1
|
Shields GS, Malone T, Gray ZJ. Acute stress differentially influences risky decision-making processes by sex: A hierarchical bayesian analysis. Psychoneuroendocrinology 2025; 172:107259. [PMID: 39787864 DOI: 10.1016/j.psyneuen.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
How does stress influence our decision-making? Although numerous studies have attempted to answer this question, their results have been inconsistent-presumably due to methodological heterogeneity. Drawing on cumulative prospect theory, we examined how acute stress influenced risky decision-making. To this end, we randomly assigned 147 participants to an acute stress induction or control condition and subsequently assessed participants' risky decision-making. We found that stress increased risky decision-making overall, but more importantly, that stress exerted multiple effects on risky decision-making processes that differed between male and female participants. For female participants, relative to the control condition, stress produced a pattern of decision-making characterized by risk seeking with respect to gains, slightly reduced loss aversion, accurate outcome probability assessment, and greater choice stochasticity. For male participants, stress, relative to the control condition, produced to a pattern of decision-making characterized by very low loss aversion and poorer outcome probability assessment. These results suggest that some of the heterogeneity in existing literature may be explainable by task differences in risk type, risk amount, and outcome certainties, and further that these effects will differ by sex. In short, stress changes how we make decisions, and it does so differently by sex.
Collapse
Affiliation(s)
- Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, USA.
| | - Trey Malone
- Department of Agricultural Economics, Purdue University, USA
| | - Zach J Gray
- Department of Psychological Science, University of Arkansas, Fayetteville, USA
| |
Collapse
|
2
|
Shields GS, Hunter CL, Buckner Z, Tolliver MDM, Makhanova A. Acute immune system activation exerts time-dependent effects on inhibitory control: Results of both a randomized controlled experiment of influenza vaccination and a systematic review and meta-analysis - ISPNE 2024 Dirk Hellhammer Award. Psychoneuroendocrinology 2025; 171:107186. [PMID: 39426040 DOI: 10.1016/j.psyneuen.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Although coming down with an illness or receiving a vaccine are both common experiences, the influence of such acute immune system activations on cognitive processes, such as inhibitory control, has received relatively little attention. We addressed that issue by assessing the effects of acute immune system activation on inhibitory control in a randomized controlled experiment, and by conducting a meta-analysis of similar studies in humans. In our experiment, we found-somewhat surprisingly-that influenza vaccination improved performance on both of our inhibitory control outcomes (i.e., stop-signal reaction times and flanker interference effects). At the meta-analytic level, we found that at a short delay (1.5-4 hours post-injection) between immune activation and inhibitory control assessment, such activation impaired multiple forms of inhibitory control, whereas after a longer delay (e.g., > 18 hours post-injection), such activation improved inhibitory control-consistent with our experiment. Moreover, proinflammatory cytokine activity predicted poorer interference control but better response inhibition, even with a long delay between injection and testing. Together, these results highlight nuanced, time-dependent, and-perhaps-multiple-mechanism-driven effects of acute immune system activity on inhibitory control.
Collapse
Affiliation(s)
- Grant S Shields
- Department of Psychological Science, University of Arkansas, USA.
