1
|
Lago MW, Marques LS, Jung JTK, Felipeto V, Nogueira CW. A high salt intake in early life affects stress-coping response in males but not in female rats. Physiol Behav 2024; 277:114498. [PMID: 38367943 DOI: 10.1016/j.physbeh.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Eating diets high in salt has been associated with alterations in the immune system and the potential development of neuropsychiatric disorders. This area of research shows promise, but there is currently a limited amount of research on this topic. The present study investigated whether a high salt diet (HSD) affects anhedonia and stress-coping response behaviors in young male and female Wistar rats. In this study, male and female Wistar rats were fed an HSD (8 % NaCl w/w) from weaning to post-natal day (PND) 64. From PND 60 to 64, the rats underwent a spontaneous locomotor activity test (SLA), sucrose splash test (SST), sucrose preference test (SPT), and forced swim test (FST), followed by euthanasia at PND 65. Male and female rats consuming the HSD exhibited an increase in water intake compared to the corresponding control diet (CD) groups. Male rats had lower body weight despite having similar food intakes compared to the CD group. Male rats displayed an active stress-coping behavior in the FST, characterized by increased mobility. Additionally, HSD-fed males exhibited a greater preference for sucrose solution in the SPT. However, no effect of diet and sex were detected in the SST and the SLA, and hypothalamic levels of leptin and ghrelin receptors. On the other hand, female rats were less susceptible to the experimental conditions applied in this protocol than males.
Collapse
Affiliation(s)
- M W Lago
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - L S Marques
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - Juliano T K Jung
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - V Felipeto
- Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - C W Nogueira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil; Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Yamaguchi J, Andrade MA, Truong TT, Toney GM. Glutamate Spillover Dynamically Strengthens Gabaergic Synaptic Inhibition of the Hypothalamic Paraventricular Nucleus. J Neurosci 2024; 44:e1851222023. [PMID: 38154957 PMCID: PMC10869154 DOI: 10.1523/jneurosci.1851-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single-channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed, or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localized to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity while potentially aiding stress adaptation and habituation.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Mary Ann Andrade
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Tamara T Truong
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Glenn M Toney
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| |
Collapse
|
3
|
Wang C, Tan W, Liu X, He M, Zeng S, Sun M, Yan L, Li M, Zhan K, Wang K, Li Q. Habitual salt preference worsens blood pressure in hospitalized hypertensive patients with omicron infection under epidemic-related stress. BMC Public Health 2024; 24:134. [PMID: 38195459 PMCID: PMC10777613 DOI: 10.1186/s12889-023-17633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND We investigated the synergistic effect of stress and habitual salt preference (SP) on blood pressure (BP) in the hospitalized Omicron-infected patients. METHODS From 15,185 hospitalized Omicron-infected patients who reported having high BP or hypertension, we recruited 662 patients. All patients completed an electronic questionnaire on diet and stress, and were required to complete morning BP monitoring at least three times. RESULTS The hypertensive group (n = 309) had higher habitual SP (P = 0.015) and COVID-19 related stress (P < 0.001), and had longer hospital stays (7.4 ± 1.5 days vs. 7.2 ± 0.5 days, P = 0.019) compared with controls (n = 353). After adjusting for a wide range of covariates including Omicron epidemic-related stress, habitual SP was found to increase both systolic (4.9 [95% confidence interval (CI), 2.3-7.4] mmHg, P < 0.001) and diastolic (2.1 [95%CI, 0.6-3.6] mmHg, P = 0.006) BP in hypertensive patients, and increase diastolic BP (2.0 [95%CI, 0.2-3.7] mmHg, P = 0.026) in the control group. 31 (8.8%) patients without a history of hypertension were discovered to have elevated BP during hospitalization, and stress was shown to be different in those patients (P < 0.001). In contrast, habitual SP was more common in hypertensive patients with uncontrolled BP, compared with patients with controlled BP (P = 0.002). CONCLUSIONS Habitual SP and psychosocial stress were associated with higher BP in Omicron-infected patients both with and without hypertension. Nonpharmaceutical intervention including dietary guidance and psychiatric therapy are crucial for BP control during the long COVID-19 period.
