1
|
Asayama A, Yagi M, Taniguchi M, Nakai R, Ichihashi N. Iliotibial band stiffness is associated with patellar height. J Biomech 2025; 184:112673. [PMID: 40209583 DOI: 10.1016/j.jbiomech.2025.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Increased patellar height (i.e., patella alta) is associated with patellar instability, patellofemoral pain, and cartilage lesions. Despite its importance, the relationship between patellar height and soft-tissue stiffness remains unclear, which this study aimed to investigate. Twenty-two young participants (11 females; age 26.1 ± 3.8 years) were recruited for this study. The shear elastic moduli of the rectus femoris, vastus lateralis, vastus medialis, lateral patellofemoral ligament, medial patellofemoral ligament, and iliotibial band (ITB) were measured using shear wave elastography as indices of soft-tissue stiffness, and Insall-Salvati ratio (ISR) and Patellotrochlear index (PTI) were measured using magnetic resonance imaging as indices of patellar height in the knee extended position. To evaluate the relationship between patellar height and soft-tissue stiffness, single regression analyses were performed with patellar height as the dependent variable and soft-tissue stiffness as the independent variable. The single regression analysis showed that the shear elastic modulus of ITB was significantly associated with both ISR and PTI (β = 0.58 and -0.53, respectively), however, other soft-tissues were not associated with either ISR or PTI. These findings indicate that patellar height increases with ITB stiffness, which suggests the possibility that decreasing ITB stiffness by means such as stretching, may decrease patellar height.
Collapse
Affiliation(s)
- Akihiro Asayama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Rehabilitation, Japanese Red Cross Nagahama Hospital, 14-7 Miyamae-cho, Nagahama-shi, Shiga 526-8585, Japan.
| | - Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryusuke Nakai
- Kokoro Research Center, Kyoto University, 46 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
2
|
Rehbein CO, McDougle JM, Peñailillo LE, Earp JE. Intramuscular Hamstring Stiffness Affects Anatomically Modeled Localized Muscle Strain During Passive Hip Flexion. J Strength Cond Res 2024; 38:1860-1866. [PMID: 39074240 DOI: 10.1519/jsc.0000000000004898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Rehbein, CO, McDougle, JM, Peñailillo, L, and Earp, JE. Intramuscular hamstring stiffness affects anatomically modeled localized muscle strain during passive hip flexion. J Strength Cond Res 38(11): 1860-1866, 2024-Hamstring strain injuries occur when localized tissue strain capacity is exceeded. Localized strain may be affected by intramuscular variation in stiffness, but research in this area is lacking. The purpose of this study was to determine the effects of intramuscular hamstring stiffness on localized muscle strain during passive hip flexion. Twenty-eight (age 25.0 ± 4.9 years) healthy women ( n = 15) and men ( n = 13) had biceps femoris, semitendinosus, and semimembranosus stiffness measured proximally, medially, and distally during passive hip flexion and extension using shear-wave elastography. Anthropometric and stiffness measurements were entered into an anatomical model of equivalent springs to estimate localized tissue strain and differentiate between the relative contribution to passive strain from each muscular region. In shortened and stretched positions, stiffness was lowest proximally for all muscles (Cohen's d = 0.66-0.79, p < 0.001). In addition, relative strain contribution was greater proximally (37.5-39.4%) compared with middle (31.74-32.2%) or distal (28.6-30.3%) regions ( p < 0.001), with proximal contribution to strain increasing with greater hip flexion. Our results suggest that intramuscular variations in passive hamstring stiffness contribute to inhomogeneous strain throughout the muscle during passive hip flexion. Given the prevalence of proximal stretch-pattern strain injuries, variation in intramuscular stiffness may contribute to risk for such injuries.
