1
|
Elshoura Y, Herz M, Gad MZ, Hanafi R. Nitro fatty acids: A comprehensive review on analytical methods and levels in health and disease. Anal Biochem 2024; 694:115624. [PMID: 39029643 DOI: 10.1016/j.ab.2024.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Nitro fatty acids (NO2-FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO2-FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO2-FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.
Collapse
Affiliation(s)
- Yasmin Elshoura
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt
| | - Magy Herz
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt.
| | - Mohamed Z Gad
- Department of Biochemistry, German University in Cairo, Egypt
| | - Rasha Hanafi
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt
| |
Collapse
|
2
|
Erdem S, Özaçmak HS, Turan İ, Ergenç M. The protective effect of angiotensin II type I receptor blocker (valsartan) on behavioral impairment, NLRP3, BDNF, and oxidative stress in the brain tissue of ovariectomized female rats. Physiol Rep 2024; 12:e70003. [PMID: 39443283 PMCID: PMC11498971 DOI: 10.14814/phy2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Depression and anxiety are common mental health disorders affecting thoughts, behaviors, and emotions. This study aimed to investigate the effect of the angiotensin II type I receptor blocker (AT1RB), valsartan, on menopause-induced depression and anxiety-like behaviors, and to elucidate possible mechanisms of action by measuring levels of nod-like receptor protein 3 (NLRP3), interleukin-1beta (IL-1β), brain-derived neurotrophic factor (BDNF), and oxidative stress in brain tissue. Thirty-two Wistar albino female rats were randomly divided into four groups (n = 8 per group): Control, AT1RB, OVX, and AT1RB + OVX. Following the bilateral ovariectomy (OVX) protocol, physiological saline was used as valsartan solvent, in a maximum volume of 0.4 mL, and valsartan was administered via intragastric gavage at a dose of 40 mg/kg/day. Depression and anxiety-like behaviors were assessed using the forced swimming test and open field test. Levels of oxidative stress markers, NLRP3, IL-1β, BDNF, and CREB were analyzed in the hippocampus and prefrontal cortex tissues. Behavioral tests indicated that depression and anxiety-like behaviors significantly increased in OVX rats (p < 0.01), while AT1RB treatment significantly reduced these behaviors (p < 0.05). In the hippocampus of OVX rats, oxidative stress (p < 0.01), NLRP3 (p < 0.05), and IL-1β (p < 0.01) levels were elevated, whereas BDNF levels were significantly decreased (p < 0.01). AT1RB treatment significantly improved oxidative stress parameters (p < 0.05) and BDNF levels (p < 0.01) but did not significantly affect the increased levels of NLRP3 and IL-1β in OVX rats. In conclusion, AT1RB has a therapeutic effect on menopause-induced depression and anxiety-like behaviors, likely by reducing oxidative stress and increasing BDNF production in the hippocampus.
Collapse
Affiliation(s)
- Salih Erdem
- Ahmet Erdoğan Vocational School of Health Services, Pathology ProgramZonguldak Bülent Ecevit UniversityZonguldakTurkey
| | - Hale Sayan Özaçmak
- Department of Physiology, Faculty of MedicineZonguldak Bülent Ecevit UniversityZonguldakTurkey
| | - İnci Turan
- Department of Physiology, Faculty of MedicineZonguldak Bülent Ecevit UniversityZonguldakTurkey
| | - Meryem Ergenç
- Ahmet Erdoğan Vocational School of Health Services, Anesthesia ProgramZonguldak Bülent Ecevit UniversityZonguldakTurkey
| |
Collapse
|
3
|
Olschewski DN, Nazarzadeh N, Lange F, Koenig AM, Kulka C, Abraham JA, Blaschke SJ, Merkel R, Hoffmann B, Fink GR, Schroeter M, Rueger MA, Vay SU. The angiotensin II receptors type 1 and 2 modulate astrocytes and their crosstalk with microglia and neurons in an in vitro model of ischemic stroke. BMC Neurosci 2024; 25:29. [PMID: 38926677 PMCID: PMC11202395 DOI: 10.1186/s12868-024-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons. RESULT The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes. CONCLUSION Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.
Collapse
Affiliation(s)
- Daniel Navin Olschewski
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Nilufar Nazarzadeh
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Felix Lange
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Anna Maria Koenig
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Christina Kulka
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jella-Andrea Abraham
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Stefan Johannes Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Rudolf Merkel
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Bernd Hoffmann
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Sabine Ulrike Vay
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Murck H, Karailiev P, Karailievova L, Puhova A, Jezova D. Treatment with Glycyrrhiza glabra Extract Induces Anxiolytic Effects Associated with Reduced Salt Preference and Changes in Barrier Protein Gene Expression. Nutrients 2024; 16:515. [PMID: 38398838 PMCID: PMC10893552 DOI: 10.3390/nu16040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
We have previously identified that low responsiveness to antidepressive therapy is associated with higher aldosterone/cortisol ratio, lower systolic blood pressure, and higher salt preference. Glycyrrhiza glabra (GG) contains glycyrrhizin, an inhibitor of 11β-hydroxysteroid-dehydrogenase type-2 and antagonist of toll-like receptor 4. The primary hypothesis of this study is that food enrichment with GG extract results in decreased anxiety behavior and reduced salt preference under stress and non-stress conditions. The secondary hypothesis is that the mentioned changes are associated with altered gene expression of barrier proteins in the prefrontal cortex. Male Sprague-Dawley rats were exposed to chronic mild stress for five weeks. Both stressed and unstressed rats were fed a diet with or without an extract of GG roots for the last two weeks. GG induced anxiolytic effects in animals independent of stress exposure, as measured in elevated plus maze test. Salt preference and intake were significantly reduced by GG under control, but not stress conditions. The gene expression of the barrier protein claudin-11 in the prefrontal cortex was increased in control rats exposed to GG, whereas stress-induced rise was prevented. Exposure to GG-enriched diet resulted in reduced ZO-1 expression irrespective of stress conditions. In conclusion, the observed effects of GG are in line with a reduction in the activity of central mineralocorticoid receptors. The treatment with GG extract or its active components may, therefore, be a useful adjunct therapy for patients with subtypes of depression and anxiety disorders with heightened renin-angiotensin-aldosterone system and/or inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039 Marburg, Germany
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Agnesa Puhova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| |
Collapse
|
5
|
de Miranda AS, Macedo DS, Rocha NP, Teixeira AL. Targeting the Renin-Angiotensin System (RAS) for Neuropsychiatric Disorders. Curr Neuropharmacol 2024; 22:107-122. [PMID: 36173067 PMCID: PMC10716884 DOI: 10.2174/1570159x20666220927093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Interdisciplinary Laboratory of Medical Investigation (LIIM), Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
- Department of Morphology, Laboratory of Neurobiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle S Macedo
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natalia P Rocha
- Department of Neurology, The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
- Faculdade Santa Casa BH, Belo Horizonte, Brasil
| |
Collapse
|
6
|
Karmakar V, Gorain B. Potential molecular pathways of angiotensin receptor blockers in the brain toward cognitive improvement in dementia. Drug Discov Today 2024; 29:103850. [PMID: 38052318 DOI: 10.1016/j.drudis.2023.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
The alarming rise of cognitive impairment and memory decline and limited effective solutions present a worldwide concern for dementia patients. The multivariant role of the renin-angiotensin system (RAS) in the brain offers strong evidence of a role for angiotensin receptor blockers (ARBs) in the management of memory impairment by modifying glutamate excitotoxicity, downregulating inflammatory cytokines such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)α, inhibiting kynurenine aminotransferase (KAT)-II, nucleotide-binding domain, leucine-rich-containing family and pyrin-domain-containing-3 (NLRP3) inflammasomes, boosting cholinergic activity, activating peroxisome proliferator-activated receptor (PPAR)-γ, countering cyclooxygenase (COX) and mitigating the hypoxic condition. The present work focuses on the intricate molecular mechanisms involved in brain-RAS, highlighting the role of ARBs, connecting links between evidence-based unexplored pathways and investigating probable biomarkers involved in dementia through supported preclinical and clinical literature.