Collapse
Affiliation(s)
- Chenyi Wang
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Wanhong Tan
- Chongqing Yuzhong District Daping Street Community Health Service Center, 400042, Chongqing, PR China
| | - Xiaoxiao Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Chongqing Institute of Hypertension, Army Medical University, 400042, Chongqing, PR China
- Department of Nephrology, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Miao He
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Chongqing Institute of Hypertension, Army Medical University, 400042, Chongqing, PR China
| | - Shi Zeng
- Department of Neurosurgery, People's Hospital of Chongqing Banan District, 401320, Chongqing, PR China
| | - Maojie Sun
- Department of Pharmacy, The Seventh People's Hospital of Chongqing, 400054, Chongqing, PR China
| | - Lijuan Yan
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Min Li
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Kun Zhan
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Kaifa Wang
- School of Mathematics and Statistics, Southwest University, 400715, Chongqing, PR China.
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Chongqing Institute of Hypertension, Army Medical University, 400042, Chongqing, PR China.
| |
Collapse
|
4
|
Hammack RJ, Fischer VE, Andrade MA, Toney GM. Presence of a remote fear memory engram in the central amygdala. Learn Mem 2023; 30:250-259. [PMID: 37802546 PMCID: PMC10561632 DOI: 10.1101/lm.053833.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Fear memory formation and recall are highly regulated processes, with the central amygdala (CeA) contributing to fear memory-related behaviors. We recently reported that a remote fear memory engram is resident in the anterior basolateral amygdala (aBLA). However, the extent to which downstream neurons in the CeA participate in this engram is unknown. We tested the hypothesis that CeA neurons activated during fear memory formation are reactivated during remote memory retrieval such that a CeA engram participates in remote fear memory recall and its associated behavior. Using contextual fear conditioning in TRAP2;Ai14 mice, we identified, by persistent Cre-dependent tdTomato expression (i.e., "TRAPing"), CeA neurons that were c-fos-activated during memory formation. Twenty-one days later, we quantified neurons activated during remote memory recall using Fos immunohistochemistry. Dual labeling was used to identify the subpopulation of CeA neurons that was both activated during memory formation and reactivated during recall. Compared with their context-conditioned (no shock) controls, fear-conditioned (electric shock) mice (n = 5/group) exhibited more robust fear memory-related behavior (freezing) as well as larger populations of activated (tdTomato+) and reactivated (dual-labeled) CeA neurons. Most neurons in both groups were mainly located in the capsular CeA subdivision (CeAC). Notably, however, only the size of the TRAPed population distributed throughout the CeA was significantly correlated with time spent freezing during remote fear memory recall. Our findings indicate that fear memory formation robustly activates CeA neurons and that a subset located mainly in the CeAC may contribute to both remote fear memory storage/retrieval and the resulting fear-like behavior.
Collapse
Affiliation(s)
- Robert J Hammack
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Victoria E Fischer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
5
|
Beaver JN, Weber BL, Ford MT, Anello AE, Ruffin KM, Kassis SK, Gilman TL. Generalization of contextual fear is sex-specifically affected by high salt intake. PLoS One 2023; 18:e0286221. [PMID: 37440571 PMCID: PMC10343085 DOI: 10.1371/journal.pone.0286221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/10/2023] [Indexed: 07/15/2023] Open
Abstract
A hallmark symptom of many anxiety disorders, and multiple neuropsychiatric disorders more broadly, is generalization of fearful responses to non-fearful stimuli. Anxiety disorders are often comorbid with cardiovascular diseases. One established, and modifiable, risk factor for cardiovascular diseases is salt intake. Yet, investigations into how excess salt consumption affects anxiety-relevant behaviors remains little explored. Moreover, no studies have yet assessed how high salt intake influences generalization of fear. Here, we used adult C57BL/6J mice of both sexes to evaluate the influence of two or six weeks of high salt consumption (4.0% NaCl), compared to controls (0.4% NaCl), on contextual fear acquisition, expression, and generalization. Further, we measured osmotic and physiological stress by quantifying serum osmolality and corticosterone levels, respectively. Consuming excess salt did not influence contextual fear acquisition nor discrimination between the context used for training and a novel, neutral context when training occurred 48 prior to testing. However, when a four week delay between training and testing was employed to induce natural fear generalization processes, we found that high salt intake selectively increases contextual fear generalization in females, but the same diet reduces contextual fear generalization in males. These sex-specific effects were independent of any changes in serum osmolality nor corticosterone levels, suggesting the behavioral shifts are a consequence of more subtle, neurophysiologic changes. This is the first evidence of salt consumption influencing contextual fear generalization, and adds information about sex-specific effects of salt that are largely missing from current literature.
