1
|
Sharifdini M, Eslahi AV, Pirestani M, Asghari A, Sgroi G, Hajialilo E, Karimi AG, Diakou A, Badri M. Hookworm infections in carnivores in Iran: a One Health concern. BMC Vet Res 2025; 21:289. [PMID: 40281564 PMCID: PMC12032795 DOI: 10.1186/s12917-025-04752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Dogs and cats can harbor hookworms, which may contribute to zoonotic infections. This study investigates hookworm infections in carnivores from the Caspian Sea littoral region of northern Iran, focusing on molecular and morphological identification. METHODS A cross-sectional study was conducted between September 2015 and October 2024, involving 172 road-killed carnivores including 78 stray dogs (Canis familiaris), 62 golden jackals (Canis aureus), and 32 stray cats (Felis catus), all collected from the northern Iranian provinces of Guilan and Mazandaran. RESULTS Overall, 46 (26.74%) animals tested positive for hookworms. Among these, Ancylostoma caninum was found in dogs and golden jackals, Ancylostoma tubaeforme in cats, and Uncinaria stenocephala in dogs and golden jackals. Morphological analyses confirmed key differences between A. caninum and A. tubaeforme, including size, esophageal features, and bursal structure. Molecular identification was supported by 18S, ITS1-5.8S-ITS2 rDNA, 28S, and mitochondrial cytochrome c oxidase 1 (COX1) gene sequences, demonstrating high similarity with previously identified isolates in GenBank. Phylogenetic analysis of the ITS and COX1 sequences revealed distinct clades for each species, with A. caninum and A. tubaeforme clustering together in the Ancylostoma spp. group. CONCLUSION These results provide important insights into hookworm diversity and highlight the zoonotic risks posed by these parasites.
Collapse
Affiliation(s)
- Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Elham Hajialilo
- Department of Parasitology and Mycology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Arian Ghannadi Karimi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Cardiovascular Imaging Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Alqumber MA. Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia. Microorganisms 2024; 12:2421. [PMID: 39770623 PMCID: PMC11677152 DOI: 10.3390/microorganisms12122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates parasitic and bacterial pathogens present in Hamadryas baboons (Papio hamadryas) and humans in southwestern Saudi Arabia. Fecal samples were collected from Hamadryas baboons (n = 999) from three city peripheries and humans from city centers (n = 1998) and peripheries (n = 1998) of southwestern and eastern Saudi cities. Parasitic examinations and bacterial cultures were conducted on these samples. Key findings include the identification of various parasitic and bacterial pathogens, with notable prevalences of Staphylococcus aureus (71.37% in baboons, 71.51% in humans), Blastocystis hominis (42.24% in baboons, 17.85% in humans), Cryptosporidium spp. (40.14% in baboons, 12.6% in humans), hookworms (37.44% in baboons, 18.57% in humans), Strongyloides spp. (37.34% in baboons, 17.39% in humans), Enterobius vermicularis (36.34% in baboons, 11.18% in humans), and Campylobacter spp. (29.73% in baboons, 1.86% in humans). Additionally, the prevalences of these microorganisms in human populations coexisting with baboons in southwestern city peripheries were 75.47%, 25.22%, 23.62%, 26.33%, 22.22%, 15.11%, and 3.8%, respectively. To further characterize bacterial isolates, 16S rRNA gene sequencing was used, suggesting potential zoonotic and anthroponotic cycles. The results highlight significant pathogen prevalence among both baboons and human populations in proximity to baboon habitats, indicating a potential public health risk. However, shared environmental sources, such as contaminated water, were not thoroughly assessed and could play a role in pathogen transmission. The study's focus on 18 different parasitic and bacterial pathogens allowed for the targeting of prevalent and indicative markers of zoonotic and anthroponotic transmission. In conclusion, these baseline data are crucial for the design of advanced studies to further investigate the zoonotic and anthroponotic transmission dynamics and the environmental factors influencing pathogen prevalence.
