1
|
Shin D, Lee J, Kim Y, Park J, Shin D, Song Y, Joo EJ, Roh S, Lee KY, Oh S, Ahn YM, Rhee SJ, Kim Y. Evaluation of a Nondepleted Plasma Multiprotein-Based Model for Discriminating Psychiatric Disorders Using Multiple Reaction Monitoring-Mass Spectrometry: Proof-of-Concept Study. J Proteome Res 2024; 23:329-343. [PMID: 38063806 DOI: 10.1021/acs.jproteome.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Psychiatric evaluation relies on subjective symptoms and behavioral observation, which sometimes leads to misdiagnosis. Despite previous efforts to utilize plasma proteins as objective markers, the depletion method is time-consuming. Therefore, this study aimed to enhance previous quantification methods and construct objective discriminative models for major psychiatric disorders using nondepleted plasma. Multiple reaction monitoring-mass spectrometry (MRM-MS) assays for quantifying 453 peptides in nondepleted plasma from 132 individuals [35 major depressive disorder (MDD), 47 bipolar disorder (BD), 23 schizophrenia (SCZ) patients, and 27 healthy controls (HC)] were developed. Pairwise discriminative models for MDD, BD, and SCZ, and a discriminative model between patients and HC were constructed by machine learning approaches. In addition, the proteins from nondepleted plasma-based discriminative models were compared with previously developed depleted plasma-based discriminative models. Discriminative models for MDD versus BD, BD versus SCZ, MDD versus SCZ, and patients versus HC were constructed with 11 to 13 proteins and showed reasonable performances (AUROC = 0.890-0.955). Most of the shared proteins between nondepleted and depleted plasma models had consistent directions of expression levels and were associated with neural signaling, inflammatory, and lipid metabolism pathways. These results suggest that multiprotein markers from nondepleted plasma have a potential role in psychiatric evaluation.
Collapse
Affiliation(s)
- Dongyoon Shin
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yeongshin Kim
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Junho Park
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Yoojin Song
- Department of Psychiatry, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital and Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Nowon Eulji University Hospital, Seoul 01830, Republic of Korea
| | - Sanghoon Oh
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
2
|
Toews JNC, Philippe TJ, Dordevic M, Hill LA, Hammond GL, Viau V. Corticosteroid-Binding Globulin (SERPINA6) Consolidates Sexual Dimorphism of Adult Rat Liver. Endocrinology 2023; 165:bqad179. [PMID: 38015819 PMCID: PMC10699879 DOI: 10.1210/endocr/bqad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Produced by the liver, corticosteroid-binding globulin (CBG) regulates the plasma distribution and actions of glucocorticoids. A sex difference in pituitary growth hormone secretion patterns established during puberty in rats results in increased hepatic CBG production and 2-fold higher plasma corticosterone levels in females. Glucocorticoids control hepatic development and metabolic activities, and we have therefore examined how disrupting the SerpinA6 gene encoding CBG influences plasma corticosterone dynamics, as well as liver gene expression in male and female rats before and after puberty. Comparisons of corticosterone plasma clearance and hepatic uptake in adult rats, with or without CBG, indicated that CBG limits corticosterone clearance by reducing its hepatic uptake. Hepatic transcriptomic profiling revealed minor sex differences (207 differentially expressed genes) and minimal effect of CBG deficiency in 30-day-old rats before puberty. While liver transcriptomes in 60-day-old males lacking CBG remained essentially unchanged, 2710 genes were differentially expressed in wild-type female vs male livers at this age. Importantly, ∼10% of these genes lost their sexually dimorphic expression in adult females lacking CBG, including those related to cholesterol biosynthesis, inflammation, and lipid and amino acid catabolism. Another 203 genes were altered by the loss of CBG specifically in adult females, including those related to xenobiotic metabolism, circadian rhythm, and gluconeogenesis. Our findings reveal that CBG consolidates the sexual dimorphism of the rat liver initiated by sex differences in growth hormone secretion patterns and provide insight into how CBG deficiencies are linked to glucocorticoid-dependent diseases.