Collapse
Affiliation(s)
- Jasmin N. Beaver
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Brady L. Weber
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Matthew T. Ford
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Anna E. Anello
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Kaden M. Ruffin
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Sarah K. Kassis
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - T. Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
6
|
Hammack RJ, Fischer VE, Andrade MA, Toney GM. Anterior basolateral amygdala neurons comprise a remote fear memory engram. Front Neural Circuits 2023; 17:1167825. [PMID: 37180762 PMCID: PMC10174320 DOI: 10.3389/fncir.2023.1167825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Threatening environmental cues often generate enduring fear memories, but how these are formed and stored remains actively investigated. Recall of a recent fear memory is thought to reflect reactivation of neurons, in multiple brain regions, activated during memory formation, indicating that anatomically distributed and interconnected neuronal ensembles comprise fear memory engrams. The extent to which anatomically specific activation-reactivation engrams persist during long-term fear memory recall, however, remains largely unexplored. We hypothesized that principal neurons in the anterior basolateral amygdala (aBLA), which encode negative valence, acutely reactivate during remote fear memory recall to drive fear behavior. Methods Using adult offspring of TRAP2 and Ai14 mice, persistent tdTomato expression was used to "TRAP" aBLA neurons that underwent Fos-activation during contextual fear conditioning (electric shocks) or context only conditioning (no shocks) (n = 5/group). Three weeks later, mice were re-exposed to the same context cues for remote memory recall, then sacrificed for Fos immunohistochemistry. Results TRAPed (tdTomato +), Fos +, and reactivated (double-labeled) neuronal ensembles were larger in fear- than context-conditioned mice, with the middle sub-region and middle/caudal dorsomedial quadrants of aBLA displaying the greatest densities of all three ensemble populations. Whereas tdTomato + ensembles were dominantly glutamatergic in context and fear groups, freezing behavior during remote memory recall was not correlated with ensemble sizes in either group. Discussion We conclude that although an aBLA-inclusive fear memory engram forms and persists at a remote time point, plasticity impacting electrophysiological responses of engram neurons, not their population size, encodes fear memory and drives behavioral manifestations of long-term fear memory recall.
Collapse
Affiliation(s)
- Robert J. Hammack
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Victoria E. Fischer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Glenn M. Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Adkins JM, Halcomb CJ, Rogers D, Jasnow AM. Stress and sex-dependent effects on conditioned inhibition of fear. Learn Mem 2022; 29:246-255. [PMID: 36206391 PMCID: PMC9488025 DOI: 10.1101/lm.053508.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 10/14/2022]
Abstract
Anxiety and stress-related disorders are highly prevalent and are characterized by excessive fear to threatening and nonthreatening stimuli. Moreover, there is a large sex bias in vulnerability to anxiety and stress-related disorders-women make up a disproportionately larger number of affected individuals compared with men. Growing evidence suggests that an impaired ability to suppress fear in the presence of safety signals may in part contribute to the development and maintenance of many anxiety and stress-related disorders. However, the sex-dependent impact of stress on conditioned inhibition of fear remains unclear. The present study investigated sex differences in the acquisition and recall of conditioned inhibition in male and female mice with a focus on understanding how stress impacts fear suppression. In these experiments, the training context served as the "fear" cue and an explicit tone served as the "safety" cue. Here, we found a possible sex difference in the training requirements for safety learning, although this effect was not consistent across experiments. Reductions in freezing to the safety cue in female mice were also not due to alternative fear behavior expression such as darting. Next, using footshock as a stressor, we found that males were impaired in conditioned inhibition of freezing when the stress was experienced before, but not after, conditioned inhibition training. Females were unaffected by footshock stress when it was administered at either time. Extended conditioned inhibition training in males eliminated the deficit produced by footshock stress. Finally, exposing male and female mice to swim stress impaired safety learning in male mice only. Thus, we found sex × stress interactions in the learning of conditioned inhibition and sex-dependent effects of stress modality. The present study adds to the growing literature on sex differences in safety learning, which will be critical for developing sex-specific therapies for a variety of fear-related disorders that involve excessive fear and/or impaired fear inhibition.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Carly J Halcomb
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - Danielle Rogers
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| |
Collapse
|
8
|
Leal PEDPT, da Silva AA, Rocha-Gomes A, Riul TR, Cunha RA, Reichetzeder C, Villela DC. High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats. Front Behav Neurosci 2022; 15:779080. [PMID: 35058757 PMCID: PMC8763963 DOI: 10.3389/fnbeh.2021.779080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9–11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.
