1
|
Cáceres TM, Patiño LH, Ramírez JD. Understanding Host-Pathogen Interactions in Congenital Chagas Disease Through Transcriptomic Approaches. Pathogens 2025; 14:106. [PMID: 40005483 PMCID: PMC11858232 DOI: 10.3390/pathogens14020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a parasitic zoonosis with significant health impacts, particularly in Latin America. While traditionally associated with vector-borne transmission, increased migration has expanded its reach into urban and non-endemic regions. Congenital transmission has become a critical route of infection, involving intricate maternal-fetal immune interactions that challenge diagnosis and treatment. This review synthesizes findings from three RNA-seq studies that explore the molecular underpinnings of congenital Chagas disease, emphasizing differentially expressed genes (DEGs) implicated in host-pathogen interactions. The DAVID tool analysis highlighted the overexpression of genes associated with the innate immune response, including pro-inflammatory cytokines that drive chemotaxis and neutrophil activation. Additionally, calcium-dependent pathways critical for parasite invasion were modulated. T. cruzi exploits the maternal-fetal immune axis to establish a tolerogenic environment conducive to congenital transmission. Alterations in placental angiogenesis, cellular regeneration, and metabolic processes further demonstrate the parasite's ability to manipulate host responses for its survival and persistence. These findings underscore the complex interplay between the host and pathogen that facilitates disease progression. Future research integrating transcriptomic, proteomic, and metabolomic approaches is essential to unravel the molecular mechanisms underlying congenital Chagas disease, with a particular focus on the contributions of genetic diversity and non-coding RNAs in immune evasion and disease pathogenesis.
Collapse
Affiliation(s)
- Tatiana M. Cáceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (T.M.C.); (L.H.P.)
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (T.M.C.); (L.H.P.)
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (T.M.C.); (L.H.P.)
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Serrano-Rodríguez M, Araya JE, Cortez M, Orrego PR. Cytotoxic Effect of Trypanosoma cruzi Calcineurin B Against Melanoma and Adenocarcinoma Cells In Vitro. Adv Pharmacol Pharm Sci 2024; 2024:5394494. [PMID: 39640496 PMCID: PMC11620811 DOI: 10.1155/adpp/5394494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Chagas disease caused by the obligate intracellular flagellate protozoan Trypanozoma cruzi infects about 6 million people. From the 1930s to the present, the antitumor capacity of T. cruzi has been studied; however, the identification of the responsible molecules for this effect remains undiscovered. Calcineurin, a calcium/calmodulin-dependent serine/threonine phosphatase, is a heterodimer consisting of a catalytic subunit (CaNA) and a regulatory subunit (CaNB). It has been described that T. cruzi CaN is involved in the cell invasion and proliferation of the parasite. Recently, extracellular human CaNB has been demonstrated to be capable of inhibiting tumor growth cells, conferring an antitumor effect; however, the extracellular role of T. cruzi CaNB (TcCaNB) is still unknown. The objective of this work was to investigate the antitumor potential of TcCaNB by interacting with membrane proteins and evaluating its effects on the viability, proliferation, and morphology of tumor cells in vitro. Additionally, the possible mechanism of action of TcCaNB was explored. Murine melanoma (B16-F10), human cervical adenocarcinoma (HeLa), and African green monkey kidney epithelial (Vero) cell lines were employed for in vitro assays. Far Western blot and immunofluorescence were performed to assess the interaction of TcCaNB with membrane proteins, and the effect of TcCaNB on cell viability and proliferation was evaluated using the MTS assay and the CyQUANT NF assay, respectively. The effect of the caspase inhibitor Z-VAD-FMK on TcCaNB-stimulated tumor cells was investigated to determine if TcCaNB-induced cell death was associated with apoptosis. To assess cell cycle progression, TcCaNB-treated cells were analyzed by flow cytometry. In this study, the results showed an interaction of TcCaNB with cell membrane proteins in B16-F10 and HeLa tumor lines, indicating that TcCaNB is capable of decreasing viability and proliferation of B16-F10 and HeLa cells, with no significant effect observed in Vero cells. Furthermore, morphological changes were observed in tumor cells treated with TcCaNB. DNA fragmentations and inhibition of caspases with Z-VAD-FMK partially counteracted the cytotoxic effects of TcCaNB on tumor cells, suggesting that TcCaNB-induced cell death might be associated with apoptosis. Additionally, TcCaNB caused S phase cell cycle arrest in HeLa cells, with an increase in the sub-G1 population indicative of apoptosis, while no significant effects were observed in Vero cells.