| | - Colton L Hunter
- Department of Psychological Science, University of Arkansas, USA
| | - Zach Buckner
- Department of Psychological Science, University of Arkansas, USA
| | | | | |
Collapse
|
3
|
Denis D, Payne JD. Targeted Memory Reactivation during Nonrapid Eye Movement Sleep Enhances Neutral, But Not Negative, Components of Memory. eNeuro 2024; 11:ENEURO.0285-23.2024. [PMID: 38769012 PMCID: PMC11140657 DOI: 10.1523/eneuro.0285-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Emotionally salient components of memory are preferentially remembered at the expense of accompanying neutral information. This emotional memory trade-off is enhanced over time, and possibly sleep, through a process of memory consolidation. Sleep is believed to benefit memory through a process of reactivation during nonrapid eye movement sleep (NREM). Here, targeted memory reactivation (TMR) was used to manipulate the reactivation of negative and neutral memories during NREM sleep. Thirty-one male and female participants encoded composite scenes containing either a negative or neutral object superimposed on an always neutral background. During NREM sleep, sounds associated with the scene object were replayed, and memory for object and background components was tested the following morning. We found that TMR during NREM sleep improved memory for neutral, but not negative scene objects. This effect was associated with sleep spindle activity, with a larger spindle response following TMR cues predicting TMR effectiveness for neutral items only. These findings therefore do not suggest a role of NREM memory reactivation in enhancing the emotional memory trade-off across a 12 h period but do align with growing evidence of spindle-mediated memory reactivation in service of neutral declarative memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom,
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
4
|
Shields GS, Hunter CL, Trudell EV, Gray ZJ, Perkins BC, Patterson EG, Zalenski PK. Acute stress influences the emotional foundations of executive control: Distinct effects on control-related affective and cognitive processes. Psychoneuroendocrinology 2024; 162:106942. [PMID: 38218000 DOI: 10.1016/j.psyneuen.2023.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/14/2023] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Acute stress is known to influence performance on various task outcomes indicative of executive functioning (i.e., the top-down, goal-directed control of cognition and behavior). The most common interpretation of these effects is that stress influences control processes themselves. Another possibility, though, is that stress does not impair control per se, but instead alters the affective dynamics underlying the recruitment of control (e.g., reducing the extent to which making an error is aversive), resulting in less recruitment of control and thus poor performance. To date, however, no work has examined whether stress effects on executive function outcomes are driven by affective dynamics related to the recruitment of control. In the current study, we found that acute stress influenced-and cortisol responses related to-both executive control-related performance outcomes (e.g., post-error slowing) and control-related affective dynamics (e.g., negative affect following recruitment of control) in a modified Stroop task, but that these effects appeared to be independent of each other: The effects of stress on, and associations of cortisol with, control-related cognitive outcomes were not statistically mediated by task- or control-related affective dynamics. These results thus suggest that although stress influences affective dynamics underlying executive function, the effects of stress on executive function outcomes appear to be at least partially dependent on nonaffective processes, such as control processes themselves.
Collapse
Affiliation(s)
- Grant S Shields
- Department of Psychological Science, University of Arkansas, USA.
| | - Colton L Hunter
- Department of Psychological Science, University of Arkansas, USA
| | | | - Zach J Gray
- Department of Psychological Science, University of Arkansas, USA
| | | | | | | |
Collapse
|
5
|
Duek O, Korem N, Li Y, Kelmendi B, Amen S, Gordon C, Milne M, Krystal JH, Levy I, Harpaz-Rotem I. Long term structural and functional neural changes following a single infusion of Ketamine in PTSD. Neuropsychopharmacology 2023; 48:1648-1658. [PMID: 37270621 PMCID: PMC10517133 DOI: 10.1038/s41386-023-01606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
NMDA receptor antagonists have a vital role in extinction, learning, and reconsolidation processes. During the reconsolidation window, memories are activated into a labile state and can be reconsolidated in an altered form. This concept might have significant clinical implications in treating PTSD. In this pilot study we tested the potential of a single infusion of ketamine, followed by brief exposure therapy, to enhance post-retrieval extinction of PTSD trauma memories. 27 individuals diagnosed with PTSD were randomly assigned to receive either ketamine (0.5 mg/kg 40 min; N = 14) or midazolam (0.045 mg/kg; N = 13) after retrieval of the traumatic memory. 24 h following infusion, participants received a four-day trauma-focused psychotherapy. Symptoms and brain activity were assessed before treatment, at the end of treatment, and at 30-day follow-up. Amygdala activation to trauma scripts (a major biomarker of fear response) served as the main study outcome. Although PTSD symptoms improved equally in both groups, post-treatment, ketamine recipients showed a lower amygdala (-0.33, sd = 0.13, 95%HDI [-0.56,-0.04]) and hippocampus (-0.3 (sd = 0.19), 95%HDI [-0.65, 0.04]; marginal effect) reactivation to trauma memories, compared to midazolam recipients. Post-retrieval ketamine administration was also associated with decreased connectivity between the amygdala and hippocampus (-0.28, sd = 0.11, 95%HDI [-0.46, -0.11]), with no change in amygdala-vmPFC connectivity. Moreover, reduction in fractional anisotropy in bi-lateral uncinate fasciculus was seen in the Ketamine recipients compared with the midazolam recipients (right: post-treatment: -0.01108, 95% HDI [-0.0184,-0.003]; follow-up: -0.0183, 95% HDI [-0.02719,-0.0107]; left: post-treatment: -0.019, 95% HDI [-0.028,-0.011]; follow-up: -0.017, 95% HDI [-0.026,-0.007]). Taken together it is possible that ketamine may enhance post-retrieval extinction of the original trauma memories in humans. These preliminary findings show promising direction toward the capacity to rewrite human traumatic memories and modulate the fear response for at least 30 days post-extinction. When combined with psychotherapy for PTSD, further investigation of ketamine dose, timing of administration, and frequency of administration, is warranted.