Collapse
Affiliation(s)
- Pedro Ernesto de Pinho Tavares Leal
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Arthur Rocha-Gomes
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rennan Augusto Cunha
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Christoph Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Christoph Reichetzeder,
| | - Daniel Campos Villela
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- *Correspondence: Daniel Campos Villela,
| |
Collapse
|
9
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
10
|
Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Sołek-Pastuszka J, Kotfis K, Bohatyrewicz R, Jaroszyński A, Malbrain MLNG, Badenes R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J Clin Med 2021; 10:4141. [PMID: 34575255 PMCID: PMC8467376 DOI: 10.3390/jcm10184141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma osmolality may impair kidney, cardiac, and immune function, and increase blood-brain barrier permeability. These effects are related not only to the type of hyperosmotic agents, but also to the level of hyperosmolality. The commonly recommended osmolality of 320 mOsm/kg H2O seems to be the maximum level, although an increase in plasma osmolality above 310 mOsm/kg H2O may already induce cardiac and immune system disorders. The present review focuses on the adverse effects of hyperosmolality on the function of various organs.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino, 16100 Genova, Italy;
| | - Magdalena Bielacz
- Institute of Tourism and Recreation, State Vocational College of Szymon Szymonowicz, 22-400 Zamosc, Poland;
| | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Romuald Bohatyrewicz
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Andrzej Jaroszyński
- Department of Nephrology, Institute of Medical Science, Jan Kochanowski University of Kielce, 25-736 Kielce, Poland;
| | - Manu L. N. G. Malbrain
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
- International Fluid Academy, Dreef 3, 3360 Lovenjoel, Belgium
- Medical Department, AZ Jan Palfjin Hospital, Watersportlaan 5, 9000 Gent, Belgium
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
11
|
Gilman TL, George CM, Andrade MA, Mitchell NC, Toney GM, Daws LC. High Salt Intake Lowers Behavioral Inhibition. Front Behav Neurosci 2020; 13:271. [PMID: 31920580 PMCID: PMC6923701 DOI: 10.3389/fnbeh.2019.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/29/2019] [Indexed: 11/15/2022] Open
Abstract
Stress-related neuropsychiatric (e.g., anxiety, depression) and cardiovascular diseases are frequently comorbid, though discerning the directionality of their association has been challenging. One of the most controllable risk factors for cardiovascular disease is salt intake. Though high salt intake is implicated in neuropsychiatric diseases, its direct neurobehavioral effects have seldom been explored. We reported that elevated salt intake in mice augments neuroinflammation, particularly after an acute stressor. Here, we explored how high salt consumption affected behavioral responses of mice to mildly arousing environmental and social tests, then assessed levels of the stress-related hormone corticosterone. Unexpectedly, anxiety-related behaviors in the elevated plus maze, open field, and marble burying test were unaffected by increased salt intake. However, nest building was diminished in mice consuming high salt, and voluntary social interaction was elevated, suggesting reduced engagement in ethologically-relevant behaviors that promote survival by attenuating threat exposure. Moreover, we observed significant positive correlations between social preference and subsequent corticosterone only in mice consuming increased salt, as well as negative correlations between open arm exploration in the elevated plus maze and corticosterone selectively in mice in the highest salt condition. Thus, heightened salt consumption reduces behavioral inhibition under relatively low-threat conditions, and enhances circulating corticosterone proportional to specific behavioral shifts. Considering the adverse health consequences of high salt intake, combined with evidence that increased salt consumption impairs inhibition of context-inappropriate behaviors, we suggest that prolonged high salt intake likely promulgates maladaptive behavioral and cardiovascular responses to perceived stressors that may explain some of the prevalent comorbidity between cardiovascular and neuropsychiatric diseases.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christina M George
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mary Ann Andrade
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nathan C Mitchell
