1
|
Hippocampal volume and parahippocampal cingulum alterations are associated with avoidant attachment in patients with depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
2
|
Chompre G, Sambolin L, Cruz ML, Sanchez R, Rodriguez Y, Rodríguez-Santiago RE, Yamamura Y, Appleyard CB. A one month high fat diet disrupts the gut microbiome and integrity of the colon inducing adiposity and behavioral despair in male Sprague Dawley rats. Heliyon 2022; 8:e11194. [PMID: 36387539 PMCID: PMC9663868 DOI: 10.1016/j.heliyon.2022.e11194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
High-fat diet (HFD) is associated with gut microbiome dysfunction and mental disorders. However, the time-dependence as to when this occurs is unclear. We hypothesized that a short-term HFD causes colonic tissue integrity changes resulting in behavioral changes. Rats were fed HFD or low-fat diet (LFD) for a month and gut microbiome, colon, and behavior were evaluated. Behavioral despair was found in the HFD group. Although obesity was absent, the HFD group showed increased percent weight gain, epididymal fat tissue, and leptin expression. Moreover, the HFD group had increased colonic damage, decreased expression of the tight junction proteins, and higher lipopolysaccharides (LPS) in serum. Metagenomic analysis revealed that the HFD group had more Bacteroides and less S24-7 which correlated with the decreased claudin-5. Finally, HFD group showed an increase of microglia percent area, increased astrocytic projections, and decreased phospho-mTOR. In conclusion, HFD consumption in a short period is still sufficient to disrupt gut integrity resulting in LPS infiltration, alterations in the brain, and behavioral despair even in the absence of obesity.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Lubriel Sambolin
- Basic Sciences Department, Division of Pharmacology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Rafael Sanchez
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yarelis Rodriguez
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Ronald E. Rodríguez-Santiago
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yasuhiro Yamamura
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Caroline B. Appleyard
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
3
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina (B Aires) 2022; 58:medicina58020285. [PMID: 35208605 PMCID: PMC8875554 DOI: 10.3390/medicina58020285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The aim of this systematic review was to analyse which candidate genes were examined in genetic association studies and their association with major depressive disorder (MDD). Materials and Methods: We searched PUBMED for relevant studies published between 1 July 2012 and 31 March 2019, using combinations of keywords: “major depressive disorder” OR “major depression” AND “gene candidate”, “major depressive disorder” OR “major depression” AND “polymorphism”. Synthesis focused on assessing the likelihood of bias and investigating factors that may explain differences between the results of studies. For selected gene list after literature overview, functional enrichment analysis and gene ontology term enrichment analysis were conducted. Results: 141 studies were included in the qualitative review of gene association studies focusing on MDD. 86 studies declared significant results (p < 0.05) for 172 SNPs in 85 genes. The 13 SNPs associations were confirmed by at least two studies. The 18 genetic polymorphism associations were confirmed in both the previous and this systematic analysis by at least one study. The majority of the studies (68.79 %) did not use or describe power analysis, which may have had an impact over the significance of their results. Almost a third of studies (N = 54) were conducted in Chinese Han population. Conclusion: Unfortunately, there is still insufficient data on the links between genes and depression. Despite the reported genetic associations, most studies were lacking in statistical power analysis, research samples were small, and most gene polymorphisms have been confirmed in only one study. Further genetic research with larger research samples is needed to discern whether the relationship is random or causal. Summations: This systematic review had summarized all reported genetic associations and has highlighted the genetic associations that have been replicated. Limitations: Unfortunately, most gene polymorphisms have been confirmed only once, so further studies are warranted for replicating these genetic associations. In addition, most studies included a small number of MDD cases that could be indicative for false positive. Considering that polymorphism loci and associations with MDD is also vastly dependent on interpersonal variation, extensive studies of gene interaction pathways could provide more answers to the complexity of MDD.
