1
|
Mizui R, Yamamuro K, Okazaki K, Uratani M, Kashida N, Ishida R, Makinodan M. Preliminary observations on the associations between sensory processing abnormalities and event-related potentials in adults with autism spectrum disorder. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e173. [PMID: 38868472 PMCID: PMC11114396 DOI: 10.1002/pcn5.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 06/14/2024]
Abstract
Aim Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is thought to involve a variety of neurophysiological characteristics. Event-related potentials (ERPs) reflect cognitive functions in the brain's cognitive processing. In this study, we investigated differences in P300 and N100 of ERPs between ASD and typically developing groups and focused on the relationship between the components of ERPs and measures of autistic traits and sensory processing characteristics. Methods ERPs were measured in 96 subjects in the ASD group and 62 subjects in the age- and sex-adjusted typically developing group. Correlations between each component and the scores of the Autism-Spectrum Quotient Japanese version (AQ-J) and the Adolescent and Adult Sensory Profile (AASP) were also evaluated. Results The ASD group showed a significant decrease in the amplitude of N100 at C3. Furthermore, a negative correlation was found between lower amplitude at C3 of N100 and low registered sensory scores in both groups. Conclusion Our findings imply that the N100 amplitude at C3 could be a potential indicator for examining the neurophysiological traits of ASD; however, these results should be interpreted with caution due to their preliminary nature. These tentative insights into sensory processing anomalies may be discernible in specific subsets of the ASD population, providing a foundation for future investigative pathways.
Collapse
Affiliation(s)
- Ryo Mizui
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| | - Kazuhiko Yamamuro
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| | - Kosuke Okazaki
- Developmental Center for Child and Adult, Shigisan HospitalIkoma‐GunJapan
| | - Mitsuhiro Uratani
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| | - Natsuko Kashida
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| | - Rio Ishida
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| | - Manabu Makinodan
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| |
Collapse
|
2
|
Raggi A, Lanza G, Ferri R. A Review on P300 in Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:751215. [PMID: 34887786 PMCID: PMC8649722 DOI: 10.3389/fpsyt.2021.751215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Neuropsychological studies indicate the presence of cognitive changes in patients with obsessive-compulsive disorder (OCD). Indeed, OCD may be included among the dysfunctions of the frontal lobes and their connections with the limbic system, associative cortex, and basal ganglia. P300 is a positive component of the human event-related potential (ERP); it is associated with processes of encoding, identification, and categorization constituting, as a whole, the superior cortical function of information processing. Thus, P300 explores several areas that are implicated in OCD pathophysiology. Our aim is to review all relevant studies on the P300 component of the human ERP in order to recognize any significant central nervous system (CNS) correlate of cognitive dysfunction in OCD. A PubMed-based literature search resulted in 35 articles assessing P300 in OCD and reporting neurophysiological correlates of response inhibition, cortical hyperarousal, and over-focused attention. A decreased P300 amplitude was reported in both adult and pediatric patients, with a trend toward normalization after pharmacological treatment. Source localization studies disclosed an association between P300 abnormalities and the functioning of brain regions involved in the pathophysiology of OCD. Moreover, studies converge on the evidence of neurophysiological dysfunction in the frontal areas with impairment of the normal inhibitory processes in OCD. At least some of these electrophysiological correlates might reflect the obsessive thoughts and compulsions that characterize this disorder. These findings may also support cognitive-behavioral therapy (CBT) approaches on over-focused attention and inflexibility of compulsive behaviors, which should be associated to pharmacological treatment in these patients.
Collapse
Affiliation(s)
- Alberto Raggi
- Unit of Neurology, G.B. Morgagni – L. Pierantoni Hospital, Forlì, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute - Istituto di Ricerca e Cura a Cattarere Scientifico (IRCCS), Troina, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute - Istituto di Ricerca e Cura a Cattarere Scientifico (IRCCS), Troina, Italy
| |
Collapse
|
3
|
Knight EJ, Oakes L, Hyman SL, Freedman EG, Foxe JJ. Individuals With Autism Have No Detectable Deficit in Neural Markers of Prediction Error When Presented With Auditory Rhythms of Varied Temporal Complexity. Autism Res 2020; 13:2058-2072. [PMID: 32881408 PMCID: PMC9073708 DOI: 10.1002/aur.2362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 01/31/2023]
Abstract
The brain's ability to encode temporal patterns and predict upcoming events is critical for speech perception and other aspects of social communication. Deficits in predictive coding may contribute to difficulties with social communication and overreliance on repetitive predictable environments in individuals with autism spectrum disorder (ASD). Using a mismatch negativity (MMN) task involving rhythmic tone sequences of varying complexity, we tested the hypotheses that (1) individuals with ASD have reduced MMN response to auditory stimuli that deviate in presentation timing from expected patterns, particularly as pattern complexity increases and (2) amplitude of MMN signal is inversely correlated with level of impairment in social communication and repetitive behaviors. Electroencephalography was acquired as individuals (age 6-21 years) listened to repeated five-rhythm tones that varied in the Shannon entropy of the rhythm across three conditions (zero, medium-1 bit, and high-2 bit entropy). The majority of the tones conformed to the established rhythm (standard tones); occasionally the fourth tone was temporally shifted relative to its expected time of occurrence (deviant tones). Social communication and repetitive behaviors were measured using the Social Responsiveness Scale and Repetitive Behavior Scale-Revised. Both neurotypical controls (n = 19) and individuals with ASD (n = 21) show stepwise decreases in MMN as a function of increasing entropy. Contrary to the result forecasted by a predictive coding hypothesis, individuals with ASD do not differ from controls in these neural mechanisms of prediction error to auditory rhythms of varied temporal complexity, and there is no relationship between these signals and social communication or repetitive behavior measures. LAY SUMMARY: We tested the idea that the brain's ability to use previous experience to influence processing of sounds is weaker in individuals with autism spectrum disorder (ASD) than in neurotypical individuals. We found no difference between individuals with ASD and neurotypical controls in brain wave responses to sounds that occurred earlier than expected in either simple or complex rhythms. There was also no relationship between these brain waves and social communication or repetitive behavior scores.