Collapse
Affiliation(s)
- Mayela Serrano-Rodríguez
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Jorge E. Araya
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Patricio R. Orrego
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
3
|
Jia Z, Yu W, Li J, Zhang M, Zhan B, Yan L, Ming Z, Cheng Y, Tian X, Shao S, Huang J, Zhu X. Crystal structure of Trichinella spiralis calreticulin and the structural basis of its complement evasion mechanism involving C1q. Front Immunol 2024; 15:1404752. [PMID: 38690267 PMCID: PMC11059001 DOI: 10.3389/fimmu.2024.1404752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.
Collapse
Affiliation(s)
- Zhihui Jia
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Yu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingmo Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Mingming Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Liming Yan
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Zhenhua Ming
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaolin Tian
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Shao
- Beijing institute of Clinical Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
5
|
Kaufman CD, Farré C, Biscari L, Pérez AR, Alloatti A. Trypanosoma cruzi, Chagas disease and cancer: putting together the pieces of a complex puzzle. Front Cell Dev Biol 2023; 11:1260423. [PMID: 38188016 PMCID: PMC10768204 DOI: 10.3389/fcell.2023.1260423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Considering the extensive and widespread impact on individuals, cancer can presently be categorized as a pandemic. In many instances, the development of tumors has been linked to endemic microbe infections. Among parasitic infections, Trypanosoma cruzi stands out as one of the most extensively discussed protozoans in the literature that explores the association between diseases of parasite origin and cancer. However, the effective association remains an unsolved paradox. Both the parasite, along with protozoan-derived molecules, and the associated antiparasitic immune response can induce alterations in various host cell pathways, leading to modifications in cell cycle, metabolism, glycosylation, DNA mutations, or changes in neuronal signaling. Furthermore, the presence of the parasite can trigger cell death or a senescent phenotype and modulate the immune system, the metastatic cascade, and the formation of new blood vessels. The interaction among the parasite (and its molecules), the host, and cancer undoubtedly encompasses various mechanisms that operate differentially depending on the context. Remarkably, contrary to expectations, the evidence tilts the balance toward inhibiting tumor growth or resisting tumor development. This effect is primarily observed in malignant cells, rather than normal cells, indicating a selective or specific component. Nevertheless, nonspecific bystander mechanisms, such as T. cruzi's adjuvancy or the presence of proinflammatory cytokines, may also play a significant role in this phenomenon. This work aims to elucidate this complex scenario by synthesizing the main findings presented in the literature and by proposing new questions and answers, thereby adding pieces to this challenging puzzle.
Collapse
Affiliation(s)
- Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
6
|
Maor-Landaw K, Avidor I, Rostowsky N, Salti B, Smirnov M, Ofek-Lalzar M, Levin L, Brekhman V, Lotan T. The Molecular Mechanisms Employed by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) from Invasion through Sporulation for Successful Proliferation in Its Fish Host. Int J Mol Sci 2023; 24:12824. [PMID: 37629003 PMCID: PMC10454682 DOI: 10.3390/ijms241612824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, Myxobolus bejeranoi, which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of M. bejeranoi throughout the infection. Our results show that histones, which are essential for accelerated cell division, are highly expressed even one day after invasion. As the infection progressed, conserved parasitic genes that are known to modulate the host immune reaction in different parasitic taxa were upregulated. These genes included energy-related glycolytic enzymes, as well as calreticulin, proteases, and miRNA biogenesis proteins. Interestingly, myxozoan calreticulin formed a distinct phylogenetic clade apart from other cnidarians, suggesting a possible function in parasite pathogenesis. Sporogenesis was in its final stages 20 days post-exposure, as spore-specific markers were highly expressed. Lastly, we provide the first catalog of transcription factors in a Myxozoa species, which is minimized compared to free-living cnidarians and is dominated by homeodomain types. Overall, these molecular insights into myxozoan infection support the concept that parasitic strategies are a result of convergent evolution.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Itamar Avidor
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Nadav Rostowsky
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Barbara Salti
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Maya Ofek-Lalzar
- Bioinformatic Unit, University of Haifa, Mt. Carmel, Haifa 3498838, Israel;
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| |
Collapse
|
7
|
De Fuentes-Vicente JA, Santos-Hernández NG, Ruiz-Castillejos C, Espinoza-Medinilla EE, Flores-Villegas AL, de Alba-Alvarado M, Cabrera-Bravo M, Moreno-Rodríguez A, Vidal-López DG. What Do You Need to Know before Studying Chagas Disease? A Beginner's Guide. Trop Med Infect Dis 2023; 8:360. [PMID: 37505656 PMCID: PMC10383928 DOI: 10.3390/tropicalmed8070360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research on Chagas disease has shown the complexity of this zoonosis, and controlling it remains a challenge for public health systems. Although knowledge of Chagas disease has advanced greatly, there are still many gaps, and it is necessary to continue generating basic and applied research to create more effective control strategies. The aim of this review is to provide up-to-date information on the components of Chagas disease and highlight current trends in research. We hope that this review will be a starting point for beginners and facilitate the search for more specific information.