Collapse
Affiliation(s)
- Or Duek
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
| | - Nachshon Korem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
- Departments of Comparative Medicine and Neuroscience, Yale University School of Medicine, New-Haven, CT, USA
| | - Yutong Li
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
| | - Ben Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Shelley Amen
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Madison Milne
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University School of Medicine, New-Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Denis D, Kim SY, Kark SM, Daley RT, Kensinger EA, Payne JD. Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. Eur J Neurosci 2022; 55:2632-2650. [PMID: 33511691 DOI: 10.1111/ejn.15132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah M Kark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Ryan T Daley
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
7
|
Zhang H, Tao Y, Xu H, Zou S, Deng F, Huang L, Zhang H, Wang X, Tang X, Dong Z, Wang Y, Fu X, Yin L. Associations between childhood chronic stress and dynamic functional connectivity in drug-naïve, first-episode adolescent MDD. J Affect Disord 2022; 299:85-92. [PMID: 34822920 DOI: 10.1016/j.jad.2021.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND We explored the associations between chronic stress and dynamic working patterns of the whole brain using resting state MRI data in drug-naïve, first-episode adolescents with major depressive disorder (MDD). METHODS We compared dynamic functional connectivity (dyn-FC) and screen out networks with difference in whole brain between 45 healthy controls (HC) and 60 adolescent MDD patients using dynamic independent components analysis. In each of these networks with difference between groups, hub brain regions were selected as functionally connected to more than 30 brain regions at the same time. Then we extracted the dyn-FC coefficients of each hub brain region with other brain regions in each component at different time points and calculated the average value of the entire scan time. Finally, we explored correlations between these average values of the entire scan time and scores on the Childhood Chronic Stress Questionnaire (CCSQ). RESULTS We found three networks as well as some hub brain regions with different dyn-FC patterns between adolescent MDD and HC. Scores on the CCSQ were found to correlate with dynamic FC between hub brain areas and certain other brain areas in MDD patients. LIMITATIONS our cross-sectional study design does not allow us to speculate about causality between chronic stress and depression. Prospective cohort studies should explore in detail how the changes in dynamic FC appear and evolve during MDD. CONCLUSIONS Chronic stress is related with the brain dynamic working patterns in adolescent MDD.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Yuanmei Tao
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Hanmei Xu
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Shoukang Zou
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Fang Deng
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Lijuan Huang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Hong Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Xiaolan Wang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Xiaowei Tang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Zaiquan Dong
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Yanping Wang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Xia Fu
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan 610041, China; Frontier Science Center for Disease-related Molecular Networks, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Dodd S, Skvarc DR, Dean OM, Anderson A, Kotowicz M, Berk M. Effect of Glucocorticoid and 11β-Hydroxysteroid-Dehydrogenase Type 1 (11β-HSD1) in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2022; 25:387-398. [PMID: 35143668 PMCID: PMC9154221 DOI: 10.1093/ijnp/pyac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity is implicated as a moderator of the progression of multiple diseases and disorders in medicine and is actively subject to investigation as a therapeutic target. Here we summarize the mechanisms of the enzyme and detail the novel agents under investigation. Such agents modulate peripheral cortisol and cortisone levels in hypertension, type 2 diabetes, metabolic disorders, and Alzheimer's disease models, but there is mixed evidence for transduction into symptom management. There is inchoate evidence that 11β-HSD1 modulators may be useful pharmacotherapies for clinical improvement in psychiatry and neurology; however, more research is required.
