1
|
Pranckevicius NA, Scott AL, Rourke AJ, Saleem R, Wearing OH, Scott GR. Catecholamine synthesis and secretion by adrenal chromaffin cells are reduced in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2025; 328:R274-R286. [PMID: 39884668 DOI: 10.1152/ajpregu.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (Peromyscus maniculatus), which have evolved to overcome chronic hypoxia in their native environment. High- and low-altitude populations were each born and raised in common laboratory conditions and then acclimated to normoxia or chronic hypoxia during adulthood. High-altitude mice exhibited lower plasma epinephrine concentrations than low-altitude mice in both normoxia and hypoxia. Primary cultures of chromaffin cells were used to examine the cellular mechanisms underlying differences in epinephrine secretion from the adrenal medulla. Chromaffin cells from high-altitude mice did not mount a diminished Ca2+ response to nicotinic stimulation, but cellular catecholamine stores were much lower in high-altitude mice than in low-altitude mice. Histological analyses of the adrenal gland showed that high-altitude mice did not have smaller adrenal medullae. Therefore, reductions in chromaffin cell catecholamine stores were the primary mechanism for lower secretion rates and circulating concentrations of catecholamines in high-altitude mice, which may help avoid sympathoadrenal overactivity in chronic hypoxia. Further exploratory analysis found that high-altitude mice have a larger adrenal cortex and higher plasma concentrations of corticosterone, which could reflect changes in stress responsiveness or metabolic regulation. Therefore, multiple evolved changes in the physiology of the adrenal gland may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Prolonged activation of the sympathoadrenal system can become maladaptive in chronic hypoxia, but few previous studies have examined adrenal function in high-altitude natives. Comparing high-altitude versus low-altitude populations of mice, we show that high-altitude mice synthesize and store fewer catecholamines in adrenal chromaffin cells and thus have lower secretion rates and circulating concentrations of catecholamines in hypoxia.
Collapse
Affiliation(s)
| | - Angela L Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aedan J Rourke
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ranim Saleem
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Deer LK, Hennessey EMP, Doom JR, Gallop RJ, Hoffman MC, Demers CH, Hankin BL, Davis EP. Higher prenatal anxiety predicts lower neonatal hair cortisol. Psychoneuroendocrinology 2024; 165:107044. [PMID: 38657342 PMCID: PMC11139573 DOI: 10.1016/j.psyneuen.2024.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Prenatal glucocorticoids are one of the most widely proposed prenatal programming mechanisms, yet few studies exist that measure fetal cortisol via neonatal hair. Neonatal hair provides a window into the fetal experience and represents cortisol accumulation in the third trimester of pregnancy. In the current study, we test the links between two types of anxiety over the course of gestation (pregnancy-related anxiety and general anxiety) with neonatal hair cortisol. METHOD Pregnant individuals (N = 107) and their neonates (59.8% female) participated in the current study. Prenatal pregnancy-related anxiety and general anxiety were measured using the Pregnancy Related Anxiety Scale (PRAS) and the State-Trait Anxiety Inventory (STAI), in each trimester of pregnancy. Hierarchical linear modeling was used to model the intercept and slope of each type of anxiety over gestation. Neonatal hair samples were collected shortly after birth (Median days = 1.17, IQR = 0.75-2.00). RESULTS Both higher pregnancy-related anxiety and general anxiety at the beginning of pregnancy and a flatter decline of pregnancy-related anxiety over gestation were associated with lower neonatal hair cortisol. After inclusion of gestational age at birth and parity as covariates, pregnancy-related anxiety (intercept: β = -0.614, p =.012; slope: β = -0.681, p =.006), but not general anxiety (intercept: β = -0.389, p =.114; slope: β = -0.302, p =.217) remained a significant predictor. Further, when both general and pregnancy-related anxiety were entered into the same model, only pregnancy-related anxiety (intercept and slope) were significant predictors of neonatal hair cortisol, indicating an association with pregnancy-related anxiety above and beyond general anxiety. CONCLUSION Cortisol plays a central role in maturation of fetal organ systems, and at the end of gestation, higher cortisol has beneficial effects such as promoting fetal lung maturation. Further, lower maternal cortisol is linked to less optimal cognitive development and altered brain development. As maternal higher anxiety in early pregnancy and a flatter decrease over time are both associated with lower neonatal hair cortisol, maternal pregnancy-related anxiety could be a target of future intervention efforts.