Collapse
Affiliation(s)
- Carlos O Rehbein
- Sports Optimization and Rehabilitation Laboratory, University of Connecticut, Storrs, Connecticut
| | - Jacob M McDougle
- Sports Optimization and Rehabilitation Laboratory, University of Connecticut, Storrs, Connecticut
- College of Medicine, University of Saskatchewan, Saskatoon, Canada ; and
| | - Luis E Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jacob E Earp
- Sports Optimization and Rehabilitation Laboratory, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Christofi I, Ploutarchou G, Savva C, Karagiannis C. The effectiveness and characteristics of physiotherapy interventions on adults with iliotibial band syndrome. A scoping review. J Bodyw Mov Ther 2024; 40:1939-1948. [PMID: 39593548 DOI: 10.1016/j.jbmt.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND/PURPOSE Although physiotherapy remains one of the main interventions suggested for the treatment of Iliotibial Band Syndrome (ITBS), the appropriate physiotherapy and its effectiveness on this injury haven't been fully defined yet. This study aims to investigate which are the appropriate physiotherapy interventions and their effectiveness in adults with ITBS METHODS: PRISMA extension for Scoping Reviews and Template for Intervention Description and Replication checklist were used. Medline, Cinahl, SPORTDiscuss, and Pascal Archive databases were searched to identify trials involving patients with ITBS and healthy adults who underwent any form of physiotherapy with or without medication, compared with those who underwent any form of physiotherapy with or without medication or no treatment. The methodological quality of studies was assessed with the PEDro scale. RESULTS Seven studies, with a total sample of 187 subjects, met the inclusion criteria. Physiotherapy interventions like physical modalities, manual therapies, exercises, and multimodal interventions are effective with or without medication in the improvement of patients' pain, functionality, muscle strength, and iliotibial band stiffness. However, a treatment plan with multimodal interventions and medication may increase the patients' iliotibial band stiffness, and deep transverse frictions aren't recommended for the management of patients' pain and functionality. The overall reporting quality of interventions was poor. The small number of studies and their methodological quality don't allow for firm conclusions. CONCLUSION There is moderate-evidence to suggest that physiotherapy with or without medication is effective in adults with ITBS. Well-designed randomized controlled trials are required to elucidate the efficacy and proper parameters of physiotherapy in these patients.
Collapse
Affiliation(s)
- Iakovos Christofi
- Department of Health Science, European University Cyprus, Nicosia, Cyprus.
| | - George Ploutarchou
- Department of Health Science, European University Cyprus, Nicosia, Cyprus.
| | - Christos Savva
- Department of Health Science, Frederick University Cyprus, Limassol, Cyprus.
| | | |
Collapse
|
4
|
Colonna S, Mazzanti M, Borghi C, Pacini G. A new alternative to the Ober test for evaluating the difference between right and left iliotibial band stiffness: A reliability study. J Bodyw Mov Ther 2024; 40:747-756. [PMID: 39593672 DOI: 10.1016/j.jbmt.2024.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION A dysfunctional stiffness of the iliotibial band can be related to pathologies of the pelvis/lumbar spine and the knee. The classic and modified Ober tests are the gold standard for assessing iliotibial band stiffness. However, to the authors' knowledge, this test lacks adequate validation, and its specificity is questionable. A more reliable test is needed to better correlate iliotibial band stiffness to pathologies and to support treatment choices. METHOD Two examiners assessed the difference in stiffness (right vs. left limb) of the iliotibial band by direct fingertip palpation in 40 subjects (without clinically evident painful symptoms), before and after a specific 20-h training session. The difference in stiffness was evaluated with both a 3-level and a 7-level graduation. The intra- and inter-examiner (intra-day) reproducibility was calculated, and a validation of the manual assessment was performed with a myotonometric measurement of frequency and stiffness. RESULTS The test achieved post-training agreement consistently greater than 0.88 (weighted Cohen's K test) in intra-examiner assessment and 0.72 in inter-examiner assessment. Before training the agreement was less than 0.48 and 0.12, respectively. Manual versus instrumental agreement was fair to moderate (frequency 0.347; stiffness 0.470). CONCLUSION The newly proposed manual test to assess ITB stiffness by direct palpation showed almost perfect intra-examiner reproducibility and good inter-examiner (intra-day) reproducibility. The specific training was fundamental. Comparison of manual vs instrumental stiffness assessment of the iliotibial band, as proposed in this study, is debatable.