Collapse
Affiliation(s)
| | - David R Skvarc
- Correspondence: David R. Skvarc, Deakin University, School of Psychology, 1 Gheringap St, Level 3 Building C, Geelong, Victoria 3220, Australia ()
| | - Olivia M Dean
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Parkville, Australia
| | - Anna Anderson
- Department of Endocrinology, University Hospital Geelong, Geelong, Australia
| | - Mark Kotowicz
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia,Department of Endocrinology, University Hospital Geelong, Geelong, Australia,Department of Medicine, The University of Melbourne — Western Health, St Albans, VIC, Australia
| | - Michael Berk
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia,Centre of Youth Mental Health, Department of Psychiatry, University of Melbourne, Parkville, Australia,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Parkville, Australia,Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, Australia
| |
Collapse
|
9
|
Shields GS, Hunter CL, Yonelinas AP. Stress and memory encoding: What are the roles of the stress-encoding delay and stress relevance? Learn Mem 2022; 29:48-54. [PMID: 35042828 PMCID: PMC8774196 DOI: 10.1101/lm.053469.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023]
Abstract
The effects of acute stress on memory encoding are complex. Recent work has suggested that both the delay between stress and encoding and the relevance of the information learned to the stressor may modulate the effects of stress on memory encoding, but the relative contribution of each of these two factors is unclear. Therefore, in the present study, we manipulated (1) acute stress, (2) the delay between stress and encoding, and (3) the relevance of the information learned to the stressor. The results indicated that stress during encoding led to better memory for study materials that were related to the stressor relative to memory for study materials that were unrelated to the stressor. This effect was numerically reduced for materials that were encoded 40 min after stressor onset (23 min after the stressor had ended) compared with items encoded at the time of the stressor, but this difference was not significant. These results suggest that the relevance of the information learned to the stressor may play a particularly important role in the effects of stress on memory encoding, which has important implications for theories of stress and memory.
Collapse
Affiliation(s)
- Grant S. Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Colton L. Hunter
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|
10
|
Nowacka-Chmielewska MM, Liśkiewicz D, Grabowska K, Liśkiewicz A, Marczak Ł, Wojakowska A, Pondel N, Grabowski M, Barski JJ, Małecki A. Effects of Simultaneous Exposure to a Western Diet and Wheel-Running Training on Brain Energy Metabolism in Female Rats. Nutrients 2021; 13:nu13124242. [PMID: 34959794 PMCID: PMC8707360 DOI: 10.3390/nu13124242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In the pathogenesis of central nervous system disorders (e.g., neurodegenerative), an important role is attributed to an unhealthy lifestyle affecting brain energy metabolism. Physical activity in the prevention and treatment of lifestyle-related diseases is getting increasing attention. METHODS We performed a series of assessments in adult female Long Evans rats subjected to 6 weeks of Western diet feeding and wheel-running training. A control group of lean rats was fed with a standard diet. In all experimental groups, we measured physiological parameters (animal weights, body composition, serum metabolic parameters). We assessed the impact of simultaneous exposure to a Western diet and wheel-running on the cerebrocortical protein expression (global proteomic profiling), and in the second part of the experiment, we measured the cortical levels of protein related to brain metabolism (Western blot). RESULTS Western diet led to an obese phenotype and induced changes in the serum metabolic parameters. Wheel-running did not reduce animal weights or fat mass but significantly decreased serum glucose level. The global proteome analysis revealed that the altered proteins were functionally annotated as they were involved mostly in metabolic pathways. Western blot analysis showed the downregulation of the mitochondrial protein-Acyl-CoA dehydrogenase family member 9, hexokinase 1 (HK1)-enzyme involved in principal glucose metabolism pathways and monocarboxylate transporter 2 (MCT2). Wheel-running reversed this decline in the cortical levels of HK1 and MCT2. CONCLUSION The cerebrocortical proteome is affected by a combination of physical activity and Western diet in female rats. An analysis of the cortical proteins involved in brain energy metabolism provides a valuable basis for the deeper investigation of changes in the brain structure and function induced by simultaneous exposure to a Western diet and physical activity.
Collapse
Affiliation(s)
- Marta Maria Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
- Correspondence: ; Tel.: +48-509-505-836
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
| | - Konstancja Grabowska
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.G.); (M.G.); (J.J.B.)
| | - Arkadiusz Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland; (Ł.M.); (A.W.)
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland; (Ł.M.); (A.W.)
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
| | - Mateusz Grabowski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.G.); (M.G.); (J.J.B.)
| | - Jarosław Jerzy Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.G.); (M.G.); (J.J.B.)