Collapse
Affiliation(s)
| | | | - Jenalee R Doom
- Department of Psychology, University of Denver, Denver, CO, USA
| | - Robert J Gallop
- Department of Mathematics, West Chester University, West Chester, PA, USA
| | - M Camille Hoffman
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Catherine H Demers
- Department of Psychology, University of Denver, Denver, CO, USA; Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin L Hankin
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, USA; Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Hoke MK, Long AM. Human biology and the study of precarity: How the intersection of uncertainty and inequality is taking us to new extremes. Am J Hum Biol 2024; 36:e24018. [PMID: 38053455 DOI: 10.1002/ajhb.24018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Inequality represents an extreme environment to which humans must respond. One phenomenon that contributes to this growing extreme is precarity or the intersection of uncertainty and some form of inequality. While precarity has an important intellectual history in the fields of sociology and sociocultural anthropology, it has not been well studied in the field of human biology. Rather human biologists have engaged with the study of closely related concepts such as uncertainty and resource insecurity. In this article, we propose that human biology take on the study of precarity as a novel way of investigating inequality. We first provide a brief intellectual history of precarity which is followed by a review of research on uncertainty and resource security in human biology which, while not exhaustive, illustrates some key gaps that precarity may aid us in addressing. We then review some of the pathways through which precarity comes to affect human biology and health and some of the evidence for why the unpredictable nature of precarity may make it a unique physiological stress. A case study based on research in Nuñoa, Peru provides an important example of how precarity can elucidate the influences of health in an extreme setting, albeit with insights that apply more broadly. We conclude that precarity holds important potential for the study of human biology, including helping us more effectively operationalize and study uncertainty, encouraging us to explore the predictability of resources and stressors, and reminding us to think about the intersectional nature of stressors.
Collapse
Affiliation(s)
- Morgan K Hoke
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anneliese M Long
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Yao D, Lu Y, Li L, Wang S, Mu Y, Ding C, Zhao J, Liu M, Xu M, Wu H, Dou C, Zhu Z, Li H. Prolactin and glucocorticoid receptors in the prefrontal cortex are associated with anxiety-like behavior in prenatally stressed adolescent offspring rats. J Neuroendocrinol 2023; 35:e13231. [PMID: 36683309 DOI: 10.1111/jne.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Prenatal stress (PS) causes anxiety in mothers and their offspring and chewing is a commonly observed behavior during maternal stress. Prolactin (PRL) is an anti-anxiety factor that suppresses the hypothalamic-pituitary-adrenal axis. Here, we studied the roles of PRL, corticosterone (CORT), and their receptors in PS-induced anxiety-like behavior in dams and their offspring. We further investigated whether chewing during maternal stress could prevent PS-induced harmful consequences. Pregnant rats were randomly divided into PS, PS + chewing, and control groups. Anxiety-like behaviors of dams and their adolescent offspring were assessed using the open field test and elevated plus maze. Serum levels of PRL and CORT were measured by ELISA. Expression of mRNA and protein of PRLR and glucocorticoid receptor (GR) in the prefrontal cortex (PFC) were evaluated by qRT-PCR and western blotting, respectively. Compared to the control rats, dams and their female offspring, but not male offspring, in the PS group showed increased anxiety-like behaviors. The PS-affected rats had a lower serum PRL level and increased PRLR expression in the PFC. In contrast, these rats had a higher serum CORT level and decreased GR expression in the PFC. Chewing ameliorated anxiety-like behaviors and counteracted stress-induced changes in serum PRL and CORT, as well as the expression of their receptors in the PFC. Conclusion: PS-induced anxiety-like behavior is associated with changes in the serum levels of PRL and CORT and expression of their receptors in the PFC. Moreover, chewing blunts the hormonal and receptor changes and may serve as an effective stress-coping method for preventing PS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Li Li
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Shan Wang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Chenxi Ding
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Jing Zhao
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Mingzhe Liu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Meina Xu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Haoyue Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Chengyin Dou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, Shaanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Neonatology, The Affiliated Children Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
5
|
Stoye DQ, Sullivan G, Galdi P, Kirschbaum C, Lamb GJ, Black GS, Evans MJ, Boardman JP, Reynolds RM. Perinatal determinants of neonatal hair glucocorticoid concentrations. Psychoneuroendocrinology 2021; 128:105223. [PMID: 33878601 PMCID: PMC8155393 DOI: 10.1016/j.psyneuen.2021.105223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Adult hair glucocorticoid concentrations reflect months of hypothalamic-pituitary-adrenal axis activity. However, little is known about the determinants of neonatal hair glucocorticoids. We tested associations between perinatal exposures and neonatal hair glucocorticoids. Cortisol and cortisone were measured by LC-MS/MS in paired maternal and infant hair samples collected within 10 days of birth (n = 49 term, n = 47 preterm), with neonatal samples collected at 6-weeks in n = 54 preterm infants. We demonstrate cortisol accumulation in hair increases with fetal maturity, with hair cortisol being higher in term than preterm born infants after delivery (median 401 vs 106 pg/mg; p < 0.001). In term born infants, neonatal hair cortisol is positively associated with maternal hair cortisol concentration (β = 0.240, p = 0.045) and negatively associated with birthweight z-score (β = -0.340, p = 0.006). Additionally, being born without maternal labour is associated with lower hair cortisol concentrations (β = -0.489, p < 0.001) and a lower ratio of cortisol to cortisone (β = -0.484, p = 0.001). In preterm infants, histological chorioamnionitis is associated with a higher cortisol to cortisone ratio in hair (β = 0.459, p = 0.001). In samples collected 6 weeks after preterm birth, hair cortisol concentration is associated with cortisol hair concentrations measured after birth (β = 0.523, p < 0.001), chorioamnionitis (β = 0.250, p = 0.049) and postnatal exposures including intravenous hydrocortisone therapy (β = 0.343, p < 0.007) and neonatal sepsis (β = 0.290, p = 0.017). In summary, neonatal hair cortisol is associated with birth gestation, maternal hair cortisol concentration and fetal growth. Additionally, exposures at delivery are important determinants of hair cortisol, and should be considered in the design of future research investigating how neonatal hair cortisol relates to prenatal exposures or fetal development.