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Glenn M Toney
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Maruyama NO, Mitchell NC, Truong TT, Toney GM. Activation of the hypothalamic paraventricular nucleus by acute intermittent hypoxia: Implications for sympathetic long-term facilitation neuroplasticity. Exp Neurol 2018; 314:1-8. [PMID: 30605624 DOI: 10.1016/j.expneurol.2018.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Exposure to acute intermittent hypoxia (AIH) induces a progressive increase of sympathetic nerve activity (SNA) that reflects a form of neuroplasticity known as sympathetic long-term facilitation (sLTF). Our recent findings indicate that activity of neurons in the hypothalamic paraventricular nucleus (PVN) contributes to AIH-induced sLTF, but neither the intra-PVN distribution nor the neurochemical identity of AIH responsive neurons has been determined. Here, awake rats were exposed to 10 cycles of AIH and c-Fos immunohistochemistry was performed to identify transcriptionally activated neurons in rostral, middle and caudal planes of the PVN. Effects of graded intensities of AIH were investigated in separate groups of rats (n = 6/group) in which inspired oxygen (O2) was reduced every 6 min from 21% to nadirs of 10%, 8% or 6%. All intensities of AIH failed to increase c-Fos counts in the caudally located lateral parvocellular region of the PVN. c-Fos counts increased in the dorsal parvocellular and central magnocellular regions, but significance was achieved only with AIH to 6% O2 (P < 0.002). By contrast, graded intensities of AIH induced graded c-Fos activation in the stress-related medial parvocellular (MP) region. Focusing on AIH exposure to 8% O2, experiments next investigated the stress-regulatory neuropeptide content of AIH-activated MP neurons. Tissue sections immunostained for corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) revealed a significantly greater number of neurons stained for CRH than AVP (P < 0.0001), though AIH induced expression of c-Fos in a similar fraction (~14%) of each neurochemical class. Amongst AIH-activated MP neurons, ~30% stained for CRH while only ~2% stained for AVP. Most AIH-activated CRH neurons (~82%) were distributed in the rostral one-half of the PVN. Results indicate that AIH recruits CRH, but not AVP, neurons in rostral to middle levels of the MP region of PVN, and raise the possibility that these CRH neurons may be a substrate for AIH-induced sLTF neuroplasticity.
Collapse
Affiliation(s)
- Nadia Oliveira Maruyama
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan C Mitchell
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tamara T Truong
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Gilman TL, Mitchell NC, Daws LC, Toney GM. Neuroinflammation Contributes to High Salt Intake-Augmented Neuronal Activation and Active Coping Responses to Acute Stress. Int J Neuropsychopharmacol 2018; 22:137-142. [PMID: 30535261 PMCID: PMC6368371 DOI: 10.1093/ijnp/pyy099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/04/2018] [Indexed: 01/03/2023] Open
Abstract
High dietary salt intake increases risk of stress-related neuropsychiatric disorders. Here, we explored the contribution of high dietary salt intake-induced neuroinflammation in key stress-responsive brain regions, the hypothalamic paraventricular nucleus and basolateral amygdala, in promoting exaggerated neuronal activation and coping behaviors in response to acute psychogenic stress. Mice that underwent high dietary salt intake exhibited increased active stress coping behaviors during and after an acute swim stress, and these were reduced by concurrent administration of minocycline, an inhibitor of microglial activation, without affecting body fluid hyperosmolality caused by high dietary salt intake. Moreover, minocycline attenuated high dietary salt intake-induced increases of paraventricular nucleus tumor necrosis factor-α, activated microglia (ionized calcium-binding adaptor molecule 1), and acute swim stress-induced neuronal activation (c-Fos). In the basolateral amygdala, similar effects were observed on ionized calcium-binding adaptor molecule 1+ and c-Fos+ counts, but not tumor necrosis factor-α levels. These data indicate that high dietary salt intake promotes neuroinflammation, increasing recruitment of neurons in key stress-associated brain regions and augmenting behavioral hyper-responsivity to acute psychological stress.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Correspondence: T. Lee Gilman, PhD, Department of Cellular & Integrative Physiology – MC7756, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 ()
| | - Nathan C Mitchell
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|