Collapse
Affiliation(s)
- Mohammed Abdullah Alqumber
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, Al Bahah 65779, Albaha, Saudi Arabia
| |
Collapse
|
3
|
DeAnglis IK, Andrews BR, Lock LR, Dyer KE, Yang A, Volokhov DV, Fenton MB, Simmons NB, Downs CJ, Becker DJ. Bat cellular immunity varies by year and dietary habit amidst land conversion. CONSERVATION PHYSIOLOGY 2024; 12:coad102. [PMID: 38293641 PMCID: PMC10823333 DOI: 10.1093/conphys/coad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 02/01/2024]
Abstract
Monitoring the health of wildlife populations is essential in the face of increased agricultural expansion and forest fragmentation. Loss of habitat and habitat degradation can negatively affect an animal's physiological state, possibly resulting in immunosuppression and increased morbidity or mortality. We sought to determine how land conversion may differentially impact cellular immunity and infection risk in Neotropical bats species regularly infected with bloodborne pathogens, and to evaluate how effects may vary over time and by dietary habit. We studied common vampire bats (Desmodus rotundus), northern yellow-shouldered bats (Sturnira parvidens) and Mesoamerican mustached bats (Pteronotus mesoamericanus), representing the dietary habits of sanguivory, frugivory and insectivory respectively, in northern Belize. We compared estimated total white blood cell count, leukocyte differentials, neutrophil to lymphocyte ratio and infection status with two bloodborne bacterial pathogens (Bartonella spp. and hemoplasmas) of 118 bats captured in a broadleaf, secondary forest over three years (2017-2019). During this period, tree cover decreased by 14.5% while rangeland expanded by 14.3%, indicating increasing habitat loss and fragmentation. We found evidence for bat species-specific responses of cellular immunity between years, with neutrophil counts significantly decreasing in S. parvidens from 2017 to 2018, but marginally increasing in D. rotundus. However, the odds of infection with Bartonella spp. and hemoplasmas between 2017 and 2019 did not differ between bat species, contrary to our prediction that pathogen prevalence may increase with land conversion. We conclude that each bat species invested differently in cellular immunity in ways that changed over years of increasing habitat loss and fragmentation. We recommend further research on the interactions between land conversion, immunity and infection across dietary habits of Neotropical bats for informed management and conservation.
Collapse
Affiliation(s)
- Isabella K DeAnglis
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Benjamin R Andrews
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Lauren R Lock
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kristin E Dyer
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Anni Yang
- Department of Geography and Environmental Sustainability, University of Oklahoma, 100 East Boyd St, Norman, OK, 73019, USA
| | - Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - M Brock Fenton
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
4
|
Holland CV. A walk on the wild side: A review of the epidemiology of Toxocara canis and Toxocara cati in wild hosts. Int J Parasitol Parasites Wildl 2023; 22:216-228. [PMID: 37964985 PMCID: PMC10641444 DOI: 10.1016/j.ijppaw.2023.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023]
Abstract
Toxocara species are cosmopolitan nematode parasites of companion, domestic and wild hosts. Of the 26 known species of Toxocara, only Toxocara canis and Toxocara cati are definitively zoonotic. The significance of wild carnivores as definitive hosts of T. canis and T. cati respectively, has received far less attention compared to domestic dogs and cats. Complex environmental changes have promoted increasing contact between wildlife, domestic animals and humans that can enhance the risk of pathogen spillover. This review lists a total of 19 species of wild canid host that have been shown to act as definitive hosts for T. canis and a total of 21 species of wild felid host. In general, the number of publications focusing on felid host species is fewer in number, reflecting the general paucity of data on T. cati. The wild canids that have received the most attention in the published literature include the red fox (Vulpes vulpes), the wolf (Canis lupus), and the golden jackal (Canis aureus). The wild felid species that has received the most attention in the published literature is the Eurasian lynx (Lynx lynx). Some non-canid and non-felid hosts also act as definitive hosts of Toxocara species. Certainly, red foxes would appear to be the most significant wild species in terms of their potential to transmit Toxocara to domestic dogs and humans via environmental contamination. This can be explained by their increasing population densities, encroachment into urban areas and their dietary preferences for a wide range of potential paratenic hosts. However, a major challenge remains to assess the relative importance of wild hosts as contributors to environmental contamination with Toxocara ova. Furthermore, one major constraint to our understanding of the significance of wildlife parasitism is a lack of access to samples, particularly from rare host species.
