1
|
Verma K, Lahariya AK, Verma G, Kumari M, Gupta D, Maurya N, Verma AK, Mani A, Schneider KA, Bharti PK. Screening of potential antiplasmodial agents targeting cysteine protease-Falcipain 2: a computational pipeline. J Biomol Struct Dyn 2023; 41:8121-8164. [PMID: 36218071 DOI: 10.1080/07391102.2022.2130984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
The spread of antimalarial drug resistance is a substantial challenge in achieving global malaria elimination. Consequently, the identification of novel therapeutic candidates is a global health priority. Malaria parasite necessitates hemoglobin degradation for its survival, which is mediated by Falcipain 2 (FP2), a promising antimalarial target. In particular, FP2 is a key enzyme in the erythrocytic stage of the parasite's life cycle. Here, we report the screening of approved drugs listed in DrugBank using a computational pipeline that includes drug-likeness, toxicity assessments, oral toxicity evaluation, oral bioavailability, docking analysis, maximum common substructure (MCS) and molecular dynamics (MD) Simulations analysis to identify capable FP2 inhibitors, which are hence potential antiplasmodial agents. A total of 45 drugs were identified, which have positive drug-likeness, no toxic features and good bioavailability. Among these, six drugs showed good binding affinity towards FP2 compared to E64, an epoxide known to inhibit FP2. Notably, two of them, Cefalotin and Cefoxitin, shared the highest MCS with E64, which suggests that they possess similar biological activity as E64. In an investigation using MD for 100 ns, Cefalotin and Cefoxitin showed adequate protein compactness as well as satisfactory complex stability. Overall, these computational approach findings can be applied for designing and developing specific inhibitors or new antimalarial agents for the treatment of malaria infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ayush Kumar Lahariya
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Garima Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- School of Studies in Microbiology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Monika Kumari
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Biotechnology, St. Aloysius' (Autonomous) College, Affiliated to Rani Durgawati University, Jabalpur, Madhya Pradesh, Jabalpur, India
| | - Divanshi Gupta
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Biological Sciences, Rani Durgawati University, Jabalpur, Madhya Pradesh, India
| | - Neha Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Anil Kumar Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | | | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Parasite Host Biology, National Institute of Malaria Research, Delhi, India
| |
Collapse
|
2
|
Smith NA, Clarke OB, Lee M, Hodder AN, Smith BJ. Structure of the Plasmodium falciparum PfSERA5 pseudo-zymogen. Protein Sci 2020; 29:2245-2258. [PMID: 32955133 PMCID: PMC7586913 DOI: 10.1002/pro.3956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022]
Abstract
PfSERA5, a significantly abundant protein present within the parasitophorous vacuole (PV) and essential for normal growth during the blood-stage life cycle of the malaria parasite Plasmodium falciparum, displays structural similarity to many other cysteine proteases. However, PfSERA5 does not exhibit any detectable protease activity and therefore the role of the PfSERA5 papain-like domain (PfSERA5E), thought to remain bound to its cognate prodomain, remains unknown. In this study, we present a revised structure of the central PfSERA5E domain at a resolution of 1.2 Å, and the first structure of the "zymogen" of this papain-like domain including its cognate prodomain (PfSERA5PE) to 2.2 Å resolution. PfSERA5PE is somewhat structurally similar to that of other known proenzymes, retaining the conserved overall folding and orientation of the prodomain through, and occluding, the archetypal papain-like catalytic triad "active-site" cleft, in the same reverse direction as conventional prodomains. Our findings are congruent with previously identified structures of PfSERA5E and of similar "zymogens" and provide a foundation for further investigation into the function of PfSERA5.
Collapse
Affiliation(s)
- Nicholas A. Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Oliver B. Clarke
- Department of AnesthesiologyColumbia UniversityNew YorkNew YorkUSA
- Department of Physiology and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Mihwa Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Anthony N. Hodder
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Brian J. Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
4
|
Musyoka TM, Njuguna JN, Tastan Bishop Ö. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design. Malar J 2019; 18:159. [PMID: 31053072 PMCID: PMC6500056 DOI: 10.1186/s12936-019-2790-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.
Collapse
Affiliation(s)
- Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Joyce Njoki Njuguna
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|