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Swilley C, Lin Y, Zheng Y, Xu X, Liu M, Jarome T, Hodes GE, Xie H. Sex linked behavioral and hippocampal transcriptomic changes in mice with cell-type specific Egr1 loss. Front Neurosci 2023; 17:1240209. [PMID: 37928724 PMCID: PMC10623684 DOI: 10.3389/fnins.2023.1240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The transcription factor EGR1 is instrumental in numerous neurological processes, encompassing learning and memory as well as the reaction to stress. Egr1 complete knockout mice demonstrate decreased depressive or anxiety-like behavior and impaired performance in spatial learning and memory. Nevertheless, the specific functions of Egr1 in distinct cell types have been largely underexplored. In this study, we cataloged the behavioral and transcriptomic character of Nestin-Cre mediated Egr1 conditional knockout (Egr1cKO) mice together with their controls. Although the conditional knockout did not change nociceptive or anxiety responses, it triggered changes in female exploratory activity during anxiety testing. Hippocampus-dependent spatial learning in the object location task was unaffected, but female Egr1cKO mice did exhibit poorer retention during testing on a contextual fear conditioning task compared to males. RNA-seq data analyses revealed that the presence of the floxed Egr1 cassette or Nestin-Cre driver alone exerts a subtle influence on hippocampal gene expression. The sex-related differences were amplified in Nestin-Cre mediated Egr1 conditional knockout mice and female mice are more sensitive to the loss of Egr1 gene. Differentially expressed genes resulted from the loss of Egr1 in neuronal cell lineage were significantly associated with the regulation of Wnt signaling pathway, extracellular matrix, and axon guidance. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in neuronal cell lineage have distinct impacts on hippocampal gene expression in a sex-specific manner.
Collapse
Affiliation(s)
- Cody Swilley
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
| | - Yuze Zheng
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Min Liu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Timothy Jarome
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Lee JH, Meyer EJ, Nenke MA, Falhammar H, Torpy DJ. Corticosteroid-binding globulin (CBG): spatiotemporal distribution of cortisol in sepsis. Trends Endocrinol Metab 2023; 34:181-190. [PMID: 36681594 DOI: 10.1016/j.tem.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Corticosteroid-binding globulin (CBG) is a 50-60 kDa circulating glycoprotein with high affinity for cortisol. CBG is adapted for sepsis; its cortisol binding is reduced reversibly by pyrexia and acidaemia, and reduced irreversibly by neutrophil elastase (NE) cleavage, converting high cortisol-binding affinity CBG to a low affinity form. These characteristics allow for the targeted delivery of immunomodulatory cortisol to tissues at the time and body site where cortisol is required in sepsis and septic shock. In addition, high titer inflammatory cytokines in sepsis suppress CBG hepatic synthesis, increasing the serum free cortisol fraction. Recent clinical studies have highlighted the importance of CBG in septic shock, with CBG deficiency independently associated with mortality.
Collapse
Affiliation(s)
- Jessica H Lee
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emily J Meyer
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Department of Endocrine and Diabetes, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Marne A Nenke
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Department of Endocrine and Diabetes, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
| | - David J Torpy
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
6
|
Meyer EJ, Spangenberg L, Ramírez MJ, De Sousa SMC, Raggio V, Torpy DJ. CBG Montevideo: A Clinically Novel SERPINA6 Mutation Leading to Haploinsufficiency of Corticosteroid-binding Globulin. J Endocr Soc 2021; 5:bvab115. [PMID: 34308089 PMCID: PMC8294686 DOI: 10.1210/jendso/bvab115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the main transport protein for cortisol, binding up to 90% in a 1:1 ratio. CBG provides transport of cortisol within the circulation and targeted cortisol tissue delivery. Here, we describe the clinically novel “CBG Montevideo” a SERPINA6 pathogenic variant that results in a 50% reduction in plasma CBG levels. This was associated with low serum total cortisol and clinical features of hypoglycemia, exercise intolerance, chronic fatigue, and hypotension in the proband, a 7-year-old boy, and his affected mother. Previous reports of 9 human CBG genetic variants affecting either CBG concentrations or reduced CBG-cortisol binding properties have outlined symptoms consistent with attenuated features of hypocortisolism, fatigue, and hypotension. Here, however, the presence of hypoglycemia, despite normal circulating free cortisol, suggests a specific role for CBG in effecting glucocorticoid function, perhaps involving cortisol-mediated hepatic glucose homeostasis and cortisol-brain communication.