Collapse
Affiliation(s)
- Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| |
Collapse
|
5
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
6
|
Eckhart L, Sipos W. Differential Loss of OAS Genes Indicates Diversification of Antiviral Immunity in Mammals. Vaccines (Basel) 2023; 11:vaccines11020419. [PMID: 36851296 PMCID: PMC9964502 DOI: 10.3390/vaccines11020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
One of the main mechanisms of inducing an antiviral response depends on 2'-5'-oligoadenylate synthetases (OAS), which sense double-stranded RNA in the cytoplasm and activate RNase L. Mutations leading to the loss of functional OAS1 and OAS2 genes have been identified as important modifiers of the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we performed comparative genomics to search for inactivating mutations of OAS genes in other species of mammals and to establish a model for the diversifying evolution of the OAS gene family. We found that a recombination of the OAS and OAS-like (OASL) loci has led to the loss of OAS2 in camelids, which also lack OAS3. Both paralogs of OASL and OAS3 are absent in Asian pangolins. An evolutionarily ancient OAS paralog, which we tentatively name OAS4, has been lost in pangolins, bats and humans. A previously unknown OAS gene, tentatively named OAS5, is present in Yangochiroptera, a suborder of bats. These differences in the OAS gene repertoire may affect innate immune responses to coronaviruses and other RNA viruses.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
7
|
Mendoza Roldan JA, Otranto D. Zoonotic parasites associated with predation by dogs and cats. Parasit Vectors 2023; 16:55. [PMID: 36747243 PMCID: PMC9901148 DOI: 10.1186/s13071-023-05670-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
One of the most common behaviors of cats that have an indoor/outdoor lifestyle is to bring hunted "gifts" to their owners, represented by small mammals, reptiles and birds. Access to the outdoors by dogs and cats may represent a problematic issue, since they may be at risk of diseases, traffic accidents and ingestion of toxins. Yet, the impact of this population of roaming dogs and cats predating wildlife is another concerning issue that receives less attention. Despite these risks, most owners still prefer to give outdoor access to their pets to allow them to express their "natural instincts," such as hunting. Therefore, with a growing population of > 470 million dogs and 373 million cats worldwide, predation not only represents a threat to wildlife, but also a door of transmission for parasitic diseases, some of them of zoonotic concern. In this review, the role played by dogs, and especially cats, in the perpetuation of the biological life cycle of zoonotic parasites through the predation of rodents, reptiles and birds is discussed. Feral and domestics dogs and cats have contributed to the population collapse or extinction of > 63 species of reptiles, mammals and birds. Although the ecological impact of predation on wild populations is well documented, the zoonotic risk of transmission of parasitic diseases has not received significant attention. The parasitic diseases associated to predation vary from protozoan agents, such as toxoplasmosis, to cestodes like sparganosis and even nematodes such as toxocariasis. Raising awareness about predation as a risk of zoonotic parasitic infections in dogs and cats will aid to create responsible ownership and proper actions for controlling feral and free-roaming cat and dog populations worldwide.
Collapse
Affiliation(s)
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
8
|
Butler-Valverde MJ, DeVault TL, Rhodes OE, Beasley JC. Carcass appearance does not influence scavenger avoidance of carnivore carrion. Sci Rep 2022; 12:18842. [PMID: 36344611 PMCID: PMC9640519 DOI: 10.1038/s41598-022-22297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The selection or avoidance of certain carrion resources by vertebrate scavengers can alter the flow of nutrients in ecosystems. Evidence suggests higher trophic level carrion is scavenged by fewer vertebrate species and persists longer when compared to lower trophic level carrion, although it is unclear how scavengers distinguish between carcasses of varying species. To investigate carnivore carrion avoidance and explore sensory recognition mechanisms in scavenging species, we investigated scavenger use of intact and altered (i.e., skin, head, and feet removed) coyote-Canis latrans (carnivore) and wild pig-Sus scrofa (omnivore) carcasses experimentally placed at the Savannah River Site, SC, USA. We predicted carnivore carcasses would persist longer due to conspecific and intraguild scavenger avoidance. Further, we hypothesized visually modifying carcasses would not reduce avoidance of carnivore carrion, given scavengers likely depend largely on chemical cues when assessing carrion resources. As expected, mammalian carnivores largely avoided scavenging on coyote carcasses, resulting in carnivore carcasses having longer depletion times than wild pig carcasses at intact and altered trials. Therefore, nutrients derived from carnivore carcasses are not as readily incorporated into higher trophic levels and scavengers largely depend on olfactory cues when assessing benefits and risks associated with varying carrion resources.