Collapse
Affiliation(s)
- José A De Fuentes-Vicente
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Nancy G Santos-Hernández
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Christian Ruiz-Castillejos
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | | | - A Laura Flores-Villegas
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Margarita Cabrera-Bravo
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Dolores G Vidal-López
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| |
Collapse
|
8
|
Ribeiro Franco PI, do Carmo Neto JR, Miguel MP, Machado JR, Nunes Celes MR. Cancer and Trypanosoma cruzi: Tumor induction or protection? Biochimie 2023; 207:113-121. [PMID: 36368477 DOI: 10.1016/j.biochi.2022.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Trypanosoma cruzi causes Chagas disease, a neglected disease that can be divided, overall, into acute and chronic phases. Understanding the mechanisms underlying its progression is based on the parasite-host interactions occurring during the infection. Although the pathophysiology of the main symptomatic forms of Chagas disease has been the subject of several studies, little is known about their relationship with the development of different types of cancer. Therefore, knowledge regarding the molecular aspects of infection in the host, as well as the influence of the immune response in the parasite and the host, can help to understand the association between Chagas disease and tumor development. This review aims to summarize the main molecular mechanisms related to T. cruzi-dependent carcinogenic development and the mechanisms associated with tumor protection mediated by different parasite components.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil.
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil
| | - Marina Pacheco Miguel
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil; Veterinary and Animal Science School, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, 38025-180, Uberaba, Minas Gerais, Brazil
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goiás, Brazil
| |
Collapse
|
9
|
Esperante D, Flisser A, Mendlovic F. The many faces of parasite calreticulin. Front Immunol 2023; 14:1101390. [PMID: 36993959 PMCID: PMC10040973 DOI: 10.3389/fimmu.2023.1101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023] Open
Abstract
Calreticulin from parasites and its vertebrate hosts share ~50% identity and many of its functions are equally conserved. However, the existing amino acid differences can affect its biological performance. Calreticulin plays an important role in Ca2+ homeostasis and as a chaperone involved in the correct folding of proteins within the endoplasmic reticulum. Outside the endoplasmic reticulum, calreticulin is involved in several immunological functions such as complement inhibition, enhancement of efferocytosis, and immune upregulation or inhibition. Several parasite calreticulins have been shown to limit immune responses and promote infectivity, while others are strong immunogens and have been used for the development of potential vaccines that limit parasite growth. Furthermore, calreticulin is essential in the dialogue between parasites and hosts, inducing Th1, Th2 or regulatory responses in a species-specific manner. In addition, calreticulin participates as initiator of endoplasmic reticulum stress in tumor cells and promotion of immunogenic cell death and removal by macrophages. Direct anti-tumoral activity has also been reported. The highly immunogenic and pleiotropic nature of parasite calreticulins, either as positive or negative regulators of the immune response, render these proteins as valuable tools to modulate immunopathologies and autoimmune disorders, as well as a potential treatment of neoplasms. Moreover, the disparities in the amino acid composition of parasite calreticulins might provide subtle variations in the mechanisms of action that could provide advantages as therapeutic tools. Here, we review the immunological roles of parasite calreticulins and discuss possible beneficial applications.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
- *Correspondence: Fela Mendlovic,
| |
Collapse
|
10
|
Azevedo Silveira AC, Cristina de Oliveira R, Rodrigues CC, Teixeira SC, Borges BC, Vieira da Silva C. Trypanosoma cruzi infection induces proliferation and impairs migration of a human breast cancer cell line. Exp Parasitol 2023; 245:108443. [PMID: 36526003 DOI: 10.1016/j.exppara.2022.108443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Breast cancer is considered the type of cancer that most affects women in the world. The triple negative breast cancer is considered aggressive with poor prognosis. In the 1930s Russian researchers observed that T. cruzi has tropism for tumor cells. Since then, this research field has been subject of a numerous of researches. Here, we proposed to investigate the impact of T. cruzi infection on proliferation and migration of triple negative breast cancer cell line (MDA-MB-231). T. cruzi showed high invasion and multiplication rate in MDA-MB-231 cell line. The infection promoted the multiplication of MDA-MB-231 cell, continuous cell lysis throughout of days of in vitro infection and impaired MDA-MB-231 cell migration. Taken together, these results demonstrated the high susceptibility of MDA-MB-231 cell to T. cruzi and suggested that molecules from T. cruzi may impair host cell migration with potential use to avoid metastasis.