Collapse
Affiliation(s)
- Saverio Colonna
- Spine Center Project, Bologna, Italy; Scuola Osteopatia OSCE, Osteopathic Spine Center Education, Bologna, Italy
| | - Marco Mazzanti
- Scuola Osteopatia OSCE, Osteopathic Spine Center Education, Bologna, Italy
| | - Corrado Borghi
- Spine Center Project, Bologna, Italy; Università di Modena e Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
5
|
Sanchez-Alvarado A, Bokil C, Cassel M, Engel T. Effects of conservative treatment strategies for iliotibial band syndrome on pain and function in runners: a systematic review. Front Sports Act Living 2024; 6:1386456. [PMID: 39247485 PMCID: PMC11377285 DOI: 10.3389/fspor.2024.1386456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction This systematic review summarizes the efficacy of conservative treatment strategies on pain and function in runners with iliotibial band syndrome (ITBS), a prevalent running injury constituting about 10% of all running-related injuries. The multifactorial nature of ITBS necessitates diverse treatment approaches; yet, a consensus on an optimal conservative regimen remains unreported. This review seeks to update and expand upon existing literature with recent rehabilitative approaches. Methods A systematic search was conducted in Medline, Web of Science, and CINHAL databases, from inception to June 31, 2024. Inclusion criteria were: (1) reporting of conservative treatments for ITBS in adult runners and (2) pain and function defined as main outcome parameters. The methodological quality was evaluated using the NIH Quality Assessment Tool. Results Thirteen out of 616 records met the inclusion criteria (201 participants), including five randomized controlled trials, one case-control study, one pre-test post-test study, and six case studies. Different active and passive treatment strategies were applied as single (five studies) or combined (eight studies) treatments. The average methodological quality was deemed good. Large between-study heterogeneity was present, impeding a meta-analysis to be performed. Hip abductor strengthening (HAS) exercise emerged as a common strategy. The intervention effects on pain reduction ranged from 27% to 100%, and functional improvement from 10% to 57%, over 2 to 8 weeks. Conclusion A conservative treatment approach incorporating HAS exercises, possibly augmented by shockwave or manual therapy, is effective for mitigating pain and enhancing function in ITBS-afflicted runners. Finally, the potential of emerging strategies like gait retraining requires further exploration through rigorous trials and comprehensive evidence. Addressing these gaps could refine ITBS management, enhancing treatment outcomes and facilitating runners' return to sport.
Collapse
Affiliation(s)
- Alberto Sanchez-Alvarado
- Sports Medicine and Sports Orthopaedics, University Outpatient Clinic, University of Potsdam, Potsdam, Germany
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Chaitrali Bokil
- Sports Medicine and Sports Orthopaedics, University Outpatient Clinic, University of Potsdam, Potsdam, Germany
| | - Michael Cassel
- Sports Medicine and Sports Orthopaedics, University Outpatient Clinic, University of Potsdam, Potsdam, Germany
| | - Tilman Engel
- Sports Medicine and Sports Orthopaedics, University Outpatient Clinic, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Miller T, Bello UM, Tsang CSL, Winser SJ, Ying MTC, Pang MYC. Using ultrasound elastography to assess non-invasive, non-pharmacological interventions for musculoskeletal stiffness: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:3549-3563. [PMID: 37668241 DOI: 10.1080/09638288.2023.2252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To evaluate the current evidence regarding the use of ultrasound elastography for assessing non-invasive, non-pharmacological interventions for eliciting changes in musculoskeletal stiffness. METHODS A systematic search of MEDLINE, CINAHL, EMBASE, and Web of Science databases was performed in accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Information on measurement and intervention procedures was extracted. Bias was assessed using Cochrane Risk of Bias or Risk of Bias In Non-randomised Studies of Interventions (ROBINS-I) tools for studies with true or quasi-experimental designs, respectively. Analyses were conducted for adequately powered subgroups based on intervention type, measurement site, and population assessed. RESULTS Twenty-one studies were included in the review. Overall risk of bias was low for true experimental studies and moderate for quasi-experimental studies. Subgroup analyses indicated a large overall effect for interventions involving manual physiotherapy and taping/splinting for reducing masseter muscle stiffness in patients with masticatory muscle disorders (g = 1.488, 95% CI = 0.320-2.655, p = 0.013). Analyses for other intervention types and patient groups were underpowered. CONCLUSION Ultrasound elastography demonstrates clinical applicability for assessing non-invasive, non-pharmacological interventions for musculoskeletal stiffness. However, the comparative efficacy of these interventions for modulating tissue stiffness remains inconclusive.