Collapse
Affiliation(s)
- Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
7
|
Holman EA, Cramer SC. Lifetime and Acute Stress Predict Functional Outcomes Following Stroke: Findings From the Longitudinal STRONG Study. Stroke 2023; 54:2794-2803. [PMID: 37767737 PMCID: PMC10615770 DOI: 10.1161/strokeaha.123.043356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Stroke is a sudden-onset, uncontrollable event; stroke-related stress may impede rehabilitation and recovery. Lifetime stress may sensitize patients to experiencing greater stroke-related stress and indirectly affect outcomes. We examine lifetime stress as predictor of poststroke acute stress and examine lifetime and acute stress as predictors of 3- and 12-month functional status. We also compare acute stress and baseline National Institutes of Health Stroke Scale as predictors of poststroke functional status. METHODS Between 2016 and 2020 the STRONG Study (Stroke, Stress, Rehabilitation, and Genetics) enrolled adults with new radiologically confirmed stroke 2 to 10 days poststroke onset at 28 acute care US hospitals. Participants were interviewed 3 times: acute admission (acute stress; Acute Stress Disorder Interview), 3 months (Fugl-Meyer Upper Extremity motor impairment [Fugl-Meyer Upper Arm Assessment; N=431], modified Rankin Scale [3 months; N=542], Stroke Impact Scale-Activities of Daily Living [3 months; N=511], Lifetime Stress Exposure Inventory), and 12 months (modified Rankin Scale, N=533; Stroke Impact Scale 3.0 Activities of Daily Living; N=485; Telephone Montreal Cognitive Assessment; N=484) poststroke. Structural equation models examined whether acute stress predicted 3- and 12-month functional outcomes, and mediated an association between lifetime stress and outcomes controlling for demographics and initial National Institutes of Health Stroke Scale. Standardized betas are reported. RESULTS Sample (N=763) was 19 to 95 years old (mean=63; SD=14.9); 448 (58.7%) were male. Acute stress scores ranged from 0 to 14 (mean, 3.52 [95% CI, 3.31-3.73]). Controlling for age, gender, baseline National Institutes of Health Stroke Scale, and race and ethnicity, higher lifetime stress predicted higher acute stress (β=0.18, P<0.001), which predicted lower 3-month Fugl-Meyer Upper Arm Assessment scores (β=-0.19, P<0.001), lower Stroke Impact Scale 3.0 Activities of Daily Living scores at 3 months (β=-0.21, P<0.001) and 12 months (β=-0.21, P<0.001), higher modified Rankin Scale scores at 3 months (β=0.23, P<0.001) and 12 months (β=0.22, P<0.001), and lower 12-month Telephone Montreal Cognitive Assessment scores (β=-0.20, P<0.001). Acute stress predicted 12-month tMoCA (χ2[1]=5.29, P=0.022) more strongly, 3-month and 12-month modified Rankin Scale and SIS scores as strongly (all Ps>0.18), but Fugl-Meyer scores (χ2[1]=7.01, P=0.008) less strongly than baseline National Institutes of Health Stroke Scale. CONCLUSIONS Lifetime stress/trauma is associated with more poststroke acute stress, which is associated with greater motor and cognitive impairment and disability 3 and 12 months poststroke. Poststroke interventions for acute stress may help mitigate stroke-related disability.
Collapse
Affiliation(s)
- E. Alison Holman
- Sue & Bill Gross School of Nursing, Room 4517, Nursing & Health Sciences Hall, University of California, Irvine, CA 92697
- Department of Psychological Science, 4201 Social & Behavioral Sciences Gateway, University of California, Irvine, CA 92697
| | - Steven C. Cramer
- Department of Neurology, University of California, Los Angeles; and California Rehabilitation Institute
| |
Collapse
|
8
|
Ababei DC, Balmus IM, Bild W, Ciobica AS, Lefter RM, Rusu RN, Stanciu GD, Cojocaru S, Hancianu M, Bild V. The Impact of Some Modulators of the Renin-Angiotensin System on the Scopolamine-Induced Memory Loss Mice Model. Brain Sci 2023; 13:1211. [PMID: 37626567 PMCID: PMC10452197 DOI: 10.3390/brainsci13081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
As some of the renin-angiotensin-aldosterone system (RAAS)-dependent mechanisms underlying the cognitive performance modulation could include oxidative balance alterations, in this study we aimed to describe some of the potential interactions between RAAS modulators (Losartan and Ramipril) and oxidative stress in a typical model of memory impairment. In this study, 48 white male Swiss mice were divided into six groups and received RAAS modulators (oral administration Ramipril 4 mg/kg, Losartan 20 mg/kg) and a muscarinic receptors inhibitor (intraperitoneal injection scopolamine, 0.5 mg/kg) for 8 consecutive days. Then, 24 h after the last administration, the animals were euthanized and whole blood and brain tissues were collected. Biological samples were then processed, and biochemical analysis was carried out to assess superoxide dismutase and glutathione activities and malondialdehyde concentrations. In the present experimental conditions, we showed that RAAS modulation via the angiotensin-converting enzyme inhibition (Ramipril) and via the angiotensin II receptor blockage (Losartan) chronic treatments could lead to oxidative stress modulation in a non-selective muscarinic receptors blocker (scopolamine) animal model. Our results showed that Losartan could exhibit a significant systemic antioxidant potential partly preventing the negative oxidative effects of scopolamine and a brain antioxidant potential, mainly by inhibiting the oxidative-stress-mediated cellular damage and apoptosis. Ramipril could also minimize the oxidative-mediated damage to the lipid components of brain tissue resulting from scopolamine administration. Both blood serum and brain changes in oxidative stress status were observed following 8-day treatments with Ramipril, Losartan, scopolamine, and combinations. While the serum oxidative stress modulation observed in this study could suggest the potential effect of RAAS modulation and scopolamine administration on the circulatory system, blood vessels endothelia, and arterial tension modulation, the observed brain tissues oxidative stress modulation could lead to important information on the complex interaction between renin-angiotensin and cholinergic systems.
Collapse
Affiliation(s)
- Daniela-Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (R.-N.R.); (V.B.)
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Walther Bild
- Center of Biomedical Research, Romanian Academy, B dul Carol I, no 8, 700505 Iasi, Romania; (A.S.C.); (R.M.L.)
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Alin Stelian Ciobica
- Center of Biomedical Research, Romanian Academy, B dul Carol I, no 8, 700505 Iasi, Romania; (A.S.C.); (R.M.L.)
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Radu Marian Lefter
- Center of Biomedical Research, Romanian Academy, B dul Carol I, no 8, 700505 Iasi, Romania; (A.S.C.); (R.M.L.)
| | - Răzvan-Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (R.-N.R.); (V.B.)
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Cojocaru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Veronica Bild
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (R.-N.R.); (V.B.)
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, B dul Carol I, no 8, 700505 Iasi, Romania; (A.S.C.); (R.M.L.)
| |
Collapse
|
9
|
Gradus JL, Smith ML, Szentkúti P, Rosellini AJ, Horváth-Puhó E, Lash TL, Galea S, Schnurr PP, Sumner JA, Sørensen HT. Antihypertensive Medications and PTSD Incidence in a Trauma Cohort. J Clin Psychiatry 2023; 84:22m14767. [PMID: 37530605 PMCID: PMC10545136 DOI: 10.4088/jcp.22m14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Objective: Antihypertensive medications have been examined as agents for posttraumatic stress disorder (PTSD) prevention in trauma-exposed individuals, given well-documented associations between PTSD and increased risk of cardiovascular disease and purported trauma-relevant mechanisms of action for these medications. Evidence regarding the effectiveness of such drugs for this purpose remains mixed. Methods: We conducted a national population-based cohort study using data from Danish national registries to assess whether 4 classes of antihypertensive drugs (beta-adrenoceptor blockers [beta blockers], angiotensin II receptor blockers [ARBs], angiotensin-converting enzyme [ACE] inhibitors, and calcium channel blockers) were associated with a decreased incidence of PTSD (diagnosed according to ICD-10) over a 22-year study period. Data for this study originated from a population-based cohort of over 1.4 million persons who experienced a traumatic event between 1994 and 2016 in Denmark. We calculated the incidence rate of PTSD per 100,000 person-years among persons who filled a prescription for each class of drug in the 60 days prior to a traumatic event and for corresponding unexposed comparison groups. We then used Cox proportional hazards regression to compare the rate of PTSD among persons who filled an antihypertensive medication prescription within 60 days before their trauma to the rate among persons who did not. Results: We found evidence that calcium channel blockers were associated with a decreased incidence of PTSD (adjusted hazard ratio = 0.63, 95% confidence interval [CI] = 0.34, 1.2); all other antihypertensive medication classes had null or near null associations. Conclusions: These findings lay a foundation for additional research focusing on antihypertensive medications that appear most effective in reducing PTSD incidence following trauma and for additional replication work aimed at continuing to clarify the disparate findings reported in the literature to date.