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
| |
Collapse
|
11
|
Viana KA, Moterane MM, Green SM, Mason KP, Costa LR. Amnesia after Midazolam and Ketamine Sedation in Children: A Secondary Analysis of a Randomized Controlled Trial. J Clin Med 2021; 10:5430. [PMID: 34830712 PMCID: PMC8625279 DOI: 10.3390/jcm10225430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The incidence of peri-procedural amnesia following procedural sedation in children is unclear and difficult to determine. This study aimed to apply quantitative and qualitative approaches to better understand amnesia following dental sedation of children. After Institutional Review Board Approval, children scheduled for sedation for dental procedures with oral midazolam (OM), oral midazolam and ketamine (OMK), or intranasal midazolam and ketamine (IMK) were recruited for examination of peri-procedural amnesia. Amnesia during the dental session was assessed using a three-stage method, using identification of pictures and an animal toy. On the day following the sedation, primary caregivers answered two questions about their children's memory. One week later, the children received a semi-structured interview. Behavior and level of sedation during the dental session were recorded. Quantitative data were analyzed using descriptive statistics and comparison tests. Qualitative data were analyzed using content analysis. Triangulation was used. Thirty-five children (age: 36 to 76 months) participated in the quantitative analysis. Most children showed amnesia for the dental procedure (82.9%, n = 29/35) and remembered receiving the sedation (82.1%, n = 23/28 for oral administration; 59.3%, n = 16/27 for intranasal administration). The occurrence of amnesia for the dental procedure was slightly higher in the oral midazolam group compared with the other groups (44.8%, n = 13/29 for OM, 13.8%, n = 4/29 for OMK, and 41.4%, n = 12/29 for IMK). Twenty-eight children participated in the qualitative approach. The major theme identified was that some children could remember their procedures in detail. We conclude that peri-procedural amnesia of the dental procedure was common following sedation.
Collapse
Affiliation(s)
- Karolline A. Viana
- Dentistry Graduate Program, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia 74000-000, Goiás, Brazil;
| | - Mônica M. Moterane
- Dentistry Graduate Program, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia 74000-000, Goiás, Brazil;
| | - Steven M. Green
- Department of Emergency Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Keira P. Mason
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Luciane R. Costa
- Department of Oral Health, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia 74000-000, Goiás, Brazil;
| |
Collapse
|
12
|
Shields GS, Hostinar CE, Vilgis V, Forbes EE, Hipwell AE, Keenan K, Guyer AE. Hypothalamic-Pituitary-Adrenal Axis Activity in Childhood Predicts Emotional Memory Effects and Related Neural Circuitry in Adolescent Girls. J Cogn Neurosci 2021; 33:872-886. [PMID: 34449842 PMCID: PMC8764738 DOI: 10.1162/jocn_a_01687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Negative emotional experiences can be more difficult to forget than neutral ones, a phenomenon termed the "emotional memory effect." Individual differences in the strength of the emotional memory effect are associated with emotional health. Thus, understanding the neurobiological underpinnings of the emotional memory effect has important implications, especially for individuals at risk for emotional health problems. Although the neural basis of emotional memory effects has been relatively well defined, less is known about how hormonal factors that can modulate emotional memory, such as glucocorticoids, relate to that neural basis. Importantly, probing the role of glucocorticoids in the stress- and emotion-sensitive period of late childhood to adolescence could provide actionable points of intervention. We addressed this gap by testing whether hypothalamic-pituitary-adrenal (HPA) axis activity during a parent-child conflict task at 11 years of age predicted emotional memory and its primary neural circuitry (i.e., amygdala-hippocampus functional connectivity) at 16 years of age in a longitudinal study of 147 girls (104 with complete data). Results showed that lower HPA axis activity predicted stronger emotional memory effects, r(124) = -.236, p < .01, and higher emotional memory-related functional connectivity between the right hippocampus and the right amygdala, β = -.385, p < .001. These findings suggest that late childhood HPA axis activity may modulate the neural circuitry of emotional memory effects in adolescence, which may confer a potential risk trajectory for emotional health among girls.