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Umar M Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physiotherapy and Paramedicine, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Charlotte S L Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Stanley J Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael T C Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Haueise A, Le Sant G, Eisele-Metzger A, Dieterich AV. Is musculoskeletal pain associated with increased muscle stiffness? Evidence map and critical appraisal of muscle measurements using shear wave elastography. Clin Physiol Funct Imaging 2024; 44:187-204. [PMID: 38155545 DOI: 10.1111/cpf.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION AND AIMS Approximately 21% of the world's population suffers from musculoskeletal conditions, often associated with sensations of stiff muscles. Targeted therapy requires knowing whether typically involved muscles are objectively stiffer compared to asymptomatic individuals. Muscle stiffness is quantified using ultrasound shear wave elastography (SWE). Publications on SWE-based comparisons of muscle stiffness between individuals with and without musculoskeletal pain are increasing rapidly. This work reviewed and mapped the existing evidence regarding objectively measured muscle stiffness in musculoskeletal pain conditions and surveyed current methods of applying SWE to measure muscle stiffness. METHODS A systematic search was conducted in PubMed and CINAHL using the keywords "muscle stiffness", "shear wave elastography", "pain", "asymptomatic controls" and synonyms. The search was supplemented by a hand search using Google Scholar. Included articles were critically appraised with the AXIS tool, supplemented by items related to SWE methods. Results were visually mapped and narratively described. RESULTS Thirty of 137 identified articles were included. High-quality evidence was missing. The results comprise studies reporting lower stiffness in symptomatic participants, no differences between groups and higher stiffness in symptomatic individuals. Results differed between pain conditions and muscles, and also between studies that examined the same muscle(s) and pathology. The methods of the application of SWE were inconsistent and the reporting was often incomplete. CONCLUSIONS Existing evidence regarding the objective stiffness of muscles in musculoskeletal pain conditions is conflicting. Methodological differences may explain most of the inconsistencies between findings. Methodological standards for SWE measurements of muscles are urgently required.
Collapse
Affiliation(s)
- Andreas Haueise
- Faculty of Health, Security, Society, Furtwangen University, Furtwangen, Germany
| | - Guillaume Le Sant
- CHU Nantes, Movement-Interactions-Performance, MIP, Nantes Université, Nantes, France
- School of Physiotherapy, IFM3R, St-Sebastien/Loire, France
| | - Angelika Eisele-Metzger
- Institute for Evidence in Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Angela V Dieterich
- Faculty of Health, Security, Society, Furtwangen University, Furtwangen, Germany
| |
Collapse
|
8
|
Chowdhary K, Raum G, Visco C. Diagnostic utility of shear wave elastography in musculoskeletal injuries: A narrative review. PM R 2024; 16:384-397. [PMID: 38607311 DOI: 10.1002/pmrj.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Shear wave elastography (SWE) is an emerging and promising ultrasound modality, and is more recently employed in the diagnosis of musculoskeletal (MSK) pathologies. SWE evaluates tissue stiffness by measuring the speed of propagating acoustic waves through body tissue structures. Knowing the variations in stiffness of MSK soft tissue can provide helpful diagnostic insight for the evaluation of pathology in muscles, tendons, ligaments, nerves, and other soft tissues. The goal of this review is to synthesize recent literature on the utility of SWE for MSK pathology diagnosis. This review reveals that SWE adds important diagnostic data for the evaluation of several pathologies, such as median mononeuropathy at the wrist, Achilles tendinopathy, and plantar fasciitis. The review also reveals a lack of evidence pertaining to appropriate standardization of use and the connection to reliable and valid diagnostic benefit in the clinical setting.