Collapse
Affiliation(s)
- Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Massachusetts
- Corresponding Author: Jaimie L. Gradus, DMSc, DSc, Boston University School of Public Health, 715 Albany St T317E, Boston, MA 02118
| | - Meghan L Smith
- Department of Epidemiology, Boston University School of Public Health, Massachusetts
| | - Péter Szentkúti
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Anthony J Rosellini
- Department of Epidemiology, Boston University School of Public Health, Massachusetts
| | | | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Sandro Galea
- Department of Epidemiology, Boston University School of Public Health, Massachusetts
| | - Paula P Schnurr
- Executive Division, National Center for PTSD, White River Junction, Vermont
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | - Henrik T Sørensen
- Department of Epidemiology, Boston University School of Public Health, Massachusetts
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Nakagawasai O, Takahashi K, Koyama T, Yamagata R, Nemoto W, Tan-No K. Activation of angiotensin-converting enzyme 2 produces an antidepressant-like effect via MAS receptors in mice. Mol Brain 2023; 16:52. [PMID: 37312182 DOI: 10.1186/s13041-023-01040-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Angiotensin (Ang)-converting-enzyme (ACE) 2 converts Ang II into Ang (1-7), which in turn acts on MAS receptors (ACE2/Ang (1-7)/MAS receptors pathway). This pathway has neuroprotective properties, making it a potential therapeutic target for psychiatric disorders such as depression. Thus, we examined the effects of diminazene aceturate (DIZE), an ACE2 activator, on depressive-like behavior using behavioral, pharmacological, and biochemical assays. To determine whether DIZE or Ang (1-7) produce antidepressant-like effects, we measured the duration of immobility of mice in the tail suspension test following their intracerebroventricular administration. Next, we measured the levels of ACE2 activation in the cerebral cortex, prefrontal cortex, hippocampus, and amygdala after DIZE injection, and examined which cell types, including neurons, microglia, and astrocytes, express ACE2 in the hippocampus using immunofluorescence. Administration of DIZE or Ang (1-7) significantly shortened the duration of immobility time in the tail suspension test, while this effect was inhibited by the co-administration of the MAS receptor antagonist A779. DIZE activated ACE2 in the hippocampus. ACE2 was localized to neurons, astrocytes, and microglia in the hippocampus. In conclusion, these results suggest that DIZE may act on ACE2-positive cells in the hippocampus where it increases the activity of ACE2, thereby enhancing signaling of the ACE2/Ang (1-7)/MAS receptor pathway and resulting in antidepressant-like effects.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Tochigi, Japan
| | - Taisei Koyama
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| |
Collapse
|
11
|
Gomes-de-Souza L, Santana FG, Duarte JO, Barretto-de-Souza L, Crestani CC. Angiotensinergic neurotransmission in the bed nucleus of the stria terminalis is involved in cardiovascular responses to acute restraint stress in rats. Pflugers Arch 2023; 475:517-526. [PMID: 36715761 DOI: 10.1007/s00424-023-02791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023]
Abstract
The brain angiotensin II acting via AT1 receptors is a prominent mechanism involved in physiological and behavioral responses during aversive situations. The AT2 receptor has also been implicated in stress responses, but its role was less explored. Despite these pieces of evidence, the brain sites related to control of the changes during aversive threats by the brain renin-angiotensin system (RAS) are poorly understood. The bed nucleus of the stria terminalis (BNST) is a limbic structure related to the cardiovascular responses by stress, and components of the RAS system were identified in this forebrain region. Therefore, we investigated the role of angiotensinergic neurotransmission present within the BNST acting via local AT1 and AT2 receptors in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, rats were subjected to bilateral microinjection of either the angiotensin-converting enzyme inhibitor captopril, the selective AT1 receptor antagonist losartan, or the selective AT2 receptor antagonist PD123319 before they underwent the restraint stress session. We observed that BNST treatment with captopril reduced the decrease in tail skin temperature evoked by restraint stress, without affecting the pressor and tachycardic responses. Local AT2 receptor antagonism within the BNST reduced both the tachycardia and the drop in tail skin temperature during restraint. Bilateral microinjection of losartan into the BNST did not affect the restraint-evoked cardiovascular changes. Taken together, these data indicate an involvement of BNST angiotensinergic neurotransmission acting via local AT2 receptors in cardiovascular responses during stressful situations.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Flávia G Santana
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Barretto-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
12
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Stress-induced cardiometabolic perturbations, increased oxidative stress and ACE/ACE2 imbalance are improved by endurance training in rats. Life Sci 2022; 305:120758. [DOI: 10.1016/j.lfs.2022.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
14
|
Cabrera RJ, Baiardi L, Bregonzio C. AT1 Receptor as a Potential Target in Amphetamine-induced Neuroinflammation. Protein Pept Lett 2022; 29:371-374. [DOI: 10.2174/0929866529666220330154218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ricardo Jorge Cabrera
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Mendoza, IMBECU–CONICET, Paseo Dr.
Emilio Descotte 720, 5500 Mendoza, Argentina
| | - Lucia Baiardi
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET),
Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba,
Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET),
Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba,
Argentina
| |
Collapse
|
15
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
16
|
van Sloten TT, Souverein PC, Stehouwer CDA, Driessen JHM. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and risk of depression among older people with hypertension. J Psychopharmacol 2022; 36:594-603. [PMID: 35388727 PMCID: PMC9112619 DOI: 10.1177/02698811221082470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), commonly used antihypertensive drugs, may have a protective effect against depression in older individuals, but evidence in humans is limited. AIMS We evaluated the risk of depression, among older individuals with hypertension, comparing ACE or ARB initiators to thiazide(-like) diuretic initiators. Thiazide(-like) diuretics were used as control because these drugs are not associated with mood disorders. METHODS We used a propensity score-matched new user cohort design with routinely collected data from general practices in England from the Clinical Practice Research Datalink database. We matched 12,938 pairs of new users of ACEIs/ARBs and thiazide(-like) diuretics with hypertension (mean age 67.6 years; 54.7% women). Follow-up time started on the date of drug initiation and ended on the date of treatment discontinuation plus 30 days, or switch to a comparator, occurrence of a study event, death, date of patient's transfer out of practice, or end of the study period. The primary outcome was a composite endpoint of treated depression and nonfatal and fatal self-harm. RESULTS/OUTCOMES Compared to the thiazide(-like) diuretic group, ACEIs/ARBs use was not associated with a lower risk of the primary outcome (hazard ratio 0.96 (95% confidence interval: 0.79; 1.15)). Results did not differ according to lipophilicity, duration of use, and average daily dose, or class (ACEIs or ARBs). CONCLUSIONS/INTERPRETATION New use of ACEIs or ARBs is not associated with a lower risk of depression among individuals with hypertension.
Collapse
Affiliation(s)
- Thomas T van Sloten
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands,School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands,Thomas T van Sloten, Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ Maastricht, The Netherlands.
| | - Patrick C Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Coen DA Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands,School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johanna HM Driessen
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands,Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Xue B, Xue J, Yu Y, Wei SG, Beltz TG, Felder RB, Johnson AK. Predator Scent-Induced Sensitization of Hypertension and Anxiety-like Behaviors. Cell Mol Neurobiol 2022; 42:1141-1152. [PMID: 33201417 PMCID: PMC8126575 DOI: 10.1007/s10571-020-01005-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD), an anxiety-related syndrome, is associated with increased risk for cardiovascular diseases. The present study investigated whether predator scent (PS) stress, a model of PTSD, induces sensitization of hypertension and anxiety-like behaviors and underlying mechanisms related to renin-angiotensin systems (RAS) and inflammation. Coyote urine, as a PS stressor, was used to model PTSD. After PS exposures, separate cohorts of rats were studied for hypertensive response sensitization (HTRS), anxiety-like behaviors, and changes in plasma levels and mRNA expression of several components of the RAS and proinflammatory cytokines (PICs) in the lamina terminalis (LT), paraventricular nucleus (PVN), and amygdala (AMY). Rats exposed to PS as compared to control animals exhibited (1) a significantly greater hypertensive response (i.e., HTRS) when challenged with a slow-pressor dose of angiotensin (ANG) II, (2) significant decrease in locomotor activity and increase in time spent in the closed arms of a plus maze as well as general immobility (i.e., behavioral signs of increased anxiety), (3) upregulated plasma levels of ANG II and interleukin-6, and (4) increased expression of message for components of the RAS and PICs in key brain nuclei. All the PS-induced adverse effects were blocked by pretreatment with either an angiotensin-converting enzyme antagonist or a tumor necrosis factor-α inhibitor. The results suggest that PS, used as an experimental model of PTSD, sensitizes ANG II-induced hypertension and produces behavioral signs of anxiety, probably through upregulation of RAS components and inflammatory markers in plasma and brain areas associated with anxiety and blood pressure control.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA.
| | - Jiarui Xue
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA
| | - Yang Yu
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Shun-Guang Wei
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- The Franҫois M. Abboud Cardiovascular Research Center University of Iowa, Iowa City, IA, 52242, USA
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA
| | - Robert B Felder
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- The Franҫois M. Abboud Cardiovascular Research Center University of Iowa, Iowa City, IA, 52242, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA
- Health and Human Physiology, University of Iowa, Iowa City, IA, 52242, USA
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
- The Franҫois M. Abboud Cardiovascular Research Center University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
18
|
Sepehri H, Ganji F, Nazari Z, Vahid M. Effects of Goldblatt hypertension on rats’ hippocampal cholinergic system. Transl Neurosci 2022; 13:72-79. [PMID: 35528844 PMCID: PMC9021738 DOI: 10.1515/tnsci-2022-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background The classical renin-angiotensin system (RAS) has an important role in the cardiovascular system and water homeostasis in the body. Recently, the existence of RAS with all of its components has been shown in the mammalian brain. RAS participates in many brain activities, including memory acquisition and consolidation. Since the cholinergic neurotransmission in the hippocampus is crucial for these functions, this study aims to evaluate the hippocampal angiotensin receptors (ATs) and choline acetyltransferase (ChAT) mRNA in the renovascular hypertensive rats in captopril- and losartan-treated hypertensive rats. Methods The rats were randomly divided into four groups of eight animals; sham, Goldblatt two kidney one clip (2K1C) hypertensive rats and Goldblatt 2K1C hypertensive rats received 5 mg/kg captopril and Goldblatt 2K1C hypertensive rats received 10 mg/kg losartan. After 8 days of treatment, the rats were sacrificed and angiotensin-converting enzyme (ACE), ChAT, AT1, and AT2 receptor mRNAs in the hippocampus of rats were assessed by real-time PCR. The Morris water maze test was applied to measure the cognitive functioning of the rats. Results Hypertensive rats showed impaired acquisition and memory function in the Morris water maze test. Treatment with ACE inhibitor (captopril) and AT1 receptor antagonist (losartan) reversed the observed acquisition and memory deficit in hypertensive rats. Overexpression of AChE, AT1, and AT2 and low expression of ChAT were noted in the hippocampus of rats with Goldblatt hypertension compared with that of the sham group. Treatment with captopril significantly reversed these changes, while treatment with losartan slightly reduced the mentioned effects. Conclusion The memory-enhancing effect of captopril in renovascular hypertensive rats might lead to increased hippocampal ChAT expression.
