Liu D, Li Y, Wang Y, Xing H, Liang T, Niu P, Wang H, Liu Q, Jin S, Qu T, Li H, Zhang Y, Ma W, Wang Y. Molecular Determinants of Neurocognitive Deficits in Glioma: Based on 2021 WHO Classification. J Mol Neurosci 2024; 74:17. [PMID: 38315329 PMCID: PMC10844410 DOI: 10.1007/s12031-023-02173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 02/07/2024]
Abstract
Cognitive impairment is a common feature among patients with diffuse glioma. The objective of the study is to investigate the relationship between preoperative cognitive function and clinical as well as molecular factors, firstly based on the new 2021 World Health Organization's updated classification of central nervous system tumors. A total of 110 diffuse glioma patients enrolled underwent preoperative cognitive assessments using the Mini-Mental State Examination and Montreal Cognitive Assessment. Clinical information was collected from medical records, and gene sequencing was performed to analyze the 18 most influenced genes. The differences in cognitive function between patients with and without glioblastoma were compared under both the 2016 and 2021 WHO classification of tumors of the central nervous system to assess their effect of differentiation on cognition. The study found that age, tumor location, and glioblastoma had significant differences in cognitive function. Several genetic alterations were significantly correlated with cognition. Especially, IDH, CIC, and ATRX are positively correlated with several cognitive domains, while most other genes are negatively correlated. For most focused genes, patients with a low number of genetic alterations tended to have better cognitive function. Our study suggested that, in addition to clinical characteristics such as age, histological type, and tumor location, molecular characteristics play a crucial role in cognitive function. Further research into the mechanisms by which tumors affect brain function is expected to enhance the quality of life for glioma patients. This study highlights the importance of considering both clinical and molecular factors in the management of glioma patients to improve cognitive outcomes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lijun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhiyuan Xiao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenwen Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dongrui Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Pei Niu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
El-Mallakh RS, Sampath VP, Horesh N, Lichtstein D. Endogenous Cardiac Steroids in Bipolar Disorder: State of the Art. Int J Mol Sci 2022; 23:ijms23031846. [PMID: 35163766 PMCID: PMC8836531 DOI: 10.3390/ijms23031846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness with a poor prognosis and problematic, suboptimal, treatments. Treatments, borne of an understanding of the pathoetiologic mechanisms, need to be developed in order to improve outcomes. Dysregulation of cationic homeostasis is the most reproducible aspect of BD pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Endogenous sodium pump modulators (collectively known as endogenous cardiac steroids, ECS) are steroids which are synthesized in and released from the adrenal gland and brain. These compounds, by activating or inhibiting Na+, K+-ATPase activity and activating intracellular signaling cascades, have numerous effects on cell survival, vascular tone homeostasis, inflammation, and neuronal activity. For the past twenty years we have addressed the hypothesis that the Na+, K+-ATPase-ECS system may be involved in the etiology of BD. This is a focused review that presents a comprehensive model pertaining to the role of ECS in the etiology of BD. We propose that alterations in ECS metabolism in the brain cause numerous biochemical changes that underlie brain dysfunction and mood symptoms. This is based on both animal models and translational human results. There are data that demonstrate that excess ECS induce abnormal mood and activity in animals, while a specific removal of ECS with antibodies normalizes mood. There are also data indicating that circulating levels of ECS are lower in manic individuals, and that patients with BD are unable to upregulate synthesis of ECS under conditions that increase their elaboration in non-psychiatric controls. There is strong evidence for the involvement of ion dysregulation and ECS function in bipolar illness. Additional research is required to fully characterize these abnormalities and define future clinical directions.
Collapse
Affiliation(s)
- Rif S. El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (R.S.E.-M.); (D.L.)
| | - Vishnu Priya Sampath
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
| | - Noa Horesh
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
| | - David Lichtstein
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
- Correspondence: (R.S.E.-M.); (D.L.)