Collapse
Affiliation(s)
- Kuntal Chowdhary
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - George Raum
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Christopher Visco
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
9
|
Horvat U, Kozinc Ž. The Use of Shear-Wave Ultrasound Elastography in the Diagnosis and Monitoring of Musculoskeletal Injuries. Crit Rev Biomed Eng 2024; 52:15-26. [PMID: 38305275 DOI: 10.1615/critrevbiomedeng.2023049807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ultrasound elastography is a valuable method employed to evaluate tissue stiffness, with shear-wave elastography (SWE) recently gaining significance in various settings. This literature review aims to explore the potential of SWE as a diagnostic and monitoring tool for musculoskeletal injuries. In total, 15 studies were found and included in the review. The outcomes of these studies demonstrate the effectiveness of SWE in detecting stiffness changes in individuals diagnosed with Achilles tendinopathy, Achilles tendon rupture, rotator cuff rupture, tendinosis of the long head of the biceps tendon, injury of the supraspinatus muscle, medial tibial stress syndrome, and patellar tendinopathy. Moreover, SWE proves its efficacy in distinguishing variations in tissue stiffness before the commencement and after the completion of rehabilitation in cases of Achilles tendon rupture and patellar tendinopathy. In summary, the findings from this review suggest that SWE holds promise as a viable tool for diagnosing and monitoring specific musculoskeletal injuries. However, while the field of ultrasound elastography for assessing musculoskeletal injuries has made considerable progress, further research is imperative to corroborate these findings in the future.
Collapse
Affiliation(s)
- Urša Horvat
- Univerza na Primorskem, Fakulteta za vede o zdravju, Polje 42, Izola, Slovenija
| | - Žiga Kozinc
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Muzejski trg 2, SI-6000 Koper, Slovenia
| |
Collapse
|
10
|
Hayashi D, Roemer FW, Tol JL, Heiss R, Crema MD, Jarraya M, Rossi I, Luna A, Guermazi A. Emerging Quantitative Imaging Techniques in Sports Medicine. Radiology 2023; 308:e221531. [PMID: 37552087 DOI: 10.1148/radiol.221531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This article describes recent advances in quantitative imaging of musculoskeletal extremity sports injuries, citing the existing literature evidence and what additional evidence is needed to make such techniques applicable to clinical practice. Compositional and functional MRI techniques including T2 mapping, diffusion tensor imaging, and sodium imaging as well as contrast-enhanced US have been applied to quantify pathophysiologic processes and biochemical compositions of muscles, tendons, ligaments, and cartilage. Dual-energy and/or spectral CT has shown potential, particularly for the evaluation of osseous and ligamentous injury (eg, creation of quantitative bone marrow edema maps), which is not possible with standard single-energy CT. Recent advances in US technology such as shear-wave elastography or US tissue characterization as well as MR elastography enable the quantification of mechanical, elastic, and physical properties of tissues in muscle and tendon injuries. The future role of novel imaging techniques such as photon-counting CT remains to be established. Eventual prediction of return to play (ie, the time needed for the injury to heal sufficiently so that the athlete can get back to playing their sport) and estimation of risk of repeat injury is desirable to help guide sports physicians in the treatment of their patients. Additional values of quantitative analyses, as opposed to routine qualitative analyses, still must be established using prospective longitudinal studies with larger sample sizes.
