1
|
Mendes GR, Noronha AL, Moura IMR, Moreira NM, Bonatto V, Barbosa CS, Maluf SEC, Souza GED, de Amorim MR, Aguiar ACC, Cruz FC, Ferreira ADS, Teles CBG, Pereira DB, Hajdu E, Ferreira AG, Berlinck RGS, Guido RVC. Marine Guanidine Alkaloids Inhibit Malaria Parasites Development in In Vitro, In Vivo and Ex Vivo Assays. ACS Infect Dis 2025. [PMID: 40233359 DOI: 10.1021/acsinfecdis.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Malaria is a disease caused by pathogenic protozoa Plasmodium spp., with a significant global impact on human health. Increasing resistance of P. falciparum strains to drugs treating malaria highlights the urgent need for the discovery of new antimalarial candidates. Batzelladines are marine guanidine alkaloids that exhibit potent antiparasitic activity. Herein, results of the parasitological profiling assessment of batzelladines F and L are reported. Both compounds exhibited potent antiplasmodial activity, moderate cytotoxicity, and suitable selectivity indexes. Batzelladines F and L are fast-acting P. falciparum inhibitors, with a pronounced inhibitory activity against resistant strains and laboratory-adapted clinical isolates of P. falciparum. Batzelladines F and L also demonstrated ex vivo activity against clinical isolates of P. falciparum and P. vivax, and batzelladine F showed in vivo antimalarial activity in a P. berghei malaria model. The results reported constitute a robust rationale for the development of guanidine alkaloid derivatives as lead candidates for malaria treatment.
Collapse
Affiliation(s)
- Giovana Rossi Mendes
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
| | - Anderson L Noronha
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| | - Igor M R Moura
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
| | - Natália Menezes Moreira
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
| | - Vinícius Bonatto
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
| | - Camila S Barbosa
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
| | - Sarah El Chamy Maluf
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
| | | | | | - Anna Caroline Campos Aguiar
- São Carlos Institute of Physics, University of Sao Paulo, CEP 13563-120 São Carlos, SP, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, CEP 04023-062 São Paulo, SP, Brazil
| | - Fabio C Cruz
- Department of Pharmacology, Federal University of São Paulo, CEP 04023-062 São Paulo, SP, Brazil
| | - Amália Dos Santos Ferreira
- Oswaldo Cruz Foundation, Leishmaniasis and Malaria Bioassay Platform, CEP 76812-245 Porto Velho, Rondônia, Brazil
| | - Carolina B G Teles
- Oswaldo Cruz Foundation, Leishmaniasis and Malaria Bioassay Platform, CEP 76812-245 Porto Velho, Rondônia, Brazil
| | - Dhelio B Pereira
- Research Center in Tropical Medicine of Rondônia, CEP 76812-329 Porto Velho, RO, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro, CEP 20940-040 Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| | | |
Collapse
|
2
|
Muriithi B, Chepngetich J, Gachie B, Thiong'o K, Gathirwa J, Kimani F, Mwitari P, Kiboi D. Structural and functional implications of MIT2 and NT2 mutations in amodiaquine and piperaquine resistant Plasmodium berghei parasites. Exp Parasitol 2025; 271:108923. [PMID: 40032183 DOI: 10.1016/j.exppara.2025.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/27/2024] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Long-acting drugs, amodiaquine (AQ), lumefantrine (LM), and piperaquine (PQ), are vital components of artemisinin-based combination therapies (ACTs) for malaria treatment. However, the emergence of partial artemisinin-resistant parasites poses significant challenges, particularly in malaria-endemic regions. Despite extensive research, parasite's resistance mechanisms to these drugs still need complete elucidation. This study investigated the genetic basis of resistance to AQ, LM, and PQ using Plasmodium berghei, focusing on selected genes encoding transport proteins in Plasmodium species. In silico bioinformatics tools were used to map genes encoding transport proteins, their ligand-binding sites, and their conservation across different Plasmodium species. PCR amplification and sequence analysis were employed to examine single nucleotide polymorphisms (SNPs) in the genes encoding the selected transporters in AQ, LM, and PQ-resistant P. berghei. The structural impacts of the mutations were evaluated using AlphaFold, ITASSER, UCSF Chimera, and MOTIF Finder. Genes encoding CorA-like Mg2+ transporter protein (MIT2), nucleoside transporter 2 (NT2), ABC Transporter G family member 2 (ABCG2), and novel putative transporter 1 (NPT1) transport proteins with notable conserved motifs and ligand-binding motifs in Plasmodium species were selected and examined. In AQ-resistant (AQR) parasites, a non-synonymous mutation (I433∗) was found in MIT2. PQ-resistant (PQR) parasites possessed a non-synonymous mutation (D511H) in NT2 and a silent mutation in the NPT1 protein. No mutations were observed in the targeted regions of the transporters in LM-resistant (LMR) parasites, nor in the ligand-binding motifs of ABCG2 across all resistant strains. These findings suggest that selection pressure from AQ and PQ leads to mutations in MIT2 and NT2. Further investigation is required to understand how these mutations affect drug susceptibility on a functional level.