| |
Collapse
|
4
|
Neuronal cells from bipolar individuals are more susceptible to glutamate induced apoptosis than cells from non-bipolar subjects. J Affect Disord 2021; 294:568-573. [PMID: 34330053 DOI: 10.1016/j.jad.2021.07.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with marked parenchymal brain loss in a significant fraction of patients. The lack of necrosis in postmortem examination suggests an apoptotic process. Emerging evidence suggests that mood stabilizers, like lithium, have antiapoptotic actions. Glutamatergic abnormalities have been associated with BD. METHODS Olfactory neuroepithelial progenitors (ONPs) harvested by biopsy from type I bipolar patients (BD-ONPs, n = 3) and non-bipolar controls (non-BD-ONPs, n = 6), were treated with glutamate at concentrations sufficient to mimic the observed doubling of intracellular sodium known to occur in both mania and bipolar depression, to investigate potential differential lithium effect on both BD-ONPs and non-BD-ONPs. RESULTS Apoptosis was detected in BP-ONPs exposed to 0.1 M glutamate for 6 h but in non-BD-ONPs at 24 h. Moreover, after treatment with 0.1 M glutamate treated for 6 h the levels of the pro-apoptotic cleaved-caspase-3 and cleaved-PARP proteins were significantly higher in BD-ONPs compare to non-BD-ONPs. Pretreatment with a therapeutic concentration of 1 mM lithium for 3 days attenuated the glutamate induced apoptosis. Lithium pretreatment 3 days also prevented the DNA fragmentation induced by glutamate, and significantly increased the antiapoptotic phospho-B-Raf and Bcl-2 proteins in BD-ONPs compared to non-BD-ONPs. LIMITATIONS ONPs are obtained from subjects with and without bipolar illness, but outcome of their study may still not reflect the biology of the illness. CONCLUSIONS ONPs derived from BD are more susceptible to glutamate-induced apoptosis. Lithium is associated with a greater increase of anti-apoptotic B-Raf and Bcl-2 expression in BD-ONPs.
Collapse
|
5
|
El-Mallakh RS, Gao Y, You P. Role of endogenous ouabain in the etiology of bipolar disorder. Int J Bipolar Disord 2021; 9:6. [PMID: 33523310 PMCID: PMC7851255 DOI: 10.1186/s40345-020-00213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bipolar disorder is a severe psychiatric illness with poor prognosis and problematic and suboptimal treatments. Understanding the pathoetiologic mechanisms may improve treatment and outcomes. Discussion Dysregulation of cationic homeostasis is the most reproducible aspect of bipolar pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Recent discoveries of the role of endogenous sodium pump modulators (which include ‘endogenous ouabain’) in regulation of sodium and potassium distribution, inflammation, and activation of key cellular second messenger systems that are important in cell survival, and the demonstration that these stress-responsive chemicals may be dysregulated in bipolar patients, suggest that these compounds may be candidates for the coupling of environmental stressors and illness onset. Specifically, individuals with bipolar disorder appear to be unable to upregulate endogenous ouabain under conditions that require it, and therefore may experience a relative deficiency of this important regulatory hormone. In the absence of elevated endogenous ouabain, neurons are unable to maintain their normal resting potential, become relatively depolarized, and are then susceptible to inappropriate activation. Furthermore, sodium pump activity appears to be necessary to prevent inflammatory signals within the central nervous system. Nearly all available data currently support this model, but additional studies are required to solidify the role of this system. Conclusion Endogenous ouabain dysregulation appears to be a reasonable candidate for understanding the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA
| | - Pan You
- Xiamen Xianyue Hospital, 399 Xianyue Road, Xiamen, China
| |
Collapse
|
6
|
Sex differences in gene expression with galactosylceramide treatment in Cln3Δex7/8 mice. PLoS One 2020; 15:e0239537. [PMID: 33006978 PMCID: PMC7531864 DOI: 10.1371/journal.pone.0239537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CLN3 disease is caused by mutations in the CLN3 gene. The purpose of this study is to discern global expression patterns reflecting therapeutic targets in CLN3 disease. METHODS Differential gene expression in vehicle-exposed mouse brain was determined after intraperitoneal vehicle/Galactosylceramide (GalCer) injections for 40 weeks with GeneChip Mouse Genome 430 2.0 arrays. RESULTS Analysis identified 66 genes in male and 30 in female brains differentially expressed in GalCer-treated versus vehicle-exposed Cln3Δex7/8 mice. Gene ontology revealed aberrations of biological function including developmental, cellular, and behavioral processes. GalCer treatment altered pathways of long-term potentiation/depression, estrogen signaling, synaptic vesicle cycle, ErbB signaling, and prion diseases in males, but prolactin signaling, selenium compound metabolism and steroid biosynthesis in females. Gene-gene network analysis highlighted networks functionally pertinent to GalCer treatment encompassing motor dysfunction, neurodegeneration, memory disorder, inflammation and astrogliosis in males, and, cataracts, inflammation, astrogliosis, and anxiety in females. CONCLUSIONS This study sheds light on global expression patterns following GalCer treatment of Cln3Δex7/8 mice. Understanding molecular effects of GalCer on mouse brain gene expression, paves the way for personalized strategies for treating this debilitating disease in humans.