Collapse
Affiliation(s)
- Emily Jane Meyer
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.,Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay.,Department of Informatics and Computer Science, Universidad Católica del Uruguay, Montevideo, 11600, Uruguay
| | - Maria José Ramírez
- Paediatric Endocrinology, Hospital Británico, Montevideo, 11600, Uruguay.,Paediatric Endocrinology, Centro Hospitalario Pereira Rossell, Montevideo, 11600, Uruguay
| | - Sunita Maria Christina De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.,South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Victor Raggio
- Genetics Department, Facultad de Medicina, UDELAR, Montevideo, 11800, Uruguay
| | - David James Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Moisan MP. Sexual Dimorphism in Glucocorticoid Stress Response. Int J Mol Sci 2021; 22:ijms22063139. [PMID: 33808655 PMCID: PMC8003420 DOI: 10.3390/ijms22063139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic stress is encountered in our everyday life and is thought to contribute to a number of diseases. Many of these stress-related disorders display a sex bias. Because glucocorticoid hormones are the main biological mediator of chronic stress, researchers have been interested in understanding the sexual dimorphism in glucocorticoid stress response to better explain the sex bias in stress-related diseases. Although not yet demonstrated for glucocorticoid regulation, sex chromosomes do influence sex-specific biology as soon as conception. Then a transient rise in testosterone start to shape the male brain during the prenatal period differently to the female brain. These organizational effects are completed just before puberty. The cerebral regions implicated in glucocorticoid regulation at rest and after stress are thereby impacted in a sex-specific manner. After puberty, the high levels of all gonadal hormones will interact with glucocorticoid hormones in specific crosstalk through their respective nuclear receptors. In addition, stress occurring early in life, in particular during the prenatal period and in adolescence will prime in the long-term glucocorticoid stress response through epigenetic mechanisms, again in a sex-specific manner. Altogether, various molecular mechanisms explain sex-specific glucocorticoid stress responses that do not exclude important gender effects in humans.
Collapse
|
8
|
Song Q, Bolsius YG, Ronzoni G, Henckens MJAG, Roozendaal B. Noradrenergic enhancement of object recognition and object location memory in mice. Stress 2021; 24:181-188. [PMID: 32233890 DOI: 10.1080/10253890.2020.1747427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Extensive evidence indicates that noradrenergic activation is essentially involved in mediating the enhancing effects of emotional arousal on memory consolidation. Our current understanding of the neurobiological mechanisms underlying the memory-modulatory effects of the noradrenergic system is primarily based on pharmacological studies in rats, employing targeted administration of noradrenergic drugs into specific brain regions. However, the further delineation of the specific neural circuitry involved would benefit from experimental tools that are currently more readily available in mice. Previous studies have not, as yet, investigated the effect of noradrenergic enhancement of memory in mice, which show different cognitive abilities and higher endogenous arousal levels induced by a training experience compared to rats. In the present study, we investigated the effect of posttraining noradrenergic activation in male C57BL/6J mice on the consolidation of object recognition and object location memory. We found that the noradrenergic stimulant yohimbine (0.3 or 1.0 mg/kg) administered systemically immediately after an object training experience dose-dependently enhanced 24-h memory of both the identity and location of the object. Thus, these findings indicate that noradrenergic activation also enhances memory consolidation processes in mice, paving the way for a systematic investigation of the neural circuitry underlying these emotional arousal effects on memory.LAY SUMMARY: The current study successfully validated the effect of noradrenergic activation on both object recognition and object location memory in mice. This study thereby provides a fundamental proof-of-principle for the investigation of the neural circuitry underlying noradrenergic and arousal effects on long-term memory in mice.
Collapse
Affiliation(s)
- Qi Song
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Youri G Bolsius
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giacomo Ronzoni
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Corticosteroid-binding-globulin (CBG)-deficient mice show high pY216-GSK3β and phosphorylated-Tau levels in the hippocampus. PLoS One 2021; 16:e0246930. [PMID: 33592009 PMCID: PMC7886218 DOI: 10.1371/journal.pone.0246930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.