Collapse
|
13
|
Jung HY, Kim W, Kwon HJ, Yoo DY, Nam SM, Hahn KR, Yi SS, Choi JH, Kim DW, Yoon YS, Hwang IK. Physical Stress Induced Reduction of Proliferating Cells and Differentiated Neuroblasts Is Ameliorated by Fermented Laminaria japonica Extract Treatment. Mar Drugs 2020; 18:E587. [PMID: 33255381 PMCID: PMC7760277 DOI: 10.3390/md18120587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Laminaria japonica is widely cultivated in East Asia, including South Korea. Fucoidan, a main component of L. japonica, protects neurons from neurological disorders such as ischemia and traumatic brain injury. In the present study, we examined the effects of extract from fermented L. japonica on the reduction of proliferating cells and neuroblasts in mice that were physically (with electric food shock) or psychologically (with visual, auditory and olfactory sensation) stressed with the help of a communication box. Vehicle (distilled water) or fermented L. japonica extract (50 mg/kg) were orally administered to the mice once a day for 21 days. On the 19th day of the treatment, physical and psychological stress was induced by foot shock using a communication box and thereafter for three days. Plasma corticosterone levels were significantly increased after exposure to physical stress and decreased Ki67 positive proliferating cells and doublecortin immunoreactive neuroblasts. In addition, western blot analysis demonstrated that physical stress as well as psychological stress decreased the expression levels of brain-derived neurotrophic factor (BDNF) and the number of phosphorylated cAMP response element binding protein (pCREB) positive nuclei in the dentate gyrus. Fermentation of L. japonica extract significantly increased the contents of reduced sugar and phenolic compounds. Supplementation with fermented L. japonica extract significantly ameliorated the increases of plasma corticosterone revels and decline in the proliferating cells, neuroblasts, and expression of BDNF and pCREB in the physically stressed mice. These results indicate that fermented L. japonica extract has positive effects in ameliorating the physical stress induced reduction in neurogenesis by modulating BDNF and pCREB expression in the dentate gyrus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea;
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| |
Collapse
|
14
|
Nasseri P, Herrera AY, Gillette K, Faude S, White JD, Velasco R, Mather M. Hormonal contraceptive phases matter: Resting-state functional connectivity of emotion-processing regions under stress. Neurobiol Stress 2020; 13:100276. [PMID: 33344729 PMCID: PMC7739174 DOI: 10.1016/j.ynstr.2020.100276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Hormonal contraceptives (HCs) affect various processes related to emotion processing, including emotional memory, fear extinction, and the cortisol response to stress. Despite the modulating role of HCs on the stress response in women and variance in synthetic hormone levels across the HC cycle, little is known about the phase-related effects of HCs on the brain's response to stress. We investigated the effect of HC cycle phase on functional connectivity of memory- and emotion-related regions at rest after exposure to a stressor. Twenty HC users completed two sessions of resting-state functional magnetic resonance imaging after exposure to the cold pressor test, one during the hormone-present HC phase (when synthetic hormones are taken) and one during the hormone-absent HC phase (when synthetic hormones are not taken). Women showed higher functional connectivity between left amygdala and ventromedial prefrontal cortex during the hormone-present phase. During the hormone-absent phase, women showed higher coupling between left parahippocampus and right superior lateral occipital cortex. Our results suggest that the synthetic hormones contained in HCs may protect against the negative effects of stress on functional connectivity of emotional processing regions.
Collapse
Affiliation(s)
- Padideh Nasseri
- University of Southern California, Neuroscience Graduate Program, Los Angeles, CA, USA
| | - Alexandra Ycaza Herrera
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Katherine Gillette
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Sophia Faude
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Jessica D. White
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Ricardo Velasco
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Mara Mather
- University of Southern California, Neuroscience Graduate Program, Los Angeles, CA, USA
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
- University of Southern California, Department of Psychology, Los Angeles, CA, USA
| |
Collapse
|
15
|
Abraham E, Posner J, Wickramaratne PJ, Aw N, van Dijk MT, Cha J, Weissman MM, Talati A. Concordance in parent and offspring cortico-basal ganglia white matter connectivity varies by parental history of major depressive disorder and early parental care. Soc Cogn Affect Neurosci 2020; 15:889-903. [PMID: 33031555 PMCID: PMC7543940 DOI: 10.1093/scan/nsaa118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Social behavior is transmitted cross-generationally through coordinated behavior within attachment bonds. Parental depression and poor parental care are major risks for disruptions of such coordination and are associated with offspring's psychopathology and interpersonal dysfunction. Given the key role of the cortico-basal ganglia (CBG) circuits in social communication, we examined similarities (concordance) of parent-offspring CBG white matter (WM) connections and how parental history of major depressive disorder (MDD) and early parental care moderate these similarities. We imaged 44 