Collapse
Affiliation(s)
- Audrone Norkeviciene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Romena Gocentiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Agne Sestokaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Rasa Sabaliauskaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Daiva Dabkeviciene
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Giedre Bulotiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
- Correspondence:
| |
Collapse
|
5
|
Chen XX, Xu LP, Zeng CC, Zhang XY, Tao FB, Sun Y. Prolonged parent-child separation and pain in adolescence: The role of HPA-axis genetic variations. J Affect Disord 2021; 292:255-260. [PMID: 34134023 DOI: 10.1016/j.jad.2021.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increasing evidence has demonstrated that childhood adversity was a predictor of pain and hypothalamic-pituitary-adrenal (HPA) axis genetic variation is associated with pain risk. This study aims to explore possible effects of prolonged childhood separation from parents and HPA polygenic risk score (PRS) on pain among adolescents in rural China. METHOD We used data from 219 adolescents in rural area of Fuyang city, Anhui province, China. Parent-child separation was collected through interview and pain intensity was reported using the 11-point Numerical Rating Scale. SNP genotyping was performed using an improved multiplex ligation detection reaction (iMLDR) technique. The PRS was computed based on 3 single nucleotide polymorphisms (SNPs) in 2 genes (FKBP5 and NR3C1) related to HPA-axis stress reactivity. RESULTS Pain among adolescents separated from both parents scored higher compared to those without parent-child separation, however, this association was only observed in adolescents with moderate to high tertiles of PRS groups (parent-child separation in moderate group vs. no parent-child separation in moderate group: 3.07 vs. 1.57, P < 0.001; parent-child separation in highest group vs. no parent-child separation in highest group: 3.02 vs. 1.26, P < 0.001; parent-child separation in lowest group vs. no parent-child separation in lowest group: 2.34 vs. 1.25, P = 0.225). After controlled for demographic characteristics, psychopathological symptoms, adverse childhood experiences, parental warmth, prolonged childhood parent-child separation increased pain scores by 1.52 points (95% CI:0.72, 2.33) and 1.72 points (95% CI:1.13, 2.31) in moderate and high PRS groups, respectively. CONCLUSION Our findings suggest that adolescents separated from both parents while carrying more risk alleles related to HPA-axis stress reactivity are at heightened risk of pain.
Collapse
Affiliation(s)
- Xing-Xing Chen
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Luo-Piao Xu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chen-Chen Zeng
- Fuyang Vocational Technical College, Fuyang, Anhui Province, China
| | - Xing-Yan Zhang
- Bengbu High-tech Education Group, Bengbu, Anhui Province, China
| | - Fang-Biao Tao
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Lin YH, Dhanaraj V, Mackenzie AE, Young IM, Tanglay O, Briggs RG, Chakraborty AR, Hormovas J, Fonseka RD, Kim SJ, Yeung JT, Teo C, Sughrue ME. Anatomy and White Matter Connections of the Parahippocampal Gyrus. World Neurosurg 2021; 148:e218-e226. [PMID: 33412321 DOI: 10.1016/j.wneu.2020.12.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The parahippocampal gyrus is understood to have a role in high cognitive functions including memory encoding and retrieval and visuospatial processing. A detailed understanding of the exact location and nature of associated white tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging-based fiber tracking validated by gross anatomic dissection as ground truth, we have characterized these connections based on relationships to other well-known structures. METHODS Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. We evaluated the parahippocampal gyrus as a whole based on connectivity with other regions. All parahippocampal gyrus tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. RESULTS We identified 2 connections of the parahippocampal gyrus: inferior longitudinal fasciculus and cingulum. Lateralization of the cingulum was detected (P < 0.05). CONCLUSIONS The parahippocampal gyrus is an important center for memory processing. Subtle differences in executive functioning following surgery for limbic tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.