Collapse
Affiliation(s)
- David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | | - Gillian J Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Gill S Black
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Margaret J Evans
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rebecca M Reynolds
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK; Centre for Cardiovascular Science, University of Edinburgh, UK.
| |
Collapse
|
6
|
Human Umbilical Cord: Information Mine in Sex-Specific Medicine. Life (Basel) 2021; 11:life11010052. [PMID: 33451112 PMCID: PMC7828611 DOI: 10.3390/life11010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Biological differences between sexes should be considered in all stages of research, as sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous biomedical fields, there is still a lack of stratification by sex despite primary cultured cells retaining memory of the sex and of the donor. The sex of donors in biological research must be known because variations in cells and cellular components can be used as endpoints, biomarkers and/or targets of pharmacological studies. This selective review focuses on the current findings regarding sex differences observed in the umbilical cord, a widely used source of research samples, both in the blood and in the circulating cells, as well as in the different cellular models obtainable from it. Moreover, an overview on sex differences in fetal programming is reported. As it emerges that the sex variable is still often forgotten in experimental models, we suggest that it should be mandatory to adopt sex-oriented research, because only awareness of these issues can lead to innovative research.
Collapse
|
7
|
Boll LM, Khamirchi R, Alonso L, Llurba E, Pozo ÓJ, Miri M, Dadvand P. Prenatal greenspace exposure and cord blood cortisol levels: A cross-sectional study in a middle-income country. ENVIRONMENT INTERNATIONAL 2020; 144:106047. [PMID: 32822928 DOI: 10.1016/j.envint.2020.106047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Exposure to greenspace has been associated with reduced stress; however, the available evidence on such an association for the fetus is still very scarce. We, for the first time, investigated the association between maternal greenspace exposure and the level of cortisol, a stress hormone, in the cord blood. Our study was based on a cohort of 150 pregnant women in Sabzevar, Iran (2018). We comprehensively assessed greenspace exposure for each participant through (i) residential surrounding greenspace (using two satellite-derived vegetation indices), (ii) residential proximity to green spaces, (iii) maternal visual access to greenspace, (iv) use of public and private green spaces, (v) having a private garden, and (vi) the number of plant pots at home. Linear regression models were developed to assess the association of each indicator of greenspace exposure with cord blood cortisol levels, controlled for the relevant covariates. We observed that a higher residential surrounding greenspace (100 m buffer), having a window with greenspace view, window greenspace coverage of more than 50%, frequently looking at greenspace through window, residential proximity to large green spaces, and more time spent in green spaces were associated with lower cortisol levels in the cord blood. The findings for residential surrounding greenspace at 300 m and 500 m buffers, residential proximity to any green space regardless of its size, having a private garden, and number of plant pots at home were not conclusive. While about one-third of the association between residential surrounding greenspace (100 m buffer) could be mediated through reduction in exposure to air pollution, we did not observe any strong evidence for such a mediatory role for the visual access to greenspace. The findings stratified for parental education and housing type showed mixed patterns. Our findings suggest that more greenspace exposure might reduce cortisol level in the cord blood.
