1
|
Bulgay C, Kasakolu A, Bıyıklı T, Koncagul S, Kazan HH, Ahmetov II, Ergun MA, Griffiths MD, Szabo A. Genome-Wide Association Study of Exercise Addiction Among Elite Wrestlers. Brain Sci 2025; 15:102. [PMID: 40002435 PMCID: PMC11853435 DOI: 10.3390/brainsci15020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Exercise addiction, marked by an inability to control exercise and associated with distress that clinically impairs daily activities, is a significant but underrecognized issue in physical activity and health. While its physiological, psychological, and behavioral aspects have been studied, the genetic basis of exercise addiction remains poorly understood, requiring further investigation. The present study conducted a genome-wide association study of exercise addiction among elite Turkish wrestlers. METHODS The sample comprised 67 male wrestlers (34 freestyle wrestlers and 33 Greco-Roman wrestlers). Exercise addiction was assessed using the Exercise Addiction Scale. Whole-genome genotyping was performed using DNA microarray. RESULTS Using a genome-wide approach (p < 1.0 × 10-⁵), we identified six suggestively significant single-nucleotide polymorphisms (SNPs) associated with exercise addiction status. Of these, the high-addiction alleles of five SNPs (PRDM10 rs74345126, near PTPRU rs72652685, HADHB rs6745226, XIRP2 rs17614860, and near GAREM2 rs1025542) have previously been associated with an increased risk of mental health disorders such as anxiety and depression or higher levels of physical activity. We also examined potential associations between the genetic markers previously linked to addiction-related traits such as obsessive-compulsive disorder and cigarette smoking, and personality traits linked to negative emotions including neuroticism. Using this candidate gene approach (p < 0.05), we identified three additional SNPs associated with exercise addiction in the same direction of association (DEFB135 rs4841662, BCL11A rs7599488, and CSRNP3 rs1551336). CONCLUSIONS The present study provides preliminary evidence for the genetic basis of exercise addiction, highlighting specific SNPs that may play a role in the development of this condition among elite wrestlers.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, Bingol 12000, Türkiye;
| | - Anıl Kasakolu
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara 06135, Türkiye;
| | - Türker Bıyıklı
- Sports Science Faculty, Marmara University, İstanbul 34722, Türkiye;
| | - Seyrani Koncagul
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06135, Türkiye;
| | - Hasan H. Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara 06010, Türkiye;
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia;
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mehmet A. Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye;
| | - Mark D. Griffiths
- International Gaming Research Unit, Psychology Department, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | - Attila Szabo
- Faculty of Health and Sport Sciences, Széchenyi István University, H-9026 Győr, Hungary
| |
Collapse
|
2
|
Zhang F, Shao Y, Zhang X, Zhang H, Tan Y, Yang G, Wang X, Jia Z, Gong Q, Zhang H. Neuropsychological insights into exercise addiction: the role of brain structure and self-efficacy in middle-older individuals. Cereb Cortex 2024; 34:bhad514. [PMID: 38186007 DOI: 10.1093/cercor/bhad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
This study aimed to investigate the relationship between exercise addiction and brain structure in middle-older individuals, and to examine the role of self-efficacy in mediating physiological changes associated with exercise addiction. A total of 133 patients exhibiting symptoms of exercise addiction were recruited for this study (male = 43, age 52.86 ± 11.78 years). Structural magnetic resonance imaging and behavioral assessments were administered to assess the study population. Voxel-based morphological analysis was conducted using SPM12 software. Mediation analysis was employed to explore the potential neuropsychological mechanism of self-efficacy in relation to exercise addiction. The findings revealed a positive correlation between exercise addiction and gray matter volume in the right inferior temporal region and the right hippocampus. Conversely, there was a negative correlation with gray matter volume in the left Rolandic operculum. Self-efficacy was found to indirectly influence exercise addiction by affecting right inferior temporal region gray matter volume and acted as a mediating variable in the relationship between the gray matter volume of right inferior temporal region and exercise addiction. In summary, this study elucidates the link between exercise addiction and brain structure among middle-older individuals. It uncovers the intricate interplay among exercise addiction, brain structure, and psychological factors. These findings enhance our comprehension of exercise addiction and offer valuable insights for the development of interventions and treatments.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiaonan Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Haoyu Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|