Collapse
Affiliation(s)
- Hamid Sepehri
- Department of Physiology, Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Farzaneh Ganji
- Department of Biology, Faculty of Science, Golestan University , Gorgan , Iran
| | - Zahra Nazari
- Department of Biology, Faculty of Science, Golestan University , Gorgan , Iran
| | - Marzieh Vahid
- Department of Biology, Faculty of Science, Golestan University , Gorgan , Iran
| |
Collapse
|
19
|
Wang Y, Liu S, Liu Q, Lv Y. The Interaction of Central Nervous System and Acute Kidney Injury: Pathophysiology and Clinical Perspectives. Front Physiol 2022; 13:826686. [PMID: 35309079 PMCID: PMC8931545 DOI: 10.3389/fphys.2022.826686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Acute kidney injury (AKI) is a common disorder in critically ill hospitalized patients. Its main pathological feature is the activation of the sympathetic nervous system and the renin-angiotensin system (RAS). This disease shows a high fatality rate. The reason is that only renal replacement therapy and supportive care can reduce the impact of the disease, but those measures cannot significantly improve the mortality. This review focused on a generalization of the interaction between acute kidney injury and the central nervous system (CNS). It was found that the CNS further contributes to kidney injury by regulating sympathetic outflow and oxidative stress in response to activation of the RAS and increased pro-inflammatory factors. Experimental studies suggested that inhibiting sympathetic activity and RAS activation in the CNS and blocking oxidative stress could effectively reduce the damage caused by AKI. Therefore, it is of significant interest to specify the mechanism on how the CNS affects AKI, as we could use such mechanism as a target for clinical interventions to further reduce the mortality and improve the complications of AKI. Systematic Review Registration: [www.ClinicalTrials.gov], identifier [registration number].
Collapse
Affiliation(s)
- Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyang Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qingquan Liu,
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Guo S, Wang H, Yin Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:815347. [PMID: 35250543 PMCID: PMC8888930 DOI: 10.3389/fnagi.2022.815347] [Citation(s) in RCA: 372] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Microglia can be categorized into two opposite types: classical (M1) or alternative (M2), though there’s a continuum of different intermediate phenotypes between M1 and M2, and microglia can transit from one phenotype to another. M1 microglia release inflammatory mediators and induce inflammation and neurotoxicity, while M2 microglia release anti-inflammatory mediators and induce anti-inflammatory and neuroprotectivity. Microglia-mediated neuroinflammation is considered as a double-edged sword, performing both harmful and helpful effects in neurodegenerative diseases. Previous studies showed that balancing microglia M1/M2 polarization had a promising therapeutic prospect in neurodegenerative diseases. We suggest that shifting microglia from M1 to M2 may be significant and we focus on the modulation of microglia polarization from M1 to M2, especially by important signal pathways, in neurodegenerative diseases.
Collapse
|
21
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
22
|
Abstract
Identification of a new axis of angiotensin-converting enzyme 2 (ACE2)/angiotensin (1-7)/Mas receptor, in the renin-angiotensin system (RAS), has opened a new insight regarding the role of RAS and angiotensin in higher brain functions. ACE2 catabolizes angiotensin II and produces angiotensin (1-7), an agonist of Mas receptor. Mice lacking the Mas receptor (angiotensin 1-7 receptor) exhibit anxiety-like behaviours. The present study was conducted to test the hypothesis of the involvement of ACE2 genetic variant (G8790A) on response to selective serotonin reuptake inhibitors (SSRIs). In a randomised control trial, 200 newly diagnosed Iranian patients with major depressive disorder completed 6 weeks of fluoxetine or sertraline treatment. Patients with a reduction of 50% or more in the Hamilton Rating Scale for Depression score were considered responsive to treatment. G8790A polymorphism was determined in extracted DNAs using restriction fragment length polymerase chain reaction method. Our results show that the A allele and AA and GA genotypes were significantly associated with better response to SSRIs (p = 0.008; OR = 3.4; 95% CI = 1.4-8.5 and p = 0.027; OR = 3.3, 95% CI = 1.2-9.2, respectively). Moreover, patients with GA and AA genotypes responded significantly better to sertraline (p = 0.0002; OR = 9.1; 95% CI = 2.4-33.7). The A allele was significantly associated with better response to sertraline (p = 0.0001; OR = 7.6; 95% CI = 2.5-23.3). In conclusion, our results confirm the role of G8790A in response to some SSRIs.
Collapse
|
23
|
Repova K, Aziriova S, Krajcirovicova K, Simko F. Cardiovascular therapeutics: A new potential for anxiety treatment? Med Res Rev 2022; 42:1202-1245. [PMID: 34993995 PMCID: PMC9304130 DOI: 10.1002/med.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Besides the well‐recognized risk factors, novel conditions increasing cardiovascular morbidity and mortality are emerging. Undesirable emotions and behavior such as anxiety and depression, appear to participate in worsening cardiovascular pathologies. On the other hand, deteriorating conditions of the heart and vasculature result in disturbed mental and emotional health. The pathophysiological background of this bidirectional interplay could reside in an inappropriate activation of vegetative neurohormonal and other humoral systems in both cardiovascular and psychological disturbances. This results in circulus vitiosus potentiating mental and circulatory disorders. Thus, it appears to be of utmost importance to examine the alteration of emotions, cognition, and behavior in cardiovascular patients. In terms of this consideration, recognizing the potential of principal cardiovascular drugs to interact with the mental state in patients with heart or vasculature disturbances is unavoidable, to optimize their therapeutic benefit. In general, beta‐blockers, central sympatholytics, ACE inhibitors, ARBs, aldosterone receptor blockers, sacubitril/valsartan, and fibrates are considered to exert anxiolytic effect in animal experiments and clinical settings. Statins and some beta‐blockers appear to have an equivocal impact on mood and anxiety and ivabradine expressed neutral psychological impact. It seems reasonable to suppose that the knowledge of a patient's mood, cognition, and behavior, along with applying careful consideration of the choice of the particular cardiovascular drug and respecting its potential psychological benefit or harm might improve the individualized approach to the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Liu M, Lu L, Geng Q, Wang M, Bai C, Cheng G, Cui Y, Dong B, Fang J, Gao F, Huang R, Huang S, Li Y, Liu G, Liu Y, Lu Y, Ren Y, Mao J, Shi D, Su H, Sun X, Sun X, Tang X, Tian F, Tu H, Wang H, Wang Q, Wang X, Wang J, Wang L, Wang Y, Wang Y, Wang Z, Wen S, Wu H, Wu Y, Xiong P, Yu G, Yang N, Zhao X, Zhan H. Expert consensus on diagnosis and treatment of adult mental stress induced hypertension in China (2022 revision): Part A. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Zhao L, Li J, Kälviäinen R, Jolkkonen J, Zhao C. Impact of drug treatment and drug interactions in post-stroke epilepsy. Pharmacol Ther 2021; 233:108030. [PMID: 34742778 DOI: 10.1016/j.pharmthera.2021.108030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Stroke is a huge burden on our society and this is expected to grow in the future due to the aging population and the associated co-morbidities. The improvement of acute stroke care has increased the survival rate of stroke patients, and many patients are left with permanent disability, which makes stroke the main cause of adult disability. Unfortunately, many patients face other severe complications such as post-stroke seizures and epilepsy. Acute seizures (ASS) occur within 1 week after the stroke while later occurring unprovoked seizures are diagnosed as post-stroke epilepsy (PSE). Both are associated with a poor prognosis of a functional recovery. The underlying neurobiological mechanisms are complex and poorly understood. There are no universal guidelines on the management of PSE. There is increasing evidence for several risk factors for ASS/PSE, however, the impacts of recanalization, drugs used for secondary prevention of stroke, treatment of stroke co-morbidities and antiseizure medication are currently poorly understood. This review focuses on the common medications that stroke patients are prescribed and potential drug interactions possibly complicating the management of ASS/PSE.