Collapse
Affiliation(s)
| | | | - Cassiano Costa Rodrigues
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Xian S, Chen L, Yan Y, Chen J, Yu G, Shao Y, Zhan B, Wang Y, Zhao L. Echinococcus multilocularis Calreticulin Interferes with C1q-Mediated Complement Activation. Trop Med Infect Dis 2023; 8:tropicalmed8010047. [PMID: 36668954 PMCID: PMC9864966 DOI: 10.3390/tropicalmed8010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
As a zoonotic disease caused by Echinococcus multilocularis larvae, alveolar echinococcosis (AE) is one of the most severe forms of parasitic infection. Over a long evolutional process E. multilocularis has developed complex strategies to escape host immune attack and survive within a host. However, the mechanisms underlying immune evasion remain unclear. Here we investigated the binding activity of E. multilocularis calreticulin (EmCRT), a highly conserved Ca2+-binding protein, to human complement C1q and its ability to inhibit classical complement activation. ELISA, Far Western blotting and immunoprecipitation results demonstrated that both recombinant and natural EmCRTs bound to human C1q, and the interaction of recombinant EmCRT (rEmCRT) inhibited C1q binding to IgM. Consequently, rEmCRT inhibited classical complement activation manifested as decreasing C4/C3 depositions and antibody-sensitized cell lysis. Moreover, rEmCRT binding to C1q suppressed C1q binding to human mast cell, HMC-1, resulting in reduced C1q-induced mast cell chemotaxis. According to these results, E. multilocularis expresses EmCRT to interfere with C1q-mediated complement activation and C1q-dependent non-complement activation of immune cells, possibly as an immune evasion strategy of the parasite in the host.
Collapse
Affiliation(s)
- Siqi Xian
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Lujuan Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Yan Yan
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Jianfang Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Guixia Yu
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Yuxiao Shao
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanhai Wang
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.W.); (L.Z.)
| | - Limei Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
12
|
Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor Mechanisms of Molecules Secreted by Trypanosoma cruzi in Colon and Breast Cancer: A Review. Anticancer Agents Med Chem 2023; 23:1710-1721. [PMID: 37254546 DOI: 10.2174/1871520623666230529141544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Molecules secreted by Trypanosoma cruzi (T. cruzi) have beneficial effects on the immune system and can fight against cancer by inhibiting the growth of tumor cells, preventing angiogenesis, and promoting immune activation. OBJECTIVE This study aimed to investigate the effects of molecules secreted by Trypanosoma cruzi on the growth of colon and breast cancer cells, to understand the underlying mechanisms of action. RESULTS Calreticulin from T. cruzi, a 45 kDa protein, participates in essential changes in the tumor microenvironment by triggering an adaptive immune response, exerting an antiangiogenic effect, and inhibiting cell growth. On the other hand, a 21 kDa protein (P21) secreted at all stages of the parasite's life cycle can inhibit cell invasion and migration. Mucins, such as Tn, sialyl-Tn, and TF, are present both in tumor cells and on the surface of T. cruzi and are characterized as common antigenic determinants, inducing a cross-immune response. In addition, molecules secreted by the parasite are used recombinantly in immunotherapy against cancer for their ability to generate a reliable and long-lasting immune response. CONCLUSION By elucidating the antitumor mechanisms of the molecules secreted by T. cruzi, this study provides valuable insights for developing novel therapeutic strategies to combat colon and breast cancer.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shakila Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Zheng W, Hu H, Jiang J, Sun X, Fu R, Tao H, Liu Y, Chen H, Ma H, Chen S. Haemaphysalis longicornis calreticulin is not an effective molecular tool for tick bite diagnosis and disruption of tick infestations. Vet Parasitol 2022; 309:109775. [PMID: 35939902 DOI: 10.1016/j.vetpar.2022.