Collapse
|
10
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
11
|
Kokras N, Krokida S, Varoudaki TZ, Dalla C. Do corticosterone levels predict female depressive-like behavior in rodents? J Neurosci Res 2020; 99:324-331. [PMID: 32640495 DOI: 10.1002/jnr.24686] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
Dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis is often linked to the neurobiology of depression, though the presence and type of this dysregulation is not a consistent finding. Meanwhile, significant sex differences exist regarding depression and the HPA axis. Animal models of depression simulate certain aspects of the human disease and aim to advance our knowledge regarding its neurobiology and discover new antidepressant treatments. Most animal models of depression induce a depressive-like phenotype taking advantage of stressful experimental conditions, that also increase corticosterone, the main stress hormone in rodents. In this review we present inconsistent results in male and female rodents regarding the interaction between the depressive-like behavioral phenotype and corticosterone. In commonly used models, the female depressive-like phenotype in rodents seems significantly less dependent on the stress hormone corticosterone, whereas the male behavioral response is more evident and associates with variations of corticosterone. Further research and clarification of this sex-dependent interaction will have significant ramifications on the improvement of the validity of animal models of depression.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephanie Krokida
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theoni Zoi Varoudaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Corticosteroid-Binding Globulin is expressed in the adrenal gland and its absence impairs corticosterone synthesis and secretion in a sex-dependent manner. Sci Rep 2019; 9:14018. [PMID: 31570737 PMCID: PMC6769001 DOI: 10.1038/s41598-019-50355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Corticosteroid-binding globulin (CBG) is synthesized by the liver and secreted into the bloodstream where binds to glucocorticoids. Thus CBG has the role of glucocorticoid transport and free hormone control. In addition, CBG has been detected in some extrahepatic tissues without a known role. CBG-deficient mice show decreased total corticosterone levels with missing of classical sexual dimorphism, increased free corticosterone, higher adrenal gland size and altered HPA axis response to stress. Our aim was to ascertain whether CBG deficiency could affect the endocrine synthetic activity of adrenal gland and if the adrenal gland produces CBG. We determined the expression in adrenal gland of proteins involved in the cholesterol uptake and its transport to mitochondria and the main enzymes involved in the corticosterone, aldosterone and catecholamine synthesis. The results showed that CBG is synthesized in the adrenal gland. CBG-deficiency reduced the expression of ACTH receptor, SRB1 and the main genes involved in the adrenal hormones synthesis, stronger in females resulting in the loss of sexual dimorphism in corticosteroid adrenal synthesis, despite corticosterone content in adrenal glands from CBG-deficient females was similar to wildtype ones. In conclusion, these results point to an unexplored and relevant role of CBG in the adrenal gland functionality related to corticosterone production and release.
Collapse
|
13
|
de Medeiros GF, Lafenêtre P, Janthakhin Y, Cerpa JC, Zhang CL, Mehta MM, Mortessagne P, Helbling JC, Ferreira G, Moisan MP. Corticosteroid-Binding Globulin Deficiency Specifically Impairs Contextual and Recognition Memory Consolidation in Male Mice. Neuroendocrinology 2019; 109:322-332. [PMID: 30904918 DOI: 10.1159/000499827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/17/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS Glucocorticoids are essential in modulating memory processes of emotionally arousing experiences and we have shown that corticosteroid-binding globulin (CBG) influences glucocorticoid delivery to the brain. Here, we investigated the role of CBG in contextual and recognition long-term memory according to stress intensity. METHOD We used adult male mice totally deficient in CBG (Cbg KO) or brain-specific Cbg KO (CbgCamk KO) to examine their performance in contextual fear conditioning (CFC) and au-ditory fear conditioning, both at short (1 h) and long-term (24 h). Long-term memory in Cbg KO was further analyzed in conditioned odor aversion and in novel object recognition task (NORT) with different paradigms, that is, with and without prior habituation to the context, with a mild or strong stressor applied during consolidation. In the NORT experiments, total and free glucocorticoid levels were measured during consolidation. RESULTS Impaired memory was observed in the Cbg KO but not in the CbgCamk KO in the CFC and the NORT without habituation when tested 24 h later. However, Cbg KO displayed normal behavior in the NORT with previous habituation and in the NORT with a mild stressor. In condition of the NORT with a strong stressor, Cbg KO retained good 24 h memory performance while controls were impaired. Total and free glucocorticoids levels were always higher in controls than in Cbg KO except in NORT with mild stressor where free glucocorticoids were equivalent to controls. CONCLUSIONS These data indicate that circulating but not brain CBG influences contextual and recognition long-term memory in relation with glucocorticoid levels.