Collapse
Affiliation(s)
- Lanqing Zhao
- Department of Sleep Medicine Center, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Jinwei Li
- Department of Stroke Center, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
26
|
Al-Zahrani J, Shubair MM, Aldossari KK, Al-Ghamdi S, Alroba R, Alsuraimi AK, Angawi K, El-Metwally A. Association between prehypertension and psychological distress among adults in Saudi Arabia: A population-based survey. Saudi J Biol Sci 2021; 28:5657-5661. [PMID: 34588876 PMCID: PMC8459069 DOI: 10.1016/j.sjbs.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Prehypertension is a precursor to hypertension status. Psychological distress has been identified earlier among hypertensives; however, there is little evidence for the presumptive relationship between prehypertension and psychological distress. OBJECTIVE The study aimed to assess the psychological wellbeing of the Al-Kharj, Saudi Arabia population, using the General Health Questionnaire (GHQ-12) and correlating it with prehypertensive patients in the same population. METHODS A cross-sectional analysis of the population of Al-Kharj, Saudi Arabia, was carried out between January and June of 2016. With an 85 percent response rate, a total of 1016 participants participated in the study. A multiple linear regression analysis was performed to assess the relationship between prehypertension and psychological distress. RESULTS The findings of the adjusted analysis demonstrated that, on average prehypertensive patients were more distressed psychologically than non-hypertensive patients (unstandardized Beta regression coefficient = 3.600; P-value 0.025). Similarly, on average women were found to be more psychologically distressed than men (unstandardized Beta = 1.511, P-value 0.002). Civil workers and unemployed individuals were more psychologically distressed than employed individuals (unstandardized Beta = 1.326, P-value 0.041) while adjusting for the sociodemographic and other variables such as BMI, diabetes status, cholesterol, and smoking status. CONCLUSION The current study shows that as compared to normotensive patients, self-rated mental wellbeing and psychological wellbeing are all considerably poorer among prehypertensive patients. To prevent individuals from having negative psychological outcomes and their long-term complications, the Government of Saudi Arabia needs to concentrate on prehypertensive, female, and unemployed individuals. Well-designed longitudinal studies, primarily in Saudi Arabia, are needed in the future to research the cause and impact of poor mental health and prehypertension.
Collapse
Affiliation(s)
- Jamaan Al-Zahrani
- Family & Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mamdouh M. Shubair
- School of Health Sciences, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Khaled K. Aldossari
- Family & Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sameer Al-Ghamdi
- Family & Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Raseel Alroba
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Khadijah Angawi
- Department of Health Services and Hospital Administration, Faculty of Economics and Administration, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf El-Metwally
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Balthazar L, Lages YVM, Romano VC, Landeira-Fernandez J, Krahe TE. The association between the renin-angiotensin system and the hypothalamic-pituitary-adrenal axis in anxiety disorders: A systematic review of animal studies. Psychoneuroendocrinology 2021; 132:105354. [PMID: 34329905 DOI: 10.1016/j.psyneuen.2021.105354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Anxiety is characterized as the emotional response in anticipation of a future threat. This hypervigilant state comprehends a cascade of neuroendocrine and physiological processes, involving the renin-angiotensin system (RAS) and hypothalamic-pituitary-adrenal axis (HPA). Excessive and chronic anxiety may ultimately lead to the development of anxiety disorders. This systematic review aimed to investigate experimental studies using animal models that explored the relationship between RAS and the HPA axis in anxiety disorders. A systematic search was conducted in MEDLINE/PubMed, Embase and Web of Science, and was performed according to PRISMA guidelines. The inclusion criteria was mainly the mention of RAS, HPA axis, and an anxiety disorder in the same study. Quality of studies was evaluated according to the table of risk of bias from SYRCLE. From 12 eligible studies, 7 were included. Research in rats and mice shows that the overactivation of the RAS and HPA axis triggers several neuroendocrine reactions, mainly mediated by AT1 receptors, which promote anxiety-like behaviors and positive feedback for its hyperactivation. On the contrary, the administration of antihypertensive drugs, such as angiotensin AT1 receptor blocker, propitiated the regulation of the RAS and HPA axis, maintaining homeostasis even amid aversive situations. Assessment of risk of bias revealed a pronounced unclear to high risk in several categories, which thus jeopardize the comparability and reproducibility of the results. Nonetheless, the preclinical evidence indicates that the hyperactivation of both RAS and HPA axis during stress exerts deleterious consequences, inducing anxiogenic responses. Moreover, the compiled results show that the modulation of both systems by the administration of AT1 receptor blockers produce anxiolytic effects in animal models and may constitute a new venue for the treatment of anxiety-like disorders.
Collapse
Affiliation(s)
- L Balthazar
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Y V M Lages
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - V C Romano
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - J Landeira-Fernandez
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - T E Krahe
- Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Zhao F, Zou Y, Li H, Zhang Y, Liu X, Zhao X, Wu X, Fei W, Xu Z, Yang X. Decreased angiotensin receptor 1 expression in ± AT1 Knockout mice testis results in male infertility and GnRH reduction. Reprod Biol Endocrinol 2021; 19:120. [PMID: 34344365 PMCID: PMC8330126 DOI: 10.1186/s12958-021-00805-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND This study aimed to detect the effect of angiotensin receptor 1 (AT1) knock out (KO) on spermatogenesis and hypothalamic-pituitary-gonadal (HPG) axis hormone expression. METHODS Normal C57BL/6 male mice were used as control group or treated with angiotensin receptor blocker, in addition heterozygous ± AT1KO mice were generated. After caged at a ratio of 2 to 1 with females, pregnancy rates of female mice were determined by detection of vaginal plugs. Deformity rate of spermatozoa was evaluated by eosin staining and morphology evaluation. The AT1 mRNA expression in the testes of male ± AT1KO mice was detected by quantitative real-time polymerase chain reaction (QRT-PCR). Serum GnRH level was determined by ELISA. RESULTS Compared to control, ± AT1KO mice showed reduced expression of AT1 in testes, pituitary and hypothalamus. In addition, decreased level of GnRH, but not follicle stimulating hormone (FSH) or luteinizing hormone (LH), in ± AT1KO mice was detected. Treatment with angiotensin receptor blocker (ARB) did not have significant effects on HPG hormones. ± AT1KO mice exhibited male infertility and significant abnormality of sperm morphology. CONCLUSION Reduced AT1 knockout resulted in male infertility, potentially by inducing abnormal spermatogenesis. Both testis and HPG axis signaling may be involved.
Collapse
Affiliation(s)
- Fangfang Zhao
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
- Institute of Nephrology, Guangming Traditional Chinese Medicine Hospital, 339 East gate Street, Pudong New Area, Shanghai, China
| | - Yun Zou
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Hui Li
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Yaheng Zhang
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Xuele Liu
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Xuehao Zhao
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Xinyi Wu
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Wenyi Fei
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Ziling Xu
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China
| | - Xuejun Yang
- Institute of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
29
|
The Impact of Perceived Personal Discrimination on Problem Behavior of Left-Behind Children: A Moderated Mediating Effect Model. Child Psychiatry Hum Dev 2021; 52:709-718. [PMID: 32894384 DOI: 10.1007/s10578-020-01054-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to determine how pathological Internet use and emotional intelligence affect the relationship between perceived personal discrimination and problem behavior of left behind children. Data were collected from 406 left-behind students from 6 rural primary and secondary schools in Mainland China. Results indicated that perceived personal discrimination could be a predictor of left-behind children's pathological Internet use, and further cause their problem behavior. Pathological Internet use had a partial mediating effect on the relation between perceived personal discrimination and problem behavior. In addition, emotional intelligence played a moderating role in the relationship between perceived personal discrimination and problem behavior, as well as between pathological Internet use and problem behavior. Emotional intelligence could alleviate the negative impact of perceived personal discrimination on problem behavior, as well as the negative impact of pathological Internet use on problem behavior.