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tick calreticulin (CRT) is a calcium-binding protein secreted into the host during blood feeding. It has been used as a biomarker of tick exposure and has potential as an anti-tick vaccine, but there is no information about these uses for Haemaphysalis longicornis CRT (HlCRT). We synthesized recombinant H. longicornis CRT (rHlCRT) and evaluated its potential for tick bite diagnosis and for disrupting tick infestations. METHODS The responses of mice and rabbits exposed to H. longicornis ticks were measured with ELISA to determine the antibody level against rHlCRT. To evaluate the effects of rHlCRT-induced anti-tick immunity, engorgement weight, tick engorgement index (TEI), feeding duration, ecdysis rate, and egg weight per engorged tick were compared between ticks fed on immunized and normal mice. RESULTS Mean anti-tick CRT antibody levels in sera collected from mice at 1 and 15 days after primary tick exposure were not significantly different from the mean antibody levels in negative control mice that were not bitten by ticks (all P values > 0.05). No significant anti-HlCRT IgG responses developed in mice after second exposure to tick bites compared with the level of anti-HlCRT antibody response in negative control mice (all P values > 0.25). For rabbits, no significant differences in the antibody levels were observed in animals before challenge infestation and after tick exposures, and in animals after two tick exposures (all P values > 0.10). There were no significant differences in the body weight of ticks fed on immunized and normal mice (all P values > 0.15). No significant differences in TEI were observed between ticks fed on immunized mice and normal control mice (all P values > 0.50). There were no significant differences in feeding duration for female ticks, and feeding duration and ecdysis rate for nymphs in the experimental and control groups (all P values > 0.10 for feeding duration and P value = 0.19 for ecdysis rate). We did not observe a significant difference in egg weight per tick in the rHlCRT-immunized and the control groups (P = 0.88). CONCLUSIONS HlCRT in H. longicornis tick saliva proteins appears to be nonimmunogenic to mammalian hosts like mice and rabbits. Vaccination with rHlCRT did not generate effective immunity against parthenogenetic and bisexual H. longicornis nymphs or female ticks. These results indicate that HlCRT is not a suitable molecular candidate for H. longicornis tick bite diagnosis and not effective for the disruption of tick infestations.
Collapse
Affiliation(s)
- Weiqing Zheng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Haijun Hu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiangrong Sun
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Renlong Fu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Huiying Tao
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Yangqing Liu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Hongmei Ma
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China.
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China.
| |
Collapse
|
14
|
Lu X, Zhang J, Li YQ, Liu QX, Zhou D, Deng XF, Qiu Y, Chen Q, Li MY, Liu XQ, Dai JG, Zheng H. Plasmodium Circumsporozoite Protein Enhances the Efficacy of Gefitinib in Lung Adenocarcinoma Cells by Inhibiting Autophagy via Proteasomal Degradation of LC3B. Front Cell Dev Biol 2022; 10:830046. [PMID: 35186935 PMCID: PMC8851824 DOI: 10.3389/fcell.2022.830046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Almost all lung adenocarcinoma (LUAD) patients with EGFR mutant will develop resistance to EGFR-TKIs, which limit the long-term clinical application of these agents. Accumulating evidence shows one of the main reasons for resistance to EGFR-TKIs is induction of autophagy in tumor cells. Our previous study found that circumsporozoite protein (CSP) in Plasmodium can suppress autophagy in host hepatocytes. However, it is unknown whether CSP-mediated inhibition of autophagy could improve the anti-tumor effect of EGFR-TKIs. Methods: We constructed A549 and H1975 cell lines with stable overexpression of CSP (OE-CSP cells). CCK-8, Lactate Dehydrogenase (LDH), flow cytometry, and colony analysis were performed to observe the effect of CSP overexpression on cell viability, apoptosis rate, and colony formation ratio. The sensitizing effect of CSP on gefitinib was evaluated in vivo using a subcutaneous tumor model in nude mice and immunohistochemical assay. The role of CSP in regulation of autophagy was investigated by laser confocal microscopy assay and western blotting. A transcriptome sequencing assay and real-time polymerase chain reaction were used to determine the levels of mRNA for autophagy-related proteins. Cycloheximide (CHX), MG132, TAK-243, and immunoprecipitation assays were used to detect and confirm proteasomal degradation of LC3B. Results: OE-CSP A549 and H1975 cells were more sensitive to gefitinib, demonstrating significant amounts of apoptosis and decreased viability. In the OE-CSP group, autophagy was significantly inhibited, and there was a decrease in LC3B protein after exposure to gefitinib. Cell viability and colony formed ability were recovered when OE-CSP cells were exposed to rapamycin. In nude mice with xenografts of LUAD cells, inhibition of autophagy by CSP resulted in suppression of cell growth, and more marked apoptosis during exposure to gefitinib. CSP promoted ubiquitin-proteasome degradation of LC3B, leading to inhibition of autophagy in LUAD cells after treatment with gefitinib. When LUAD cells were treated with ubiquitin activating enzyme inhibitor TAK-243, cell viability, apoptosis, and growth were comparable between the OE-CSP group and a control group both in vivo and in vitro. Conclusion: CSP can inhibit gefitinib-induced autophagy via proteasomal degradation of LC3B, which suggests that CSP could be used as an autophagy inhibitor to sensitize EGFR-TKIs.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xu-Feng Deng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, China