Collapse
Affiliation(s)
- Gabriela F de Medeiros
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Pauline Lafenêtre
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Bordeaux INP, Nutrition and Integrative Neurobiology, UMR1286, Bordeaux, France
| | - Yoottana Janthakhin
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Juan-Carlos Cerpa
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Chun-Lei Zhang
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Marishka M Mehta
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Pierre Mortessagne
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Jean-Christophe Helbling
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Marie-Pierre Moisan
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France,
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France,
| |
Collapse
|
14
|
|
15
|
Makhijani VH, Van Voorhies K, Besheer J. The mineralocorticoid receptor antagonist spironolactone reduces alcohol self-administration in female and male rats. Pharmacol Biochem Behav 2018; 175:10-18. [PMID: 30171933 DOI: 10.1016/j.pbb.2018.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cortisol/corticosterone and the hypothalamic-pituitary-adrenal (HPA) axis serve an important role in modulating alcohol drinking behaviors. To date most alcohol research has focused on the functional involvement of corticosterone and the glucocorticoid receptor (GR), the primary receptor for corticosterone. Recent studies have indicated that the related mineralocorticoid receptor (MR), which binds both corticosterone and aldosterone, may also play a role in alcohol drinking. Therefore, the purpose of the present study was to test the functional role of MR signaling in alcohol self-administration via pharmacological antagonism of the MR with spironolactone. Male and female Long-Evans rats were trained to self-administer a sweetened alcohol solution (15% (v/v) alcohol +2% (w/v) sucrose). The effects of spironolactone (0, 10, 25, 50 mg/kg; IP) were tested on alcohol self-administration and under "probe extinction" conditions to measure the persistence of responding in the absence of the alcohol reinforcer. Parallel experiments in sucrose self-administration trained rats were used to confirm the specificity of spironolactone effects to an alcohol reinforcer. In female rats spironolactone (50 mg/kg) reduced alcohol self-administration and persistence of alcohol responding. In male rats spironolactone (25 and 50 mg/kg) reduced alcohol self-administration, but not persistence of alcohol responding. Spironolactone reduced sucrose intake in female rats only, and locomotion in male and female rats during sucrose self-administration. There was no effect of spironolactone on persistence of sucrose responding. These studies add to growing evidence that the MR is involved in alcohol drinking, while underscoring the importance of studying both male and female animals.
Collapse
Affiliation(s)
- Viren H Makhijani
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Meyer EJ, Nenke MA, Lewis JG, Torpy DJ. Corticosteroid-binding globulin: acute and chronic inflammation. Expert Rev Endocrinol Metab 2017; 12:241-251. [PMID: 30058887 DOI: 10.1080/17446651.2017.1332991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Corticosteroid-binding globulin (CBG) is the principal transport protein for cortisol binding 80% in a 1:1 ratio. Since its discovery in 1958, CBG's primary function has been considered to be cortisol transport within the circulation. More recent data indicate a cortisol tissue delivery function, particularly at inflammatory sites. CBG's structure as a non-inhibitory serine protease inhibitor allows allosteric structural change after reactive central loop (RCL) cleavage by neutrophil elastase (NE) and RCL insertion into CBG's protein core. Transition from the high to low affinity CBG form reduces cortisol-binding. Areas covered: In acute systemic inflammation, high affinity CBG (haCBG) is depleted proportionate to sepsis severity, with lowest levels seen in non-survivors. Conversely, in chronic inflammation, CBG cleavage is paradoxically reduced in proportion to disease severity, implying impaired targeted delivery of cortisol. CBG's structure allows thermosensitive release of bound cortisol, by reversible partial insertion of the RCL and loosening of CBG:cortisol binding. Recent studies indicate a significant frequency of function-altering single nucleotide polymorphisms of the SERPINA6 gene which may be important in population risk of inflammatory disease. Expert commentary: Further exploration of CBG in inflammatory disease may offer new avenues for treatment based on the model of optimal cortisol tissue delivery.