Collapse
|
7
|
S Valvassori S, H Cararo J, Peper-Nascimento J, L Ferreira C, F Gava F, C Dal-Pont G, L Andersen M, Quevedo J. Protein kinase C isoforms as a target for manic-like behaviors and oxidative stress in a dopaminergic animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109940. [PMID: 32243997 DOI: 10.1016/j.pnpbp.2020.109940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a chronic condition characterized by severe mood swings alternating between episodes of mania and depression. Evidence indicates that protein kinase C (PKC) and oxidative stress are important therapeutic targets for BD. However, what PKC isoforms that are precisely involved in this effect are unknown. Therefore, we evaluated the effects of the intracerebroventricular (ICV) injection of PKC inhibitors (lithium (Li), tamoxifen (TMX), PKCα inhibitor (iPKCα), PKCγ inhibitor (iPKCγ), and PKCε inhibitor (iPKCε)) on the manic-like behaviors and oxidative stress parameters (4-hydroxy-2-nonenal (4-HNE), 8-isoprostane (8-ISO), carbonyl groups, 3-nitrotyrosine (3-NT), glutathione peroxidase (GPx) and glutathione reductase (GR)) in the brains of rats submitted to the model of mania induced by methamphetamine (m-AMPH). Animals received a single ICV infusion of artificial cerebrospinal fluid, Li, TMX, iPKCα, iPKCγ or iPKCε followed by an intraperitoneal injection of saline or m-AMPH before the behavioral analysis (open-field task). Oxidative stress was evaluated in the striatum, frontal cortex, and hippocampus. ICV injection of Li, TMX or iPKCε blocked the m-AMPH-induced increase in the manic-like behaviors - crossings, rearings, visits to the center, sniffing, and grooming. ICV infusion of iPKCα triggered a decrease in these behaviors induced by m-AMPH. Besides, the iPKCε administration significantly prevented the oxidative damage to lipids and proteins, as well as disturbances in the activity of antioxidant enzymes induced by m-AMPH. The findings of the present study suggest that PKCε isoform is strongly implied in the antimanic and antioxidant effects of Li, TMX, and the other PKC inhibitors in the model of mania.
Collapse
Affiliation(s)
- Samira S Valvassori
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil.
| | - José H Cararo
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | | | - Camila L Ferreira
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | - Fernanda F Gava
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | - Gustavo C Dal-Pont
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | - Monica L Andersen
- Departament of Psychobiology, Federal University of São Paulo, Brazil
| | - João Quevedo
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil; Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX, USA; Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), TX, USA
| |
Collapse
|
8
|
Developmental Potential and Plasticity of Olfactory Epithelium Stem Cells Revealed by Heterotopic Grafting in the Adult Brain. Stem Cell Reports 2020; 14:692-702. [PMID: 32243847 PMCID: PMC7160358 DOI: 10.1016/j.stemcr.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
The neural stem cells (NSCs) residing in the olfactory epithelium (OE) regenerate damaged olfactory sensory neurons throughout adulthood. The accessibility and availability of these NSCs in living individuals, including humans, makes them a promising candidate for harvesting their potential for cell replacement therapies. However, this requires an in-depth understanding of their developmental potential after grafting. Here, we investigated the developmental potential and plasticity of mouse OE-derived NSCs after grafting into the adult subventricular zone (SVZ) neurogenic niche. Our results showed that OE-derived NSCs integrate and proliferate just like endogenous SVZ stem cells, migrate with similar dynamics as endogenous neuroblasts toward the olfactory bulb, and mature and acquire similar electrophysiological properties as endogenous adult-born bulbar interneurons. These results reveal the developmental potential and plasticity of OE-derived NSCs in vivo and show that they can respond to heterotopic neurogenic cues to adapt their phenotype and become functional neurons in ectopic brain regions. OE-derived NSCs integrate in the SVZ after heterotopic transplantation OE-derived NSCs respond to SVZ niche factors and change their developmental program The development of OE-derived and SVZ NSCs are indistinguishable OE-derived NSCs grafted into the SVZ become functional bulbar interneurons
Collapse
|
9
|
Negoias S, Chen B, Iannilli E, Ning Y, Kitzler HH, Hummel T, Krüger S. Odor-related brain hyper-reactivity in euthymic bipolar disorder: An fMRI and ERP study. Psychiatry Res 2019; 278:218-227. [PMID: 31226548 DOI: 10.1016/j.psychres.2019.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Previous studies on olfactory function in patients with bipolar disorder (BD) are limited and contradictory. The current study aimed to comprehensively analyze the olfactory function of patients with euthymic BD using psychophysical, electrophysiological and neuroimaging techniques. Twenty-one patients with BD in remission and 20 healthy controls were tested with the "Sniffin' Sticks" olfactory test. Block-design fMRI data to a pleasant and an unpleasant stimulus were acquired while recording intensity and hedonic ratings. Olfactory event-related potentials (OERP) to the same stimuli were additionally recorded. Results show no differences between patients and healthy controls in terms of self-rated olfactory function and tested olfactory domains (odor threshold, discrimination or identification) (p>0.05). Compared to healthy controls, patients showed an increased fMRI activation in multiple cortical and subcortical regions as a response to olfactory stimulation, as well as larger amplitudes of OERPs regardless of the hedonic valence of the odor. All in all, patients with euthymic BD showed a stronger central responsiveness to odorous stimuli in fMRI and OERPs despite of normal psychophysical results, indicating the probable existence of an odor-related over-reactive brain network in the remission phase of BD.