Collapse
Affiliation(s)
- Emily J. Knight
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Leona Oakes
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Susan L. Hyman
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward G. Freedman
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John J. Foxe
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Okazaki K, Yamamuro K, Iida J, Ota T, Nakanishi Y, Matsuura H, Uratani M, Sawada S, Azechi T, Kishimoto N, Kishimoto T. Intra-individual variability across cognitive task in drug-naïve pediatric patients with obsessive compulsive disorder. Psychiatry Res 2018; 264:421-426. [PMID: 29702436 DOI: 10.1016/j.psychres.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
Abstract
Attention deficit is commonly observed in several psychiatric conditions. In particular, patients with attention deficit hyperactivity disorder exhibit not only attention deficit, but also intra-individual variability in response times (IIV-RT) during the performance of cognitive tasks related to attention span and sustained attention. Although obsessive compulsive disorder (OCD) is commonly observed across childhood, little is known about abnormalities in IIV-RT during the auditory odd-ball task, and how these changes relate to event-related potentials (ERPs) components. In the present study, we compared the ERPs of 15 adolescent and pediatric patients with OCD with 15 healthy age, sex, and IQ-matched controls. We found that tau of IIV-TR was not significantly different between the OCD group and controls, whereas the OCD group exhibited lower mu and sigma compared to controls. Furthermore, we revealed that P300 amplitude was significantly attenuated in the OCD group at Fz, C3, and C4, compared with controls. The present study thereby provided the first evidence that individuals with pediatric or adolescent OCD exhibit lower variability in reaction time in IIV-RT during an auditory odd-ball task than controls. These results suggest that there are no impairments in attention span and sustained attention in pediatric and adolescent patients with OCD.
Collapse
Affiliation(s)
- Kosuke Okazaki
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
| | - Junzo Iida
- Faculty of Nursing, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toyosaku Ota
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Yoko Nakanishi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Hiroki Matsuura
- Department of Psychiatry, Nara Prefectural General Rehabilitation Center, Shiki, Japan
| | | | - Satomi Sawada
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Takahiro Azechi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
5
|
Uncensored EEG: The role of DC potentials in neurobiology of the brain. Prog Neurobiol 2018; 165-167:51-65. [PMID: 29428834 DOI: 10.1016/j.pneurobio.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/24/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Abstract
Brain direct current (DC) potentials denote sustained shifts and slow deflections of cerebral potentials superimposed with conventional electroencephalography (EEG) waves and reflect alterations in the excitation level of the cerebral cortex and subcortical structures. Using galvanometers, such sustained displacement of the EEG baseline was recorded in the early days of EEG recordings. To stabilize the EEG baseline and eliminate artefacts, EEG was performed later by voltage amplifiers with high-pass filters that dismiss slow DC potentials. This left slow DC potential recordings as a neglected diagnostic source in the routine clinical setting over the last few decades. Brain DC waves may arise from physiological processes or pathological phenomena. Recordings of DC potentials are fundamental electro-clinical signatures of some neurological and psychological disorders and may serve as diagnostic, prognostic, and treatment monitoring tools. We here review the utility of both physiological and pathological brain DC potentials in different aspects of neurological and psychological disorders. This may enhance our understanding of the role of brain DC potentials and improve our fundamental clinical and research strategies for brain disorders.
Collapse
|
6
|
Kayashima Y, Yamamuro K, Makinodan M, Nakanishi Y, Wanaka A, Kishimoto T. Effects of Canon chord progression on brain activity and motivation are dependent on subjective feelings, not the chord progression per se. Neuropsychiatr Dis Treat 2017; 13:1499-1508. [PMID: 28652751 PMCID: PMC5476716 DOI: 10.2147/ndt.s136815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of studies have indicated that relaxing and pleasant melodies are useful for the treatment of patients with psychiatric disorders, including schizophrenia, depression, and dementia. However, few studies have investigated what constitutive elements of the music had an effect on brain activity. As Canon chord progression is one of critical elements for pleasant melodies, we sought to examine the effects of Canon chord progression and pitch-shifted Canon chord progression on brain activity using performance on the auditory oddball task during event-related potentials (ERPs) in 30 healthy subjects. Unexpectedly, we found no differences in ERP components between subjects listening to Canon chord progression (n=15) or pitch-shifted Canon chord progression (n=15). Next, we divided participants into two groups: those who found the melody pleasant (n=17) and those who did not (n=13), for both Canon chord progression and pitch-shifted Canon chord progression. The average of P300 amplitude was higher at Fz in subjects found the music pleasant versus those finding it unpleasant. Moreover, subjects who found it pleasant exhibited higher motivation scores than those who felt it was unpleasant, whereas listening to Canon chord progression did not matter. These findings suggest that the effects of Canon chord progression on brain activity and motivation depend on subjective feelings, not the chord progression per se.
Collapse
Affiliation(s)
- Yoshinori Kayashima
- Department of Psychiatry.,Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Kashihara, Japan
| | | | | | | | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Kashihara, Japan
| | | |
Collapse
|