Collapse
Affiliation(s)
- Emily J Meyer
- a Endocrine and Metabolic Unit , Royal Adelaide Hospital , Adelaide , Australia
- b Discipline of Medicine , University of Adelaide , Adelaide , Australia
| | - Marni A Nenke
- a Endocrine and Metabolic Unit , Royal Adelaide Hospital , Adelaide , Australia
- b Discipline of Medicine , University of Adelaide , Adelaide , Australia
| | - John G Lewis
- c Steroid & Immunobiochemistry Laboratory , Canterbury Health Laboratories , Christchurch , New Zealand
| | - David J Torpy
- a Endocrine and Metabolic Unit , Royal Adelaide Hospital , Adelaide , Australia
- b Discipline of Medicine , University of Adelaide , Adelaide , Australia
| |
Collapse
|
17
|
Chronic stress does not further exacerbate the abnormal psychoneuroendocrine phenotype of Cbg-deficient male mice. Psychoneuroendocrinology 2016; 70:33-7. [PMID: 27153522 DOI: 10.1016/j.psyneuen.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022]
Abstract
Chronic stress leads to a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which can constitute a base for pathophysiological consequences. Using mice totally deficient in Corticosteroid binding globulin (CBG), we have previously demonstrated the important role of CBG in eliciting an adequate response to an acute stressor. Here, we have studied its role in chronic stress situations. We have submitted Cbg ko and wild-type (WT) male mice to two different chronic stress paradigms - the unpredictable chronic mild stress and the social defeat. Then, their impact on neuroendocrine function - through corticosterone and CBG measurement - and behavioral responses - via anxiety and despair-like behavioral tests - was evaluated. Both chronic stress paradigms increased the display of despair-like behavior in WT mice, while that from Cbg ko mice - which was already high - was not aggravated. We have also found that control and defeated (stressed) Cbg ko mice show no difference in the social interaction test, while defeated WT mice reduce their interaction time when compared to unstressed WT mice. Interestingly, the same pattern was observed for corticosterone levels, where both chronic stress paradigms lowered the corticosterone levels of WT mice, while those from Cbg ko mice remained low and unaltered. Plasma CBG binding capacity remained unaltered in WT mice regardless of the stress paradigm. Through the use of the Cbg ko mice, which only differs genetically from WT mice by the absence of CBG, we demonstrated that CBG is crucial in modulating the effects of stress on plasma corticosterone levels and consequently on behavior. In conclusion, individuals with CBG deficiency, whether genetically or environmentally-induced, are vulnerable to acute stress but do not have their abnormal psychoneuroendocrine phenotype further affected by chronic stress.
Collapse
|
18
|
Stephens MAC, Mahon PB, McCaul ME, Wand GS. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones. Psychoneuroendocrinology 2016; 66:47-55. [PMID: 26773400 PMCID: PMC4788592 DOI: 10.1016/j.psyneuen.2015.12.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 01/05/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the TSST than do women during the follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Mary Ann C Stephens
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 115, Baltimore, MD 21205, USA.
| | - Pamela B Mahon
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe St, Phipps 300, Baltimore, MD 21287, USA.
| | - Mary E McCaul
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 115, Baltimore, MD 21205, USA.
| | - Gary S Wand
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 115, Baltimore, MD 21205, USA; Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Building, Rm 863, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Gulfo J, Ledda A, Gea-Sorlí S, Bonjoch L, Closa D, Grasa M, Esteve M. New Roles for Corticosteroid Binding Globulin and Opposite Expression Profiles in Lung and Liver. PLoS One 2016; 11:e0146497. [PMID: 26741814 PMCID: PMC4704799 DOI: 10.1371/journal.pone.0146497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/17/2015] [Indexed: 12/02/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific plasma transport glycoprotein for glucocorticoids. Circulating CBG is mainly synthesized in liver but, its synthesis has been located also in other organs as placenta, kidney and adipose tissue with unknown role. Using an experimental model of acute pancreatitis in cbg-/- mice we investigated whether changes in CBG affect the progression of the disease as well as the metabolism of glucocorticoids in the lung. Lack of CBG does not modify the progression of inflammation associated to pancreatitis but resulted in the loss of gender differences in corticosterone serum levels. In the lung, CBG expression and protein level were detected, and it is noteworthy that these showed a sexual dimorphism opposite to the liver, i.e. with higher levels in males. Reduced expression of 11β-HSD2, the enzyme involved in the deactivation of corticosterone, was also observed. Our results indicate that, in addition to glucocorticoids transporter, CBG is involved in the gender differences observed in corticosteroids circulating levels and plays a role in the local regulation of corticosteroids availability in organs like lung.