Collapse
Affiliation(s)
- Lilian Marie Boll
- ISGlobal, Barcelona, Spain; University of Southern Denmark (SDU), Esbjerg, Denmark
| | - Ramezanali Khamirchi
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Lucia Alonso
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain Maternal and Child Health Development Network, Madrid, Spain
| | - Elisa Llurba
- Obstetrics and Gynaecology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain; Universitat Autónoma de Barcelona (UAB), Spain; Maternal and Child Health Development Network II (SAMID II) RD16/0022/0015SEP, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Óscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, IMIM, Hospital del Mar, Barcelona, Spain
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain Maternal and Child Health Development Network, Madrid, Spain.
| |
Collapse
|
8
|
Ramos-Navarro C, Sánchez-Luna M, Zeballos-Sarrato S, Pescador-Chamorro I. Antenatal corticosteroids and the influence of sex on morbidity and mortality of preterm infants. J Matern Fetal Neonatal Med 2020; 35:3438-3445. [DOI: 10.1080/14767058.2020.1819977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Edwards HE, Wynne-Edwards KE. Substrates and Clearance Products of Fetal Adrenal Glucocorticoid Synthesis in Full-Term Human Umbilical Circulation. J Endocr Soc 2019; 4:bvz041. [PMID: 32047871 PMCID: PMC7003984 DOI: 10.1210/jendso/bvz041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022] Open
Abstract
In full-term elective caesarian sections, fetal flow of adrenal substrate steroids to products differs by sex, with males (M) in molar equilibrium whereas females (F) add net molarity and synthesize more cortisol. Using the same sampling design, paired, full-term, arterial, and venous umbilical cord samples and intrapartum chart records were obtained at the time of vaginal delivery (N = 167, 85 male) or emergency C-section (N = 38, 22 male). Eight steroids were quantified by liquid chromatography coupled to tandem mass spectrometry (adrenal glucocorticoids [cortisol, corticosterone], sequential cortisol precursor steroids [17-hydroxyprogesterone, 11-deoxycortisol], cortisol and corticosterone metabolites [cortisone and 11-dehydrocorticosterone], and gonadal steroids [androstenedione, testosterone]). Fetal sex was not significant in any analytic models. Going through both phase 1 and phase 2 labor increased fetal adrenal steroidogenesis and decreased male testosterone relative to emergency C-sections that do not reach stage 2 of labor (ie, head compressions) and elective C-sections with no labor. Sum adrenal steroid molarity arriving in venous serum was almost double the equivalent metric for deliveries without labor. No effects of operative vaginal delivery were noted. Maternal regional anesthetic suppressed venous concentrations, and fetal synthesis replaced that steroid. Approximate molar equivalence between substrate pool depletion and net glucocorticoid synthesis was seen. Paired venous and arterial umbilical cord serum has the potential to identify sex differences that underlie antenatal programming of hypothalamic-pituitary-adrenal axis function in later life. However, stage 2 labor before the collection of serum, and regional anesthetic for the mother, mask those sex differences.
Collapse
Affiliation(s)
- Heather E Edwards
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Katherine E Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine & Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
| |
Collapse
|
10
|
Will A, Wynne‐Edwards K, Zhou R, Kitaysky A. Of 11 candidate steroids, corticosterone concentration standardized for mass is the most reliable steroid biomarker of nutritional stress across different feather types. Ecol Evol 2019; 9:11930-11943. [PMID: 31695898 PMCID: PMC6822065 DOI: 10.1002/ece3.5701] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
Measuring corticosterone in feathers has become an informative tool in avian ecology, enabling researchers to investigate carry-over effects and responses to environmental variability. Few studies have, however, explored whether corticosterone is the only hormone expressed in feathers and is the most indicative of environmental stress. Essential questions remain as to how to compare hormone concentrations across different types of feathers and whether preening adds steroids, applied after feather growth.We used liquid chromatography coupled to tandem mass spectrometry to quantify a suite of 11 steroid hormones in back, breast, tail, and primary feathers naturally grown at overlapping time intervals by rhinoceros auklet Cerorhinca monocerata captive-reared fledglings and wild-caught juveniles. The captive-reared birds were raised on either a restricted or control diet. Measured steroids included intermediates in the adrenal steroidogenesis pathway to glucocorticoids and the sex steroids pathway to androgens and estrogens.Corticosterone was detected in the majority of feathers of each type. We also detected cortisone in back feathers, androstenedione in breast feathers, and testosterone in primary feathers. Captive fledglings raised on a restricted diet had higher concentrations of corticosterone in all four feather types than captive fledglings raised on a control diet. Corticosterone concentrations were reliably repeatable across feather types when standardized for feather mass, but not for feather length. Of the seven hormones looked for in uropygial gland secretions, only corticosterone was detected in one out of 23 samples.We conclude that corticosterone is the best feather-steroid biomarker for detection of developmental nutritional stress, as it was the only hormone to manifest a signal of nutritional stress, and that exposure to stress can be compared among different feather types when corticosterone concentrations are standardized by feather mass.
Collapse
Affiliation(s)
- Alexis Will
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| | | | - Ruokun Zhou
- Veterinary Medicine & Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlberta
| | - Alexander Kitaysky
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| |
Collapse
|