Collapse
Affiliation(s)
- Brenda Muriithi
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya
| | - Jean Chepngetich
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya; PanAfrican University Institute for Basic Sciences, Technology and Innovation is 62000, 00200, Nairobi, Kenya
| | - Beatrice Gachie
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya; PanAfrican University Institute for Basic Sciences, Technology and Innovation is 62000, 00200, Nairobi, Kenya
| | - Kevin Thiong'o
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, 54840, 00200, Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, 54840, 00200, Nairobi, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya.
| |
Collapse
|
3
|
Adebayo G, Ayanda OI, Rottmann M, Ajibaye OS, Oduselu G, Mulindwa J, Ajani OO, Aina O, Mäser P, Adebiyi E. The Importance of Murine Models in Determining In Vivo Pharmacokinetics, Safety, and Efficacy in Antimalarial Drug Discovery. Pharmaceuticals (Basel) 2025; 18:424. [PMID: 40143200 PMCID: PMC11944934 DOI: 10.3390/ph18030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
New chemical entities are constantly being investigated towards antimalarial drug discovery, and they require animal models for toxicity and efficacy testing. Murine models show physiological similarities to humans and are therefore indispensable in the search for novel antimalarial drugs. They provide a preclinical basis (following in vitro assessments of newly identified lead compounds) for further assessment in the drug development pipeline. Specific mouse strains, non-humanized and humanized, have successfully been infected with rodent Plasmodium species and the human Plasmodium species, respectively. Infected mice provide a platform for the assessment of treatment options being sought. In vivo pharmacokinetic evaluations are necessary when determining the fate of potential antimalarials in addition to the efficacy assessment of these chemical entities. This review describes the role of murine models in the drug development pipeline. It also explains some in vivo pharmacokinetic, safety, and efficacy parameters necessary for making appropriate choices of lead compounds in antimalarial drug discovery. Despite the advantages of murine models in antimalarial drug discovery, certain limitations are also highlighted.
Collapse
Affiliation(s)
- Glory Adebayo
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Opeyemi I. Ayanda
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Olusola S. Ajibaye
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Gbolahan Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Julius Mulindwa
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Oluwagbemiga Aina
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- African Centre of Excellence in Bioinformatics & Data Intensive Science (ACE), Kampala P.O. Box 7062, Uganda
- Infectious Diseases Institute, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
4
|
Zhu H, Zhu D, Li Y, Li Y, Song X, Mo J, Liu L, Liu Z, Wang S, Yao Y, Yan H, Wu K, Wang W, Yin J, Lin M, Li J. Rapid detection of mutations in the suspected piperaquine resistance gene E415G-exo in Plasmodium falciparum exonuclease via AS‒PCR and RAA with CRISPR/Cas12a. Int J Parasitol Drugs Drug Resist 2024; 26:100568. [PMID: 39476461 PMCID: PMC11550206 DOI: 10.1016/j.ijpddr.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/13/2024]
Abstract
Malaria remains a major public health concern. The rapid spread of resistance to antimalarial drugs is a major challenge for malaria eradication. Timely and accurate molecular monitoring based on practical detection methods is a critical step toward malaria control and elimination. In this study, two rapid detection techniques, allele-specific PCR (AS‒PCR) and recombinase-aided amplification (RAA) combined with CRISPR/Cas12a, were established, optimized and assessed to detect single nucleotide polymorphisms in the Plasmodium falciparum exonuclease (Pfexo) gene related to suspected piperaquine resistance. Moreover, phosphorothioate and artificial mismatches were introduced into the allele-specific primers for AS‒PCR, and crRNA-mismatched bases were introduced into the RAA‒CRISPR/Cas12a assay because crRNAs designed according to conventional rules fail to discriminate genotypes. As a result, the detection limits of the AS‒PCR and RAA‒CRISPR/Cas12a assays were 104 copies/μL and 103 copies/μL, respectively. The detection threshold for dried blood spots was 100‒150 parasites/μL, with no cross-reactivity against other genotypes. The average cost of AS‒PCR is approximately $1 per test and takes 2-3 h, whereas that of the RAA‒CRISPR/Cas12a system is approximately $7 per test and takes 1 h or less. Therefore, we provide more options for testing single nucleotide polymorphisms in the Pfexo gene, considering economic conditions and the availability of instruments, equipment, and reagents, which can contribute to the molecular monitoring of antimalarial resistance.