Collapse
Affiliation(s)
- Simona Negoias
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Ben Chen
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.
| | - Emilia Iannilli
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stephanie Krüger
- Teaching Hospital of the Charite - Universitätsmedizin Berlin, Center for Women's Mental Health, Vivantes Humboldt Klinik, Am Nordgraben 2, 13509, Berlin, Germany
| |
Collapse
|
10
|
Komenoi S, Suzuki Y, Asami M, Murakami C, Hoshino F, Chiba S, Takahashi D, Kado S, Sakane F. Microarray analysis of gene expression in the diacylglycerol kinase η knockout mouse brain. Biochem Biophys Rep 2019; 19:100660. [PMID: 31297456 PMCID: PMC6597918 DOI: 10.1016/j.bbrep.2019.100660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
We have revealed that diacylglycerol kinase η (DGKη)-knockout (KO) mice display bipolar disorder (BPD) remedy-sensitive mania-like behaviors. However, the molecular mechanisms causing the mania-like abnormal behaviors remain unclear. In the present study, microarray analysis was performed to determine global changes in gene expression in the DGKη-KO mouse brain. We found that the DGKη-KO brain had 43 differentially expressed genes and the following five affected biological pathways: "neuroactive ligand-receptor interaction", "transcription by RNA polymerase II", "cytosolic calcium ion concentration", "Jak-STAT signaling pathway" and "ERK1/2 cascade". Interestingly, mRNA levels of prolactin and growth hormone, which are augmented in BPD patients and model animals, were most strongly increased. Notably, all five biological pathways include at least one gene among prolactin, growth hormone, forkhead box P3, glucagon-like peptide 1 receptor and interleukin 1β, which were previously implicated in BPD. Consistent with the microarray data, phosphorylated ERK1/2 levels were decreased in the DGKη-KO brain. Microarray analysis showed that the expression levels of several glycerolipid metabolism-related genes were also changed. Liquid chromatography-mass spectrometry revealed that several polyunsaturated fatty acid (PUFA)-containing phosphatidic acid (PA) molecular species were significantly decreased as a result of DGKη deficiency, suggesting that the decrease affects PUFA metabolism. Intriguingly, the PUFA-containing lysoPA species were markedly decreased in DGKη-KO mouse blood. Taken together, our study provides not only key broad knowledge to gain novel insights into the underlying mechanisms for the mania-like behaviors but also information for developing BPD diagnostics.