| | - Man-Yuan Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao-Qing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Shao S, Hao C, Zhan B, Zhuang Q, Zhao L, Chen Y, Huang J, Zhu X. Trichinella spiralis Calreticulin S-Domain Binds to Human Complement C1q to Interfere With C1q-Mediated Immune Functions. Front Immunol 2020; 11:572326. [PMID: 33329535 PMCID: PMC7710684 DOI: 10.3389/fimmu.2020.572326] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/20/2020] [Indexed: 01/21/2023] Open
Abstract
Helminths develop strategies to escape host immune responses that facilitate their survival in the hostile host immune environment. Trichinella spiralis, a tissue-dwelling nematode, has developed a sophisticated strategy to escape complement attack. Our previous study demonstrated that T. spiralis secretes calreticulin (TsCRT) to inhibit host classical complement activation through binding to C1q; however, the C1q binding site in TsCRT and the specific mechanism involved with complement-related immune evasion remains unknown. Using molecular docking modeling and fragment expression, we determined that TsCRT-S, a 153-aa domain of TsCRT, is responsible for C1q binding. Recombinant TsCRT-S protein expressed in Escherichia coli had the same capacity to bind and inhibit human C1q-induced complement and neutrophil activation, as full-length TsCRT. TsCRT-S inhibited neutrophil reactive oxygen species and elastase release by binding to C1q and reduced neutrophil killing of newborn T. spiralis larvae. Binding of TsCRT-S to C1q also inhibited formation of neutrophil extracellular traps (NETs), which are involved in autoimmune pathologies and have yet to be therapeutically targeted. These findings provide evidence that the TsCRT-S fragment, rather than the full-length TsCRT, is a potential target for vaccine or therapeutic development for trichinellosis, as well as for complement-related autoimmune disease therapies.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunyue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Qinghui Zhuang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Limei Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Ramírez-Toloza G, Aguilar-Guzmán L, Valck C, Ferreira VP, Ferreira A. The Interactions of Parasite Calreticulin With Initial Complement Components: Consequences in Immunity and Virulence. Front Immunol 2020; 11:1561. [PMID: 32793217 PMCID: PMC7391170 DOI: 10.3389/fimmu.2020.01561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Because of its capacity to increase a physiologic inflammatory response, to stimulate phagocytosis, to promote cell lysis and to enhance pathogen immunogenicity, the complement system is a crucial component of both the innate and adaptive immune responses. However, many infectious agents resist the activation of this system by expressing or secreting proteins with a role as complement regulatory, mainly inhibitory, proteins. Trypanosoma cruzi, the causal agent of Chagas disease, a reemerging microbial ailment, possesses several virulence factors with capacity to inhibit complement at different stages of activation. T. cruzi calreticulin (TcCalr) is a highly-conserved, endoplasmic reticulum-resident chaperone that the parasite translocates to the extracellular environment, where it exerts a variety of functions. Among these functions, TcCalr binds C1, MBL and ficolins, thus inhibiting the classical and lectin pathways of complement at their earliest stages of activation. Moreover, the TcCalr/C1 interaction also mediates infectivity by mimicking a strategy used by apoptotic cells for their removal. More recently, it has been determined that these Calr strategies are also used by a variety of other parasites. In addition, as reviewed elsewhere, TcCalr inhibits angiogenesis, promotes wound healing and reduces tumor growth. Complement C1 is also involved in some of these properties. Knowledge on the role of virulence factors, such as TcCalr, and their interactions with complement components in host-parasite interactions, may lead toward the description of new anti-parasite therapies and prophylaxis.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Department of Pathology, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Carolina Valck
- Department of Immunology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Arturo Ferreira
- Department of Immunology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|