Collapse
Affiliation(s)
- Daichi Hayashi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Frank W Roemer
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Johannes L Tol
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Rafael Heiss
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Michel D Crema
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Mohamed Jarraya
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Ignacio Rossi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Antonio Luna
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Ali Guermazi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| |
Collapse
|
11
|
Opara M, Kozinc Ž. Stretching and Releasing of Iliotibial Band Complex in Patients with Iliotibial Band Syndrome: A Narrative Review. J Funct Morphol Kinesiol 2023; 8:74. [PMID: 37367238 DOI: 10.3390/jfmk8020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Iliotibial band syndrome (ITBS) is one of the most common overuse syndromes causing knee pain; it is especially prevalent in runners and also common in cyclists, rowers, and field athletes, with occasional cases occurring in non-athletes too. ITBS symptoms can negatively affect not only knee function, but also mental and physical aspects of health-related quality of life. Although various conservative treatment options have been investigated and discussed, there is still no consensus on a standard of care for ITBS. Moreover, the literature on the etiology and risk factors of ITBS, which could help in selecting appropriate treatment methods, is conflicting and inconclusive. The role of individual treatment modalities such as stretching and releasing techniques has not been extensively studied and remains unclear. In this article, we will critically review the available evidence for the benefits of ITB stretching and "release" methods in the treatment of ITBS. In addition to the direct evidence (clinical studies examining the effects of ITB stretching and other methods that purportedly stretch or "release" the ITB), we present several additional lines of reasoning that discuss the rationale for ITB stretching/releasing in terms of the etiology of ITBS, the mechanical properties and behavior of the ITB, and the risk factors for ITBS development. We conclude that the current literature provides some evidence for the inclusion of stretching or other "release" methods in the early rehabilitation of ITBS. Long-term interventions typically include ITB stretching; however, it remains unclear to what extent stretching within a multimodal treatment actually contributes to resolving the symptoms. At the same time, there is no direct evidence to suggest that stretching and "release" methods have any negative effects.
Collapse
Affiliation(s)
- Manca Opara
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Žiga Kozinc
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
| |
Collapse
|
12
|
Yagi M, Taniguchi M, Tateuchi H, Yamagata M, Hirono T, Asayama A, Umehara J, Nojiri S, Kobayashi M, Ichihashi N. Properties of the iliotibial band and their relationships with gait parameters among patients with knee osteoarthritis. J Orthop Res 2022; 41:1177-1185. [PMID: 36222472 DOI: 10.1002/jor.25466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
This study aimed to determine the thickness and stiffness of the iliotibial band (ITB) in patients with knee osteoarthritis (KOA) and to identify the gait parameters that are associated with ITB properties. Eighteen female patients with radiographically diagnosed medial KOA and knee pain (age: 69.7 ± 5.9 years, body mass index: 23.0 ± 3.1 kg/m2 ) and 22 age-matched female individuals without knee pain (age: 69.1 ± 7.0 years, body mass index: 21.6 ± 3.6 kg/m2 ) were included. Shear wave elastography images were obtained at the height of the proximal pole of the patella with the participants in the supine position, and the ITB thickness and shear wave velocity, which is a surrogate measure of stiffness, were calculated. In patients with KOA, the knee and hip joint angles and moments during walking were calculated using a motion analysis system. The shear wave velocity was significantly higher in patients with KOA than in asymptomatic adults (11.3 ± 1.0 vs. 10.0 ± 1.8 m/s, respectively; p = 0.010); however, the thickness did not differ between them (2.1 ± 0.3 vs. 2.0 ± 0.3 mm, respectively; p = 0.705). The time-integral value of the knee adduction moment (β = 0.507, p = 0.032) and maximum value of the hip flexion moment (β = 0.498, p = 0.036) were associated with the shear wave velocity. Meanwhile, no parameters were associated with the thickness. The ITB was stiffer in patients with KOA than in asymptomatic adults; such a stiffer ITB was associated with greater knee adduction and hip flexion moments during walking. Clinical Significance: Greater mechanical loading was associated with a stiffer ITB in patients with KOA.