Collapse
Affiliation(s)
- Miranda J. Butler-Valverde
- grid.213876.90000 0004 1936 738XSavannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, P.O. Box Drawer E, Aiken, SC 29802 USA
| | - Travis L. DeVault
- grid.213876.90000 0004 1936 738XSavannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, P.O. Box Drawer E, Aiken, SC 29802 USA
| | - Olin E. Rhodes
- grid.213876.90000 0004 1936 738XSavannah River Ecology Lab, University of Georgia, P.O. Box Drawer E, Aiken, SC 29802 USA
| | - James C. Beasley
- grid.213876.90000 0004 1936 738XSavannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, P.O. Box Drawer E, Aiken, SC 29802 USA
| |
Collapse
|
9
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, Veiga ABGDA, Vieira GF, Bach E, Cardoso JC, Müller NFD, Lopes G, Caesar L, Kulmann-Leal B, Kaminski VL, Silveira ES, Spilki FR, Weber MN, Almeida SEDEM, Hora VPDA, Chies JAB. Synthesizing the connections between environmental disturbances and zoonotic spillover. AN ACAD BRAS CIENC 2022; 94:e20211530. [PMID: 36169531 DOI: 10.1590/0001-3765202220211530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Zoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identification, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics. This review synthesizes the connections between environmental disturbances and increased risk of spillover events based on the One Health perspective. Anthropogenic disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution effect, increased contact between humans and other animals, changes in the incidence and load of pathogens in animal populations, and alterations in the abiotic factors of landscapes. These phenomena can increase the risk of spillover events and, potentially, facilitate new infectious disease outbreaks. Using Brazil as a study model, this review brings a discussion concerning anthropogenic activities in the Amazon region and their potential impacts on spillover risk and spread of emerging diseases in this region.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Philip Martin Fearnside
- Instituto Nacional de Pesquisas da Amazônia/INPA, Avenida André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - Marina Ziliotto
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jacqueline María Valverde-Villegas
- Institut de Génétique Moléculaire de Montpellier/IGMM, Centre National de la Recherche Scientifique/CNRS, Laboratoire coopératif IGMM/ABIVAX, 1919, route de Mende, 34090 Montpellier, Montpellier, France
| | - Ana Beatriz G DA Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre/UFCSPA, Departamento de Ciências Básicas de Saúde, Rua Sarmento Leite, 245, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Gustavo F Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Laboratório de Saúde Humana in silico, Avenida Victor Barreto, 2288, Centro, 92010-000 Canoas, RS, Brazil
| | - Evelise Bach
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jáder C Cardoso
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Nícolas Felipe D Müller
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Gabriel Lopes
- Fundação Oswaldo Cruz/FIOCRUZ, Casa de Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lílian Caesar
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Indiana University/IU, Department of Biology, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Bruna Kulmann-Leal
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Valéria L Kaminski
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Paulo/UNIFESP, Instituto de Ciência e Tecnologia/ICT, Laboratório de Imunologia Aplicada, Rua Talim, 330, Vila Nair, 12231-280 São José dos Campos, SP, Brazil
| | - Etiele S Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando R Spilki
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Matheus N Weber
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Sabrina E DE Matos Almeida
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vanusa P DA Hora
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande/FURG, Faculdade de Medicina, Rua Visconde de Paranaguá, 102, Centro, 96203-900, Rio Grande, RS, Brazil
| | - José Artur B Chies
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|