Collapse
|
30
|
Mirzahosseini G, Ismael S, Ahmed HA, Ishrat T. Manifestation of renin angiotensin system modulation in traumatic brain injury. Metab Brain Dis 2021; 36:1079-1086. [PMID: 33835385 PMCID: PMC8273091 DOI: 10.1007/s11011-021-00728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) alters brain function and is a crucial public health concern worldwide. TBI triggers the release of inflammatory mediators (cytokines) that aggravate cerebral damage, thereby affecting clinical prognosis. The renin angiotensin system (RAS) plays a critical role in TBI pathophysiology. RAS is widely expressed in many organs including the brain. Modulation of the RAS in the brain via angiotensin type 1 (AT1) and type 2 (AT2) receptor signaling affects many pathophysiological processes, including TBI. AT1R is highly expressed in neurons and astrocytes. The upregulation of AT1R mediates the effects of angiotensin II (ANG II) including release of proinflammatory cytokines, cell death, oxidative stress, and vasoconstriction. The AT2R, mainly expressed in the fetal brain during development, is also related to cognitive function. Activation of this receptor pathway decreases neuroinflammation and oxidative stress and improves overall cell survival. Numerous studies have illustrated the therapeutic potential of inhibiting AT1R and activating AT2R for treatment of TBI with variable outcomes. In this review, we summarize studies that describe the role of brain RAS signaling, through AT1R and AT2R in TBI, and its modulation with pharmacological approaches.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
31
|
Wu L, Vasilijic S, Sun Y, Chen J, Landegger LD, Zhang Y, Zhou W, Ren J, Early S, Yin Z, Ho WW, Zhang N, Gao X, Lee GY, Datta M, Sagers JE, Brown A, Muzikansky A, Stemmer-Rachamimov A, Zhang L, Plotkin SR, Jain RK, Stankovic KM, Xu L. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci Transl Med 2021; 13:eabd4816. [PMID: 34261799 PMCID: PMC8409338 DOI: 10.1126/scitranslmed.abd4816] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/10/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Hearing loss is one of the most common symptoms of neurofibromatosis type 2 (NF2) caused by vestibular schwannomas (VSs). Fibrosis in the VS tumor microenvironment (TME) is associated with hearing loss in patients with NF2. We hypothesized that reducing the fibrosis using losartan, an FDA-approved antihypertensive drug that blocks fibrotic and inflammatory signaling, could improve hearing. Using NF2 mouse models, we found that losartan treatment normalized the TME by (i) reducing neuroinflammatory IL-6/STAT3 signaling and preventing hearing loss, (ii) normalizing tumor vasculature and alleviating neuro-edema, and (iii) increasing oxygen delivery and enhancing efficacy of radiation therapy. In preparation to translate these exciting findings into the clinic, we used patient samples and data and demonstrated that IL-6/STAT3 signaling inversely associated with hearing function, that elevated production of tumor-derived IL-6 was associated with reduced viability of cochlear sensory cells and neurons in ex vivo organotypic cochlear cultures, and that patients receiving angiotensin receptor blockers have no progression in VS-induced hearing loss compared with patients on other or no antihypertensives based on a retrospective analysis of patients with VS and hypertension. Our study provides the rationale and critical data for a prospective clinical trial of losartan in patients with VS.
Collapse
Affiliation(s)
- Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yao Sun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lukas D Landegger
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yanling Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wenjianlong Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Early
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, UC San Diego Medical Center, San Diego, CA 92103, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Na Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Xing Gao
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Grace Y Lee
- St. Mark's School, Southborough, MA 01772, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jessica E Sagers
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alona Muzikansky
- Division of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Saad MAE, Fahmy MIM, Sayed RH, El-Yamany MF, El-Naggar R, Hegazy AAE, Al-Shorbagy M. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia-reperfusion injury. J Biochem Mol Toxicol 2021; 35:e22796. [PMID: 33942446 DOI: 10.1002/jbt.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-β levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad A E Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| | - Mohamed I M Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Reham El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ahmed A E Hegazy
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Muhammad Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| |
Collapse
|
33
|
Kwon HS, Ha J, Kim JY, Park HH, Lee EH, Choi H, Lee KY, Lee YJ, Koh SH. Telmisartan Inhibits the NLRP3 Inflammasome by Activating the PI3K Pathway in Neural Stem Cells Injured by Oxygen-Glucose Deprivation. Mol Neurobiol 2021; 58:1806-1818. [PMID: 33404978 DOI: 10.1007/s12035-020-02253-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Angiotensin II receptor blockers (ARBs) have been shown to exert neuroprotective effects by suppressing inflammatory and apoptotic responses. In the present study, the effects of the ARB telmisartan on the NLRP3 inflammasome induced by oxygen-glucose deprivation (OGD) in neural stem cells (NSCs) were investigated, as well as their possible association with the activation of the PI3K pathway. Cultured NSCs were treated with different concentrations of telmisartan and subjected to various durations of OGD. Cell counting, lactate dehydrogenase, bromodeoxyuridine, and colony-forming unit assays were performed to measure cell viability and proliferation. In addition, the activity of intracellular signaling pathways associated with the PI3K pathway and NLRP3 inflammasome was evaluated. Telmisartan alone did not affect NSCs up to a concentration of 10 μM under normal conditions but showed toxicity at a concentration of 100 μM. Moreover, OGD reduced the viability of NSCs in a time-dependent manner. Nevertheless, treatment with telmisartan increased the viability and proliferation of OGD-injured NSCs. Furthermore, telmisartan promoted the expression of survival-related proteins and mRNA while inhibiting the expression of death-related proteins induced by OGD. In particular, telmisartan attenuated OGD-dependent expression of the NLRP3 inflammasome and its related signaling proteins. These beneficial effects of telmisartan were blocked by a PI3K inhibitor. Together, these results indicate that telmisartan attenuated the activation of the NLRP3 inflammasome by triggering the PI3K pathway, thereby contributing to neuroprotection.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Jungsoon Ha
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- GemVax & Kael Co., Ltd, Seongnam-si, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Conventional cardiovascular risk factors in Transient Global Amnesia: Systematic review and proposition of a novel hypothesis. Front Neuroendocrinol 2021; 61:100909. [PMID: 33539928 DOI: 10.1016/j.yfrne.2021.100909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Transient Global Amnesia (TGA) is an enigmatic amnestic syndrome. We conducted a systematic review to investigate the relationship between the conventional cardiovascular risk factors and TGA. MEDLINE, CENTRAL, EMBASE and PsycINFO were comprehensively searched and 23 controlled observational studies were retrieved. The prevalence of hypertension, diabetes mellitus, dyslipidemia and smoking was lower among patients with TGA compared to Transient Ischemic Attack. Regarding the comparison of TGA with healthy individuals, there was strong evidence suggesting a protective effect of diabetes mellitus on TGA and weaker evidence for a protective effect of smoking. Hypertension was associated with TGA only in more severe stages, while dyslipidemia was not related. In view of these findings, a novel pathophysiological hypothesis is proposed, in which the functional interactions of Angiotensin-II type-1 and N-methyl-D-aspartate receptors are of pivotal importance. The whole body of clinical evidence (nature of precipitating events, associations with migraine, gender-based association patterns) was integrated.
Collapse
|
35
|
Marvar PJ, Andero R, Hurlemann R, Lago TR, Zelikowsky M, Dabrowska J. Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 PMCID: PMC7880296 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology & Physiology, Department of Psychiatry and Behavioral Sciences, George Washington Institute for Neuroscience, George Washington University, Washington, DC, 20037
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain, 08193. Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain, 28029. ICREA, Pg. Lluís Companys 23, Barcelona, Spain, 08010
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, and Research Center Neurosensory Science, University of Oldenburg, Oldenburg, 26129, Germany
| | - Tiffany R Lago
- Department of Psychiatry, Veterans Administration Boston Healthcare System, Boston, Massachusetts, 02130
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah, 84112
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| |
Collapse
|
36
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. Role of angiotensin receptors in the medial amygdaloid nucleus in autonomic, baroreflex and cardiovascular changes evoked by chronic stress in rats. Eur J Neurosci 2021; 53:763-777. [PMID: 33372338 DOI: 10.1111/ejn.15094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023]
Abstract
This study investigated the role of AT1 , AT2 and Mas angiotensinergic receptors within the MeA in autonomic, cardiovascular and baroreflex changes evoked by a 10-day (1 hr daily) repeated restraint stress (RRS) protocol. Analysis of cardiovascular function after the end of the RRS protocol indicated increased values of arterial pressure, without heart rate changes. Arterial pressure increase was not affected by acute MeA treatment after the RRS with either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319 or the selective Mas receptor antagonist A-779. Analysis of heart rate variability indicated that RRS increased the sympathetic tone to the heart, which was inhibited by MeA treatment with either losartan, PD123319 or A-779. Baroreflex function assessed using the pharmacological approach via intravenous infusion of vasoactive agents revealed a facilitation of tachycardia evoked by blood pressure decrease in chronically stressed animals, which was inhibited by MeA treatment with losartan. Conversely, baroreflex responses during spontaneous fluctuations of blood pressure were impaired by RRS, and this effect was not affected by injection of the angiotensinergic receptor antagonists into the MeA. Altogether, the data reported in the present study suggest an involvement of both angiotensinergic receptors present in the MeA in autonomic imbalance evoked by RRS, as well as an involvement of MeA AT1 receptor in the enhanced baroreflex responses during full range of blood pressure changes. Results also indicate that RRS-evoked increase in arterial pressure and impairment of baroreflex responses during spontaneous variations of arterial pressure are independent of MeA angiotensinergic receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