Collapse
Affiliation(s)
- Jose Gulfo
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Angelo Ledda
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Sabrina Gea-Sorlí
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Laia Bonjoch
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Mar Grasa
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Montserrat Esteve
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Lépinay AL, Larrieu T, Joffre C, Acar N, Gárate I, Castanon N, Ferreira G, Langelier B, Guesnet P, Brétillon L, Parnet P, Layé S, Darnaudéry M. Perinatal high-fat diet increases hippocampal vulnerability to the adverse effects of subsequent high-fat feeding. Psychoneuroendocrinology 2015; 53:82-93. [PMID: 25614359 DOI: 10.1016/j.psyneuen.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Abstract
Epidemiological observations report an increase in fat consumption associated with low intake of n-3 relative to n-6 polyunsaturated fatty acids (PUFAs) in women of childbearing age. However, the impact of these maternal feeding habits on cognitive function in the offspring is unknown. This study aims to investigate the impact of early exposure to a high-fat diet (HFD) with an unbalanced n-6/n-3 PUFAs ratio on hippocampal function in adult rats. Furthermore, we explored the effects of perinatal HFD combined with exposure to HFD after weaning. Dams were fed a control diet (C, 12% of energy from lipids, n-6/n-3 PUFAs ratio: 5) or HFD (HF, 39% of energy from lipids, n-6/n-3 PUFAs ratio: 39) throughout gestation and lactation. At weaning, offspring were placed either on control (C-C, HF-C) or high-fat (HF-HF) diets. In adulthood, hippocampus-dependent memory was assessed using the water-maze task and potential hippocampal alterations were determined by studying PUFA levels, gene expression, neurogenesis and astrocyte morphology. Perinatal HFD induced long-lasting metabolic alterations and some changes in gene expression in the hippocampus, but had no effect on memory. In contrast, spatial memory was impaired in animals exposed to HFD during the perinatal period and maintained on this diet. HF-HF rats also exhibited low n-3 and high n-6 PUFA levels, decreased neurogenesis and downregulated expression of several plasticity-related genes in the hippocampus. To determine the contribution of the perinatal diet to the memory deficits reported in HF-HF animals, an additional experiment was conducted in which rats were only exposed to HFD starting at weaning (C-HF). Interestingly, memory performance in this group was similar to controls. Overall, our results suggest that perinatal exposure to HFD with an unbalanced n-6/n-3 ratio sensitizes the offspring to the adverse effects of subsequent high-fat intake on hippocampal function.
Collapse
Affiliation(s)
- Amandine L Lépinay
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Thomas Larrieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Niyazi Acar
- CNRS, UMR 6265 Centre des Sciences du Goût et de l'Alimentation, 21000 Dijon, France; INRA, UMR 1324 Centre des Sciences du Goût et de l'Alimentation, 21000 Dijon, France; Université de Bourgogne, UMR Centre des Sciences du Goût et de l'Alimentation, 21000 Dijon, France
| | - Iciar Gárate
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Nathalie Castanon
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Bénédicte Langelier
- INRA, Nutrition et Régulation Lipidique des Fonctions Cérébrales, UR909, 78352 Jouy-en-Josas Cedex, France
| | - Philippe Guesnet
- PG Consulting, 13 Villa Bellevue, 91440 Bures sur Yvette, France
| | - Lionel Brétillon
- CNRS, UMR 6265 Centre des Sciences du Goût et de l'Alimentation, 21000 Dijon, France; INRA, UMR 1324 Centre des Sciences du Goût et de l'Alimentation, 21000 Dijon, France; Université de Bourgogne, UMR Centre des Sciences du Goût et de l'Alimentation, 21000 Dijon, France
| | - Patricia Parnet
- INRA, UMR 1280, Physiologie des Adaptations Nutritionnelles, 44093 Nantes, France; Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, 44093 Nantes, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France
| | - Muriel Darnaudéry
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France; Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000 Bordeaux, France.
| |
Collapse
|