Collapse
Affiliation(s)
- Huiyin Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Daiqian Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Yuting Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Yun Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Jinyu Mo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Zhixin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Siqi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Kai Wu
- Wuhan Center for Disease Control and Prevention, Wuhan, China.
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.
| | - Jian Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
5
|
McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. Single-cell quantitative bioimaging of P. berghei liver stage translation. mSphere 2023; 8:e0054423. [PMID: 37909773 PMCID: PMC10732057 DOI: 10.1128/msphere.00544-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Plasmodium parasites cause malaria in humans. New multistage active antimalarial drugs are needed, and a promising class of drugs targets the core cellular process of translation, which has many potential molecular targets. During the obligate liver stage, Plasmodium parasites grow in metabolically active hepatocytes, making it challenging to study core cellular processes common to both host cells and parasites, as the signal from the host typically overwhelms that of the parasite. Here, we present and validate a flexible assay to quantify Plasmodium liver stage translation using a technique to fluorescently label the newly synthesized proteins of both host and parasite followed by computational separation of their respective nascent proteomes in confocal image sets. We use the assay to determine whether a test set of known compounds are direct or indirect liver stage translation inhibitors and show that the assay can also predict the mode of action for novel antimalarial compounds.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - William Sausman
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
Hao Z, Chen J, Sun P, Chen L, Zhang Y, Chen W, Hu D, Bi F, Han Z, Tang X, Suo J, Suo X, Liu X. Distinct non-synonymous mutations in cytochrome b highly correlate with decoquinate resistance in apicomplexan parasite Eimeria tenella. Parasit Vectors 2023; 16:365. [PMID: 37848977 PMCID: PMC10583425 DOI: 10.1186/s13071-023-05988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Protozoan parasites of the genus Eimeria are the causative agents of chicken coccidiosis. Parasite resistance to most anticoccidial drugs is one of the major challenges to controlling this disease. There is an urgent need for a molecular marker to monitor the emergence of resistance against anticoccidial drugs, such as decoquinate. METHODS We developed decoquinate-resistant strains by successively exposing the Houghton (H) and Xinjiang (XJ) strains of E. tenella to incremental concentrations of this drug in chickens. Additionally, we isolated a decoquinate-resistant strain from the field. The resistance of these three strains was tested using the criteria of weight gain, relative oocyst production and reduction of lesion scores. Whole-genome sequencing was used to identify the non-synonymous mutations in coding genes that were highly associated with the decoquinate-resistant phenotype in the two laboratory-induced strains. Subsequently, we scrutinized the missense mutation in a field-resistant strain for verification. We also employed the AlphaFold and PyMOL systems to model the alterations in the binding affinity of the mutants toward the drug molecule. RESULTS We obtained two decoquinate-resistant (DecR) strains, DecR_H and XJ, originating from the original H and XJ strains, respectively, as well as a decoquinate-resistant E. tenella strain from the field (DecR_SC). These three strains displayed resistance to 120 mg/kg decoquinate administered through feed. Through whole-genome sequencing analysis, we identified the cytochrome b gene (cyt b; ETH2_MIT00100) as the sole mutated gene shared between the DecR_H and XJ strains and also detected this gene in the DecR_SC strain. Distinct non-synonymous mutations, namely Gln131Lys in DecR_H, Phe263Leu in DecR_XJ, and Phe283Leu in DecR_SC were observed in the three resistant strains. Notably, these mutations were located in the extracellular segments of cyt b, in close proximity to the ubiquinol oxidation site Qo. Drug molecular docking studies revealed that cyt b harboring these mutants exhibited varying degrees of reduced binding ability to decoquinate. CONCLUSIONS Our findings emphasize the critical role of cyt b mutations in the development of decoquinate resistance in E. tenella. The strong correlation observed between cyt b mutant alleles and resistance indicates their potential as valuable molecular markers for the rapid detection of decoquinate resistance.