Collapse
Key Words
- BPD, bipolar disorder
- Bipolar disorder
- DAVID, Database for AnnotationVisualization and Integrated Discovery
- DG, diacylglycerol
- DGK, diacylglycerol kinase
- Diacylglycerol kinase
- ERK, extracellular signal-regulated kinase
- Fpr2, N-formyl peptide receptor 2
- GO:BP, Gene Ontology: Biological Process
- GWAS, genome-wide association study
- Gh, growth hormone
- Glp1r, glucagon-like peptide 1 receptor
- Growth hormone
- Il1b, interleukin 1β
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- KO, knockout
- LC-MS, liquid chromatography-mass spectrometry
- LPA, lysophosphatidic acid
- Lysophosphatidic acid
- MEK, mitogen-activated protein kinase/ERK kinase
- PA, phosphatidic acid
- PI, phosphatidylinositol
- PUFA, polyunsaturated fatty acid
- Phosphatidic acid
- Prl, prolactin
- Prolactin
- SERT, serotonin transporter
- WT, wild type
Collapse
Affiliation(s)
- Suguru Komenoi
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yuji Suzuki
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Maho Asami
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Sohei Chiba
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Corresponding author. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
11
|
Fries GR, Colpo GD, Monroy-Jaramillo N, Zhao J, Zhao Z, Arnold JG, Bowden CL, Walss-Bass C. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder. Eur Neuropsychopharmacol 2017; 27:1110-1119. [PMID: 28939162 PMCID: PMC5685885 DOI: 10.1016/j.euroneuro.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
Lithium is the most commonly prescribed medication for the treatment of bipolar disorder (BD), yet the mechanisms underlying its beneficial effects are still unclear. We aimed to compare the effects of lithium treatment in lymphoblastoid cell lines (LCLs) from BD patients and controls. LCLs were generated from sixty-two BD patients (based on DSM-IV) and seventeen healthy controls matched for age, sex, and ethnicity. Patients were recruited from outpatient clinics from February 2012 to October 2014. LCLs were treated with 1mM lithium for 7 days followed by microarray gene expression assay and validation by real-time quantitative PCR. Baseline differences between groups, as well as differences between vehicle- and lithium-treated cells within each group were analyzed. The biological significance of differentially expressed genes was examined by pathway enrichment analysis. No significant differences in baseline gene expression (adjusted p-value < 0.05) were detected between groups. Lithium treatment of LCLs from controls did not lead to any significant differences. However, lithium altered the expression of 236 genes in LCLs from patients; those genes were enriched for signaling pathways related to apoptosis. Among those genes, the alterations in the expression of PIK3CG, SERP1 and UPP1 were validated by real-time PCR. A significant correlation was also found between circadian functioning and CEBPG and FGF2 expression levels. In summary, our results suggest that lithium treatment induces expression changes in genes associated with the apoptosis pathway in BD LCLs. The more pronounced effects of lithium in patients compared to controls suggest a disease-specific effect of this drug.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States
| | - Gabriela D Colpo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States
| | - Nancy Monroy-Jaramillo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States; Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, Tlalpan, C.P. 14269 Mexico City, Mexico
| | - Junfei Zhao
- Bioinformatics and Systems Medicine Laboratory (BSML), Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, United States
| | - Zhongming Zhao
- Bioinformatics and Systems Medicine Laboratory (BSML), Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, United States; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler Street, Houston, TX 77030, United States
| | - Jodi G Arnold
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Charles L Bowden
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
12
|
Gao Y, Winstead W, Lei Z, Lu C, Roisen FJ, El-Mallakh RS. Olfactory Neuroepithelial Neural Progenitor Cells from Subjects with Bipolar I Disorder. J Cent Nerv Syst Dis 2017; 9:1179573517694529. [PMID: 28469524 PMCID: PMC5392049 DOI: 10.1177/1179573517694529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Background: Research into the pathophysiology of bipolar disorder (BD) is limited by the inability to examine brain cellular processes in subjects with the illness. Methods: Endoscopic biopsy was performed in subjects with bipolar I disorder to establish olfactory neural progenitor (ONP) cell lines. Olfactory function was assessed prebiopsy and postbiopsy using the University of Pennsylvania Smell Identification Test (UPSIT). Cells were characterized to determine their lineage. Results: There were no significant complications associated with the biopsy procedure, including olfaction. Outpatient olfactory neuroepithelial biopsy yielded ONP cells in three out of 13 biopsy attempts (23.1%). ONPs were positive for neuron-specific proteins (β-tubulin III, nestin, hexaribonucleotide binding protein-3, and peripherin) and glia-specific proteins (glial fibrillary acidic protein and myelin basic protein). Conclusions: ONP cells can be obtained safely from awake outpatients and are potentially useful for pathophysiological studies of bipolar illness and perhaps other neuropsychiatric conditions. Such cells allow for the investigation of potential pathological cellular processes without the confounding factors of genetic manipulation, which is required for induced pluripotent cells.
Collapse
Affiliation(s)
- Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Welby Winstead
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zhenmin Lei
- Department of Obstetrics, Gynecology & Women's Health, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chengliang Lu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Fred J Roisen
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rif S El-Mallakh
- Professor and Director, Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|