37
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
38
|
Park HS, You MJ, Yang B, Jang KB, Yoo J, Choi HJ, Lee SH, Bang M, Kwon MS. Chronically infused angiotensin II induces depressive-like behavior via microglia activation. Sci Rep 2020; 10:22082. [PMID: 33328497 PMCID: PMC7744531 DOI: 10.1038/s41598-020-79096-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/02/2020] [Indexed: 01/14/2023] Open
Abstract
Brain inflammation is one of hypotheses explaining complex pathomechanisms of depression. Angiotensin II (ANGII), which is associated with hypertension, also induces brain inflammation. However, there is no animal study showing the direct relationship between ANGII and depression. To address this issue, ANGII-containing osmotic pumps were implanted into adult male C57BL/6 mice subcutaneously for subacute (7 days) and chronic (at least 21 days) periods and behavioral and molecular analyses were conducted. Chronic infusion of ANGII into mice induced depressive-like behaviors, including the tail suspension test and forced swimming test, which were reversed by imipramine. Chronic infusion of ANGII also induced microglial activation in the hippocampus with increase of Il-1β mRNA and decrease of Arg1 mRNA. In addition, chronic ANGII infusion activated the hypothalamic–pituitary–adrenal axis (HPA axis) and resulted in decreased hippocampal glucocorticoid receptor level. However, subacute ANGII infusion did not induce significant molecular and behavioral changes in mice compared to that of control. The molecular and behavioral changes by chronic ANGII infusion were reversed by co-treatment of minocycline or telmisartan. In addition, ANGII treatment also induced the pro-inflammatory changes in BV-2 microglial cells. Our results indicate that ANGII can induce depressive-like behaviors via microglial activation in the hippocampus and HPA axis hyperactivation in mice. These might suggest possible mechanism on depressive symptom in chronic hypertensive state.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Bohyun Yang
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kyu Beom Jang
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jongman Yoo
- Department of Microbiology and School of Medicine, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHABIOCOMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
39
|
Mohite S, Sanches M, Teixeira AL. Exploring the Evidence Implicating the Renin-Angiotensin System (RAS) in the Physiopathology of Mood Disorders. Protein Pept Lett 2020; 27:449-455. [PMID: 31868144 DOI: 10.2174/0929866527666191223144000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023]
Abstract
Mood disorders include Major Depressive Disorder (MDD), Bipolar Disorder (BD) and variations of both. Mood disorders has a public health significance with high comorbidity, suicidal mortality and economic burden on the health system. Research related to mood disorders has evolved over the years to relate it with systemic conditions. The Renin Angiotensin System (RAS) has been noticed to play major physiological roles beyond renal and cardiovascular systems. Recent studies have linked RAS not only with neuro-immunological processes, but also with psychiatric conditions like mood and anxiety disorders. In this comprehensive review, we integrated basic and clinical studies showing the associations between RAS and mood disorders. Animal studies on mood disorders models - either depression or mania - were focused on the reversal of behavioral and/or cognitive symptoms through the inhibition of RAS components like the Angiotensin- Converting Enzyme (ACE), Angiotensin II Type 1 receptor (AT1) or Mas receptors. ACE polymorphisms, namely insertion-deletion (I/D), were linked to mood disorders and suicidal behavior. Hypertension was associated with neurocognitive deficits in mood disorders, which reversed with RAS inhibition. Low levels of RAS components (renin activity or aldosterone) and mood symptoms improvement with ACE inhibitors or AT1 blockers were also observed in mood disorders. Overall, this review reiterates the strong and under-researched connection between RAS and mood disorders.
Collapse
Affiliation(s)
- Satyajit Mohite
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| |
Collapse
|
40
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
41
|
Xiong J, Gao Y, Li X, Li K, Li Q, Shen J, Han Z, Zhang J. Losartan Treatment Could Improve the Outcome of TBI Mice. Front Neurol 2020; 11:992. [PMID: 33178092 PMCID: PMC7593661 DOI: 10.3389/fneur.2020.00992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury frequently leads to serious mortality and physical disability, yet effective treatments remains insufficient. TBI always leads to a series of secondary brain injuries including neuronal apoptosis, continuous inflammation, endoplasmic reticulum stress, and disruption of the blood-brain barrier. Sartans that block angiotensin II type 1 receptors are strongly neuroprotective, neurorestorative and anti-inflammatory. However, whether losartan, a FDA-approved and widely used drug for regulating blood pressure, is beneficial for improving the prognosis of TBI need more evidence. Through a controlled cortical impact injury mice model, we confirmed that losartan treatment could ameliorate CCI-induced secondary brain injury. We found that losartan treatment decreased brain lesion volume, neuronal apoptosis and ER stress protein ATF4 and eIF2α. Moreover, our results showed that losartan also improved neurological and motor function. It is worth pointing out that losartan increased the expression of tight junction proteins ZO-1 and alleviated brain edema and blood brain barrier leakage. Additionally, losartan inhibited pro-inflammatory factor TNF-α and improve anti-inflammatory factor IL-10. Taken together, our data demonstrated that losartan could improve the prognosis of TBI and may be a promising therapeutic method for mitigating TBI.
Collapse
Affiliation(s)
- Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qifeng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Shen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenying Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
42
|
Lin SY, Lin CL, Lin CC, Hsu WH, Lin CD, Wang IK, Hsieh MH, Hsu CY, Kao CH. Association between angiotensin receptor blockers and suicide: nationwide population-based propensity score matching study. J Affect Disord 2020; 276:815-821. [PMID: 32738666 DOI: 10.1016/j.jad.2020.07.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) have been reported to ameliorate anxiety and mood disorders in animal models. Cohort links between ARB use and suicide risk in humans require clarification. METHODS Data were obtained from the National Health Insurance Research Database. Patients diagnosed as having hypertension according to the criteria of the International Classification of Diseases, Ninth Revision, Clinical Modification (401-405) from January 1, 2000 to December 31, 2012 were enrolled as the target population. We defined enrollees who had received ARB prescriptions for at least 28 days as ARB users. Those who had never taken ARB prior or during the study period were defined as ARB nonusers and were propensity score-matched with ARB users. The end outcome was confirmation of a suicide attempt. RESULTS After propensity score matching was conducted, 40,976 ARB users and 40,976 nonusers were selected as the matched cohorts. The overall incidence rate of suicide attempt was significantly lower in ARB users than in nonusers (0.51 vs. 1.07 per 10,000 person-years; adjusted hazard ratio = 0.48, 95% confidence interval = 0.26-0.87). A Kaplan-Meier survival analysis with a log-rank test revealed a lower cumulative incidence of suicide attempt in ARB users than in nonusers (p < 0.001 for the unmatched cohort; p = 0.01 for the matched cohort). CONCLUSIONS ARB use was not associated with an increased risk for suicide compared with non-ARB use.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Chest Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Han Hsieh
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Chest Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
43
|
Dent KR, Griffin CA, McCarthy JF, Katz IR. Hypertension Treatment Modality and Suicide Risk Among Veterans in Veterans Health Administration Care From 2015 to 2017. JAMA Netw Open 2020; 3:e2020330. [PMID: 33044550 PMCID: PMC7550968 DOI: 10.1001/jamanetworkopen.2020.20330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE The Veterans Health Administration (VHA) serves a population of veterans with a high prevalence of comorbid health conditions and increased risk for suicide. OBJECTIVE To replicate the findings of a previous study and assess whether exposure to angiotensin receptor blockers (ARBs) is associated with differential suicide risk compared with angiotensin-converting enzyme inhibitors (ACEIs) among veterans receiving VHA care. DESIGN, SETTING, AND PARTICIPANTS This nested case-control design included all suicide decedents from 2015 to 2017 with a VHA inpatient or outpatient encounter in the prior year and with either an active ACEI or ARB prescription in the 100 days prior to death. Using a 4:1 ratio, controls were matched to cases by age, sex, and hypertension and diabetes diagnoses. Controls were alive at the time of the death of the matched case, had a VHA encounter within the previous year, and had either an active ACEI or ARB medication fill within 100 days before the death of the matched case. EXPOSURES An active ACEI or ARB prescription within 100 days before the death of the case. MAIN OUTCOMES AND MEASURES Cases were suicide decedents from 2015 to 2017 per National Death Index search results included in the Veteran Affairs/Department of Defense Mortality Data Repository. RESULTS Among 1309 cases, the median (interquartile range [IQR]) age was 68 (60-76) years and among 5217 controls, the median (IQR) age was 67 (60-76) years, and 1.9% of veterans in both groups were female. ARBs were received by 20.2% of controls and 19.6% of cases; ACEIs were received by 79.8% of controls and 80.4% of cases. The crude suicide odds ratio for ARBs vs ACEIs was 0.966 (95% CI, 0.828-1.127). Controlling for covariates, the adjusted odds ratio for ARBs was 0.985 (95% CI, 0.834-1.164). Sensitivity analyses using only those covariates that differed significantly between groups, restricting to veterans ages 65 and older, dropping matching criteria, and adjusting for the quantity and temporal proximity of ACEI and ARB exposure in the 100 days prior to the index date, had consistent findings. CONCLUSIONS AND RELEVANCE This case-control study did not identify differences in suicide risk by receipt of ARBs vs ACEIs in analyses specific to veterans receiving VHA care in contrast with findings from the referent study.