Collapse
Affiliation(s)
- Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Alana E Mackenzie
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | | | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Sihyong J Kim
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Jacky T Yeung
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
7
|
Aslan K, Gunbey HP, Cortcu S, Ozyurt O, Avci U, Incesu L. Diffusion tensor imaging in hyperthyroidism: assessment of microstructural white matter abnormality with a tract-based spatial statistical analysis. Acta Radiol 2020; 61:1677-1683. [PMID: 32202136 DOI: 10.1177/0284185120909960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic, morphological, and functional brain changes associated with a neurological deficit in hyperthyroidism have been observed. However, changes in microstructural white matter (WM), which can explain the underlying pathophysiology of brain dysfunctions, have not been researched. PURPOSE To assess microstructural WM abnormality in patients with untreated or newly diagnosed hyperthyroidism using tract-based spatial statistics (TBSS). MATERIAL AND METHODS Eighteen patients with hyperthyroidism and 14 age- and sex-matched healthy controls were included in this study. TBSS were used in this diffusion tensor imaging study for a whole-brain voxel-wise analysis of fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD) of WM. RESULTS When compared to the control group, TBSS showed a significant increase in the RD of the corpus callosum, anterior and posterior corona radiata, posterior thalamic radiation, cingulum, superior longitudinal fasciculus, and the retrolenticular region of the internal capsule in patients with hyperthyroidism (P < 0.05), as well as a significant decrease in AD in the anterior corona radiata and the genu of corpus callosum (P < 0.05). CONCLUSION This study showed that more regions are affected by the RD increase than the AD decrease in the WM tracts of patients with hyperthyroidism. These preliminary results suggest that demyelination is the main mechanism of microstructural alterations in the WM of hyperthyroid patients.
Collapse
Affiliation(s)
- Kerim Aslan
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Hediye Pinar Gunbey
- Department of Radiology, Health Sciences University Kartal Lütfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Sumeyra Cortcu
- Department of Radiology, Kastamonu State Hospital, Kastamonu, Turkey
| | - Onur Ozyurt
- Telemed Solutions Teknopark, Bogazici University, İstanbul, Turkey
| | - Ugur Avci
- Department of Endocrinology and Metabolism, Recep Tayyip Erdogan University Faculty of Medicine, Rize, Turkey
| | - Lutfi Incesu
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
8
|
Firouzabadi N, Nouraei H, Mandegary A. Genetic Variant of Glucocorticoid Receptor Gene at rs41423247 and Its Association with Major Depressive Disorder: A Case-Control Study. Galen Med J 2018; 7:e1181. [PMID: 34466443 PMCID: PMC8344155 DOI: 10.22086/gmj.v0i0.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022] Open
Abstract
Background Extensive distribution of glucocorticoid receptors (GCRs) in different brain areas along with disruption of hypothalamic-pituitary-adrenal (HPA) axis in major depressive disorder (MDD) and the cross talk between GCRs and HPA proposes genetic variants of GC receptor genes as potential contributors in MDD. Among the GCR polymorphisms, rs41423247, rs6195 and rs6189/rs6190 are suggested to be involved in MDD. Materials and Methods We investigated the association between rs41423247, rs6195 and rs6189/rs6190 and MDD in a case-control study. One hundred MDD patients along with 100 healthy individuals were enrolled in this study. genetic variants of rs41423247, rs6195 and rs6189/rs6190 were determined in extracted DNAs using PCR-RFLP. Result The prevalence of heterozygote and mutant carriers of rs41423247 were significantly and by 1.9 fold greater in cases versus controls (P=0.033; OR; 95%CI=1.9; 1.1-3.3). Moreover, carriers of the mutant (G) allele were by 1.8 fold more prevalent in MDD group (P=0.013; OR;95%CI=1.8; 1.1-2.8). Conclusion Specific carriers of rs41423247 might be more susceptible to developing MDD. This supports the hypothesis of the involvement of GCRs in pathophysiology of MDD.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging. Neurosci Lett 2018; 694:34-40. [PMID: 30465819 DOI: 10.1016/j.neulet.2018.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022]
Abstract