Collapse
Affiliation(s)
- Zhenkai Hao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Junmin Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Pei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Linlin Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetics Improvement, China Agricultural University, Beijing, China
| | - Wenxuan Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Hu
- School of Animal Science and Technology, Guangxi University, Guangxi, China
| | - Feifei Bi
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhenyan Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Ling DB, Nguyen W, Looker O, Razook Z, McCann K, Barry AE, Scheurer C, Wittlin S, Famodimu MT, Delves MJ, Bullen HE, Crabb BS, Sleebs BE, Gilson PR. A Pyridyl-Furan Series Developed from the Open Global Health Library Block Red Blood Cell Invasion and Protein Trafficking in Plasmodium falciparum through Potential Inhibition of the Parasite's PI4KIIIB Enzyme. ACS Infect Dis 2023; 9:1695-1710. [PMID: 37639221 PMCID: PMC10496428 DOI: 10.1021/acsinfecdis.3c00138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 08/29/2023]
Abstract
With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.
Collapse
Affiliation(s)
- Dawson B. Ling
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Oliver Looker
- Burnet Institute,
Melbourne, Victoria3004, Australia
| | - Zahra Razook
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Kirsty McCann
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Alyssa E. Barry
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Hayley E. Bullen
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - Brendan S. Crabb
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
- Department of Immunology and Pathology,
Monash University, Melbourne, Victoria3800,
Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Paul R. Gilson
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| |
Collapse
|
8
|
McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. Single-cell quantitative bioimaging of P. berghei liver stage translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547872. [PMID: 37461595 PMCID: PMC10350035 DOI: 10.1101/2023.07.05.547872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Plasmodium parasite resistance to existing antimalarial drugs poses a devastating threat to the lives of many who depend on their efficacy. New antimalarial drugs and novel drug targets are in critical need, along with novel assays to accelerate their identification. Given the essentiality of protein synthesis throughout the complex parasite lifecycle, translation inhibitors are a promising drug class, capable of targeting the disease-causing blood stage of infection, as well as the asymptomatic liver stage, a crucial target for prophylaxis. To identify compounds capable of inhibiting liver stage parasite translation, we developed an assay to visualize and quantify translation in the P. berghei-HepG2 infection model. After labeling infected monolayers with o-propargyl puromycin (OPP), a functionalized analog of puromycin permitting subsequent bioorthogonal addition of a fluorophore to each OPP-terminated nascent polypetide, we use automated confocal feedback microscopy followed by batch image segmentation and feature extraction to visualize and quantify the nascent proteome in individual P. berghei liver stage parasites and host cells simultaneously. After validation, we demonstrate specific, concentration-dependent liver stage translation inhibition by both parasite-selective and pan-eukaryotic active compounds, and further show that acute pre-treatment and competition modes of the OPP assay can distinguish between direct and indirect translation inhibitors. We identify a Malaria Box compound, MMV019266, as a direct translation inhibitor in P. berghei liver stages and confirm this potential mode of action in P. falciparum asexual blood stages.
Collapse
Affiliation(s)
- James L McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - William Sausman
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ashley B Reers
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
9
|
Kümpornsin K, Kochakarn T, Yeo T, Okombo J, Luth MR, Hoshizaki J, Rawat M, Pearson RD, Schindler KA, Mok S, Park H, Uhlemann AC, Jana GP, Maity BC, Laleu B, Chenu E, Duffy J, Moliner Cubel S, Franco V, Gomez-Lorenzo MG, Gamo FJ, Winzeler EA, Fidock DA, Chookajorn T, Lee MCS. Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum. Nat Commun 2023; 14:3059. [PMID: 37244916 DOI: 10.1038/s41467-023-38774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.
Collapse
Affiliation(s)
- Krittikorn Kümpornsin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Calibr, Division of the Scripps Research Institute, La Jolla, CA, USA
| | - Theerarat Kochakarn
- The Laboratory for Molecular Infection Medicine Sweden and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gouranga P Jana
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Bikash C Maity
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Benoît Laleu
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | - Elodie Chenu
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | - James Duffy
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | | | - Virginia Franco
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | | | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Thanat Chookajorn
- The Laboratory for Molecular Infection Medicine Sweden and Department of Molecular Biology, Umeå University, Umeå, Sweden
- Genomics and Evolutionary Medicine Unit, Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
10
|
Parres-Mercader M, Pance A, Gómez-Díaz E. Novel systems to study vector-pathogen interactions in malaria. Front Cell Infect Microbiol 2023; 13:1146030. [PMID: 37305421 PMCID: PMC10253182 DOI: 10.3389/fcimb.2023.1146030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
Collapse