parent-offspring dyads and investigated WM connections between basal-ganglia seeds and selected regions in temporal cortex using diffusion tensor imaging (DTI) tractography. We found significant concordance in parent-offspring strength of CBG WM connections, moderated by parental lifetime-MDD and care. The results showed diminished neural concordance among dyads with a depressed parent and that better parental care predicted greater concordance, which also provided a protective buffer against attenuated concordance among dyads with a depressed parent. Our findings provide the first neurobiological evidence of concordance between parents-offspring in WM tracts and that concordance is diminished in families where parents have lifetime-MDD. This disruption may be a risk factor for intergenerational transmission of psychopathology. Findings emphasize the long-term role of early caregiving in shaping the neural concordance among at-risk and affected dyads.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Priya J Wickramaratne
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Natalie Aw
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Milenna T van Dijk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jiook Cha
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Departments of Epidemiology, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
16
|
Nowacka-Chmielewska M, Liśkiewicz D, Liśkiewicz A, Marczak Ł, Wojakowska A, Jerzy Barski J, Małecki A. Cerebrocortical proteome profile of female rats subjected to the western diet and chronic social stress. Nutr Neurosci 2020; 25:567-580. [PMID: 34000981 DOI: 10.1080/1028415x.2020.1770433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The energy-dense western diet significantly increases the risk of obesity, type 2 diabetes, cardiovascular episodes, stroke, and cancer. Recently more attention has been paid to the contribution of an unhealthy lifestyle on the development of central nervous system disorders. Exposure to long-lasting stress is one of the key lifestyle modifications associated with the increased prevalence of obesity and metabolic diseases. The main goal of the present study was to verify the hypothesis that exposure to chronic stress modifies alterations in the brain proteome induced by the western diet. Female adult rats were fed with the prepared chow reproducing the human western diet and/or subjected to chronic stress induced by social instability for 6 weeks. A control group of lean rats were fed with a standard diet. Being fed with the western diet resulted in an obese phenotype and induced changes in the serum metabolic parameters. The combination of the western diet and chronic stress exposure induced more profound changes in the rat cerebrocortical proteome profile than each of these factors individually. The down-regulation of proteins involved in neurotransmitter secretion (Rph3a, Snap25, Syn1) as well as in learning and memory processes (Map1a, Snap25, Tnr) were identified, while increased expression was detected for 14-3-3 protein gamma (Ywhag) engaged in the modulation of the insulin-signaling cascade in the brain. An analysis of the rat brain proteome reveals important changes that indicate that a combination of the western diet and stress exposure may lead to impairments of neuronal function and signaling.
Collapse
Affiliation(s)
- Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Arkadiusz Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.,Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Anna Wojakowska
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jarosław Jerzy Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
17
|
|
18
|
Shields GS. Stress and cognition: A user's guide to designing and interpreting studies. Psychoneuroendocrinology 2020; 112:104475. [PMID: 31810538 DOI: 10.1016/j.psyneuen.2019.104475] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
Fueling the rapid growth in our understanding of how stress influences cognition, the number of studies examining the effects of stress on various cognitive processes has grown substantially over the last two decades. Despite this growth, few published guidelines exist for designing these studies, and divergent paradigm designs can diminish typical effects of stress or even reverse them. The goal of this review, therefore, is to survey necessary considerations (e.g., validating a stress induction), important considerations (e.g., specifying the timing of the stressor and cognitive task), and best practices (e.g., using Bayesian analyses) when designing a study that aims at least in part to examine the effects of acute stress on some cognitive process or function. These guidelines will also serve to help readers of these studies interpret what may otherwise be very confusing, anomalous results. Designing and interpreting studies with these considerations and practices in mind will help to move the field of stress and cognition forward by clarifying how, exactly, stress influences performance on a given cognitive task in a population of interest.
Collapse
Affiliation(s)
- Grant S Shields
- Center for Mind and Brain, University of California, Davis, United States.
| |
Collapse
|
19
|
Kołosowska K, Gawryluk A, Wisłowska-Stanek A, Liguz-Lęcznar M, Hetmańczyk K, Ługowska A, Sobolewska A, Skórzewska A, Gryz M, Lehner M. Stress changes amphetamine response, D2 receptor expression and epigenetic regulation in low-anxiety rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:256-268. [PMID: 31022425 DOI: 10.1016/j.pnpbp.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Aleksandra Gawryluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Hetmańczyk
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|