Previous studies have suggested that major depressive disorder was associated with topological properties of impaired white matter. However, most related studies only use one property of nerve fibers to construct whole-brain structural brain network. Considering white matter changes variously, We hypothesized whether the alternations of white matter topological properties could reflect different impairment of white matter integrity. In addition, it is still unknown whether impaired integrity of the white matter fiber tracts has relationship with abnormal topological properties in MDD. This study investigated the impaired white matter by using graph theoretic analyses in a cohort of 37 MDD patients and 38 matched control subjects. In addition, we further investigated fiber tracts differences in three interregional connectivity matrixes of significant different topological regions in MDD. Our graph theoretic analyses demonstrated that 7 different regions were observed for the local measures in patients with MDD compared with control groups. These regions were the central nodes of cortical-limbic network, frontal-cingulate network, default mode network (DMN), cognitive control network(CCN)and affective network (AN). In addition, two impaired white matter pathways which included inferior longitudinal fasciculus (ILF) and cingulum were observed in MDD using fiber tracts analysis. We speculate impaired integrity of ILF is due to the alternations in the number of axons or myelination. The results further demonstrated that the number of fiber tracts of anterior cingulum was associated with the depression scores in MDD.
Collapse
|
10
|
Zhang HF, Mellor D, Peng DH. Neuroimaging genomic studies in major depressive disorder: A systematic review. CNS Neurosci Ther 2018; 24:1020-1036. [PMID: 29476595 DOI: 10.1111/cns.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 01/06/2023] Open
Abstract
Genetic-neuroimaging studies could identify new potential endophenotypes of major depressive disorder (MDD). Morphological and functional alterations may be attributable to genetic factors that regulate neurogenesis and neurodegeneration. Given that the association between gene polymorphisms and brain morphology or function has varied across studies, this systematic review aims at evaluating and summarizing all available genetic-neuroimaging studies. Twenty-eight gene variants were evaluated in 64 studies by structural or functional magnetic resonance imaging. Significant genetic-neuroimaging associations were found in monoaminergic genes, BDNF genes, glutamatergic genes, HPA axis genes, and the other common genes, which were consistent with common hypotheses of the pathogenesis of MDD.
Collapse
Affiliation(s)
- Hui-Feng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Mellor
- School of Psychology, Deakin University, Melbourne, Australia
| | - Dai-Hui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Han KM, Won E, Kang J, Choi S, Kim A, Lee MS, Tae WS, Ham BJ. TESC gene-regulating genetic variant (rs7294919) affects hippocampal subfield volumes and parahippocampal cingulum white matter integrity in major depressive disorder. J Psychiatr Res 2017; 93:20-29. [PMID: 28575645 DOI: 10.1016/j.jpsychires.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022]
Abstract
Two recent genome-wide association studies have suggested that rs7294919 is associated with changes in hippocampal volume. rs7294919 regulates the transcriptional products of the TESC gene, which is involved in neuronal proliferation and differentiation. We investigated the interactive effect of rs7294919 and major depressive disorder (MDD) on the volume of the hippocampal subfields and the integrity of the parahippocampal cingulum (PHC). We also investigated the correlation of these structural changes with the DNA methylation status of rs7294919. A total of 105 patients with MDD and 85 healthy control subjects underwent T1-weighted structural magnetic resonance imaging and diffusion tensor imaging. The rs7294919 was genotyped and its DNA methylation status was assessed in all the participants. We analyzed the hippocampal subfield volumes and PHC integrity using FreeSurfer and the Tracts Constrained by Underlying Anatomy (TRACULA) respectively. Significant interactive effects of rs7294919 and MDD were observed in the volumes of the dentate gyrus and CA4. The patients with MDD had increased methylation in two of the three CpG loci of rs7294919, and the methylation of CpG3 was significantly correlated with right PHC integrity in the MDD group. Our results provide neurobiological evidence for the association of rs7294919 with brain structural changes in MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|