Collapse
Affiliation(s)
- Kallisse R. Dent
- Veterans Affairs (VA) Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, Ann Arbor, Michigan
| | - Cameron A. Griffin
- Veterans Affairs (VA) Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, Ann Arbor, Michigan
| | - John F. McCarthy
- Veterans Affairs (VA) Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, Ann Arbor, Michigan
| | - Ira R. Katz
- VA Office of Mental Health and Suicide Prevention, Washington, DC
| |
Collapse
|
44
|
de Kloet AD, Cahill KM, Scott KA, Krause EG. Overexpression of angiotensin converting enzyme 2 reduces anxiety-like behavior in female mice. Physiol Behav 2020; 224:113002. [PMID: 32525008 PMCID: PMC7503770 DOI: 10.1016/j.physbeh.2020.113002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023]
Abstract
Accumulating evidence has revealed an intricate role for the renin-angiotensin system (RAS) in the progression or alleviation of stress-related disorders. Along these lines, the 'pro-stress' actions of angiotensin-II (Ang-II) are largely thought to be mediated by the angiotensin type-1a receptor (AT1aR). On the other hand, a counter regulatory limb of the RAS that depends on the conversion of Ang-II to angiotensin-(1-7) by angiotensin-converting enzyme 2 (ACE2) has been postulated to exert stress-dampening actions. We have previously found that augmenting ACE2 activity is potently anxiolytic and blunts stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis in male mice. Whether increasing ACE2 activity also relieves stress and anxiety in females has not yet been determined. Consequently, this series of experiments tests the hypothesis that augmenting ACE2 expression is anxiolytic and dampens the activity of the HPA axis in female mice. Using the Cre-LoxP system, we generated female mice that were homo-, heterozygous or wild-type for a mutated allele resulting in ubiquitous overexpression of ACE2. Next, we used qPCR to determine that levels of ACE2 mRNA isolated from central and peripheral tissues was dependent on genotype. That is, mice homo- and heterozygous for the ACE2 overexpression had significantly greater levels of ACE2 mRNA relative to littermate matched wild-type controls. Interestingly, anxiety-like behavior as determined by the elevated plus maze, light-dark box and novelty-induced hypophagia tests was also affected by genotype. Specifically, ACE2 overexpression significantly decreased anxiety-like behavior in paradigms dependent on approach-avoidance conflict and novelty; however, locomotor activity was similar amongst the genotypes. Final experiments measured plasma corticosterone to evaluate whether increasing ACE2 alters basal and/or stress-induced HPA axis activity. In contrast to what was previously found in males, increasing ACE2 expression had no effect on plasma corticosterone under basal conditions or subsequent to an acute restraint challenge. Collectively, these results suggest that increasing ACE2 expression potently elicits anxiolysis in female mice without altering HPA axis activity.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Karlena M Cahill
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Karen A Scott
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
45
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
46
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
47
|
Sarfo FS, Akassi J, Obese V, Adamu S, Agbenorku M, Ovbiagele B. Prevalence and predictors of post-stroke epilepsy among Ghanaian stroke survivors. J Neurol Sci 2020; 418:117138. [PMID: 32947087 DOI: 10.1016/j.jns.2020.117138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Post-stroke epilepsy (PSE) is associated with poorer quality of life, higher mortality, and greater health expenditures. We are unaware of any published reports on the frequency of and factors associated with PSE in Africa. PURPOSE To assess the frequency and factors associated with PSE among Ghanaian stroke survivors. METHODS We conducted a cross-sectional study of consecutive stroke survivors seen at an out-patient Neurology clinic enrolled into a stroke registry at a tertiary medical center in Ghana between January 2018 and March 2020. We collected baseline demographic and clinical details including diagnosis of post-stroke epilepsy, anti-epileptic medications, presence, treatment and control of vascular risk factors. Multivariate logistic regression models were constructed to identify factors associated with PSE. RESULTS Of 1101 stroke patients encountered, 126 had PSE (frequency of 11.4%; 95% CI of 9.6-13.5%). Mean (± SD) age among PSE vs. non-PSE patients was 57.7 (± 15.2) vs. 58.7 (± 13.9) years. Factors independently associated with PSE were being male (aOR 1.94; 95% CI: 1.32-2.86), cortical ischemic strokes (1.79; 1.12-2.87), blood pressure > 130/80 mmHg (OR 2.26; 1.06-4.79), use of antihypertensive treatment (OR 0.43; 0.23-0.79). There was an inverted J-shaped curve association between number of classes of antihypertensive drugs prescribed and occurrence of PSE, with the lowest inflection point at 3 classes (OR 0.34; 0.17-0.68). CONCLUSION In this convenience sample of ambulatory Ghanaian stroke survivors, one in ten had PSE. Further investigations to confirm and clarify the associations between the identified demographic and clinical characteristics are warranted.
Collapse
Affiliation(s)
- Fred Stephen Sarfo
- Department of Medicine, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana; Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana.
| | - John Akassi
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Vida Obese
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Sheila Adamu
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Manolo Agbenorku
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Bruce Ovbiagele
- Department of Neurology, University of California San Francisco, USA
| |
Collapse
|
48
|
Dong S, Liu P, Luo Y, Cui Y, Song L, Chen Y. Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage. Aging (Albany NY) 2020; 12:13791-13802. [PMID: 32633728 PMCID: PMC7377897 DOI: 10.18632/aging.103511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 04/22/2023]
Abstract
Intracerebral hemorrhage (ICH) is associated with old age and underlying conditions such as hypertension and diabetes. ICH patients are vulnerable to SARS-CoV-2 infection and develop serious complications as a result of infection. The pathophysiology of ICH patients with SARS-CoV-2 infection includes viral invasion, dysfunction of the ACE2-Ang (1-7)-MasR and ACE-Ang II-AT1R axes, overactive immune response, cytokine storm, and excessive oxidative stress. These patients have high morbidity and mortality due to hyaline membrane formation, respiratory failure, neurologic deficits, and multiple organ failure.
Collapse
Affiliation(s)
- Sisi Dong
- The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Peipei Liu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yuhan Luo
- Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, Jiangsu, China
| | - Ying Cui
- Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, Jiangsu, China
| | - Lilong Song
- Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| |
Collapse
|
49
|
Hegazy N, Rezq S, Fahmy A. Renin-angiotensin system blockade modulates both the peripheral and central components of neuropathic pain in rats: Role of calcitonin gene-related peptide, substance P and nitric oxide. Basic Clin Pharmacol Toxicol 2020; 127:451-460. [PMID: 32542932 DOI: 10.1111/bcpt.13453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Nonetheless, renin-angiotensin-aldosterone system (RAAS) blockers attenuate neuropathic pain (NP), the exact molecular mechanisms of this effect are not completely understood. The study aimed to investigate the role of calcitonin gene-related peptide (CGRP), substance P (SP) and nitric oxide (NO), which are all involved in pain modulation, in the analgesic effect of different RAAS blockers in NP both on the peripheral and on the central levels. NP was induced by sciatic nerve chronic constriction injury (CCI, 14 days) in rats, that were given either centrally (telmisartan and ramipril) or peripherally (losartan and enalapril) acting angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs). Behavioural assessment was performed, and CGRP, SP and NO levels were detected in the injured sciatic nerve and the brainstem at the end of experiment. CCI rats showed increased spontaneous pain response and foot deformity along with elevated CGRP, SP and NO levels. ARBs and ACE-Is treatment improved pain behaviour and reduced SP and NO levels. However, sciatic CGRP was increased with different interventions and brainstem CGRP was only elevated in the losartan group. These findings suggest an intermediary role of CGRP, SP and NO in RAAS blockers analgesic effect in NP.
Collapse
Affiliation(s)
- Nora Hegazy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
50
|
Feng R, He MC, Li Q, Liang XQ, Tang DZ, Zhang JL, Liu SF, Lin FH, Zhang Y. Phenol glycosides extract of Fructus Ligustri Lucidi attenuated depressive-like behaviors by suppressing neuroinflammation in hypothalamus of mice. Phytother Res 2020; 34:3273-3286. [PMID: 32603019 DOI: 10.1002/ptr.6777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
Depression is partially caused by inflammation in central nervous system. This study investigated the ameliorative effects of phenol glycosides (PG) from Ligustrum lucidum Ait. (Oleaceae) on neuroinflammation and depressive-like behavior in mice hypothalamus as well as the molecular mechanism. Mice were administered with PG extract for 2 weeks prior to treatment with LPS. The mice treated with PG extract showed resistance to LPS-induced reduction in body weight and LPS-induced depressive-like behaviors shown by sucrose preference, tail suspension test, forced swimming test and open field test. LPS-induced activation of microglial cells and elevation in protein expression of inflammatory cytokines including IL-1β, RANTES and MCP-1 in hypothalamus of mice were abrogated by pre-treatment with PG extract. This extract down-regulated expression of TLR4, MyD88, NLRP3, renin and angiotensin II and decreased proportional area of Iba-1+ microglias in hypothalamus. Pre-treatment with PG extract inhibited LPS-triggered activation of CaSR/Gα11 signaling, stimulated 1-OHase expression in hypothalamus, and enhanced circulating 1,25(OH)2 D3 level. Overall, pre-treatment with PG extract ameliorated LPS-induced depressive-like behaviors by repressing neuroinflammation in mice hypothalamus which was attributed to its suppression on activation of microglia and production of inflammatory cytokines via acting on TLR4 pathway, CaSR and RAS cascade associated with improving vitamin D metabolism.
Collapse
Affiliation(s)
- Rui Feng
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xiao-Qiang Liang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - De-Zhi Tang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|