Affiliation(s)
- Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Alena Pance
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
11
|
A Plasmodium falciparum ubiquitin-specific protease (PfUSP) is essential for parasite survival and its disruption enhances artemisinin efficacy. Biochem J 2023; 480:25-39. [PMID: 36511651 DOI: 10.1042/bcj20220429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/14/2022]
Abstract
Proteins associated with ubiquitin-proteasome system (UPS) are potential drug targets in the malaria parasite. The ubiquitination and deubiquitination are key regulatory processes for the functioning of UPS. In this study, we have characterized the biochemical and functional role of a novel ubiquitin-specific protease (USP) domain-containing protein of the human malaria parasite Plasmodium falciparum (PfUSP). We have shown that the PfUSP is an active deubiquitinase associated with parasite endoplasmic reticulum (ER). Selection linked integration (SLI) method for C-terminal tagging and GlmS-ribozyme mediated inducible knock-down (iKD) of PfUSP was utilized to assess its functional role. Inducible knockdown of PfUSP resulted in a remarkable reduction in parasite growth and multiplication; specifically, PfUSP-iKD disrupted ER morphology and development, blocked the development of healthy schizonts, and hindered proper merozoite development. PfUSP-iKD caused increased ubiquitylation of specific proteins, disrupted organelle homeostasis and reduced parasite survival. Since the mode of action of artemisinin and the artemisinin-resistance are shown to be associated with the proteasome machinery, we analyzed the effect of dihydroartemisinin (DHA) on PfUSP-iKD parasites. Importantly, the PfUSP-knocked-down parasite showed increased sensitivity to dihydroartemisinin (DHA), whereas no change in chloroquine sensitivity was observed, suggesting a role of PfUSP in combating artemisinin-induced cellular stress. Together, the results show that Plasmodium PfUSP is an essential protease for parasite survival, and its inhibition increases the efficacy of artemisinin-based drugs. Therefore, PfUSP can be targeted to develop novel scaffolds for developing new antimalarials to combat artemisinin resistance.
Collapse
|
12
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
13
|
Genome-wide functional screening of drug-resistance genes in Plasmodium falciparum. Nat Commun 2022; 13:6163. [PMID: 36257944 PMCID: PMC9579134 DOI: 10.1038/s41467-022-33804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The global spread of drug resistance is a major obstacle to the treatment of Plasmodium falciparum malaria. The identification of drug-resistance genes is an essential step toward solving the problem of drug resistance. Here, we report functional screening as a new approach with which to identify drug-resistance genes in P. falciparum. Specifically, a high-coverage genomic library of a drug-resistant strain is directly generated in a drug-sensitive strain, and the resistance gene is then identified from this library using drug screening. In a pilot experiment using the strain Dd2, the known chloroquine-resistant gene pfcrt is identified using the developed approach, which proves our experimental concept. Furthermore, we identify multidrug-resistant transporter 7 (pfmdr7) as a novel candidate for a mefloquine-resistance gene from a field-isolated parasite; we suggest that its upregulation possibly confers the mefloquine resistance. These results show the usefulness of functional screening as means by which to identify drug-resistance genes.
Collapse
|
14
|
Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr Opin Microbiol 2022; 69:102193. [PMID: 36007459 PMCID: PMC9847095 DOI: 10.1016/j.mib.2022.102193] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance can inform strategies to mitigate its impact and reduce the global burden of malaria. The recent emergence in Africa of partial resistance to artemisinins, the core component of first-line combination therapies, is particularly concerning. Here, we review recent advances in elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.
Collapse
Affiliation(s)
- Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
16
|
Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing. Antimicrob Agents Chemother 2021; 66:e0116321. [PMID: 34694871 PMCID: PMC8765236 DOI: 10.1128/aac.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research efforts to combat antimalarial drug resistance rely on quick, robust, and sensitive methods to genetically characterize Plasmodium falciparum parasites. We developed a single-nucleotide polymorphism (SNP)-based genotyping method that can assess 33 drug resistance-conferring SNPs in dhfr, dhps, pfmdr1, pfcrt, and k13 in nine PCRs, performed directly from P. falciparum cultures or infected blood. We also optimized multiplexed fragment analysis and gel electrophoresis-based microsatellite typing methods using a set of five markers that can distinguish 12 laboratory strains of diverse geographical and temporal origin. We demonstrate how these methods can be applied to screen for the multidrug-resistant KEL1/PLA1/PfPailin (KelPP) lineage that has been sweeping across the Greater Mekong Subregion, verify parasite in vitro SNP-editing, identify novel recombinant genetic cross progeny, or cluster strains to infer their geographical origins. Results were compared with Illumina-based whole-genome sequence analysis that provides the most detailed sequence information but is cost-prohibitive. These adaptable, simple, and inexpensive methods can be easily implemented into routine genotyping of P. falciparum parasites in both laboratory and field settings.
Collapse
|
17
|
Sabnis RW. Novel Compounds for Treating Malaria. ACS Med Chem Lett 2021; 12:1206-1207. [PMID: 34413944 DOI: 10.1021/acsmedchemlett.1c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|