Collapse
Affiliation(s)
- Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshige Tateuchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, Chiyoda-ku, Tokyo, Japan.,School of Health and Sport Science, Chukyo University, Toyota, Aichi, Japan
| | - Akihiro Asayama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jun Umehara
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shusuke Nojiri
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Intraobserver Assessment of Shear Wave Elastography in Tensor Fasciae Latae and Gluteus Maximus Muscle: The Importance of the Hip Abductor Muscles in Runners Knee Compared to Healthy Controls. J Clin Med 2022; 11:jcm11133605. [PMID: 35806887 PMCID: PMC9267262 DOI: 10.3390/jcm11133605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Iliotibial band syndrome (ITBS) represents one of the most common running related injuries. The pathophysiology is postulated to be caused by excessive ITB tension, impingement and irritation of soft tissues at the lateral femoral epicondyle. However, direct evidence has yet to be found and the multifactorial etiology is under discussion. The purpose was to evaluate stiffness of ITB, gluteus maximus (GM) and tensor fasciae latae (TFL) muscles using shear wave elastography (SWE). Methods: In 14 patients with clinically verified ITBS and 14 healthy controls, three SWE measurements each of ITB, GM and TFL in both legs was performed to determine measurement reliability and between-group and -leg differences. Results: The mean value of ITB was 12.8 m/s with ICC of 0.76, whereas the values measured in the GM were 3.02 m/s with an ICC of 0.87. No statistically significant difference in controls compared to patients were found (p = 0.62). The mean value of TFL was 5.42 m/s in healthy participants, compared to 3.89 m/s patients with an ICC of 0.98 (p = 0.002). Conclusion: Although SWE showed no difference in ITB stiffness, significant differences for TFL muscle stiffness in runner’s knee was found, suggesting that the hip abductor muscles might play a bigger role in the pathophysiology of ITBS. We aimed to implement baseline values for stiffness assessments and prove reliability for further prospective studies of SWE in runner’s knee.
Collapse
|
14
|
Deng M, Zhou X, Li Y, Yin Y, Liang C, Zhang Q, Lu J, Wang M, Wang Y, Sun Y, Li R, Yan L, Wang Q, Hou G. Ultrasonic Elastography of the Rectus Femoris, a Potential Tool to Predict Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front Physiol 2022; 12:783421. [PMID: 35069243 PMCID: PMC8766419 DOI: 10.3389/fphys.2021.783421] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: Skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD) and is associated with a poor prognosis. Abnormal muscle quantity of the lower limbs is a manifestation of skeletal muscle dysfunction in patients with COPD. Shear wave ultrasound elastography (SWE) is a novel and possible tool to evaluate qualitative muscle parameters. This study explores the feasibility of SWE to measure the stiffness of the rectus femoris and evaluates its value in predicting sarcopenia in patients with COPD. Methods: Ultrasound examination of the rectus femoris was performed to determine the mean elasticity index (SWEmean), cross-sectional area (RFcsa), and thickness (RFthick) using grayscale ultrasonography (US) and SWE in 53 patients with COPD and 23 age-matched non-COPD healthy controls. The serum levels of circulating biomarkers (GDF15, resistin, and TNF-α) were measured using ELISA. The definition of sarcopenia followed the guidelines from the Asian Working Group for Sarcopenia. Receiver operating characteristic (ROC) curve analysis of the SWEmean, RFthick, and RFcsa was used to evaluate their predictive ability for sarcopenia. Results: The intraobserver and interobserver repeatability of SWE performance was excellent (all correlation coefficients > 0.95; p < 0.05). The SWEmean of the rectus femoris in patients with COPD (8.98 ± 3.12 kPa) was decreased compared with that in healthy controls (17.00 ± 5.14 kPa) and decreased with advanced global initiative for chronic obstructive lung disease (GOLD) stage. Furthermore, SWEmean was found to be independent of sex, height, and body mass, and a lower SWEmean in patients with COPD was positively associated with reduced pulmonary function, worse physical function, poor exercise tolerance, decreased muscle strength, and worse dyspnea index score. The correlation between physical function [five-repetition sit-to-stand test (5STST)], muscle function, and SWEmean was higher than those of RFthick and RFcsa. In addition, SWEmean was negatively correlated with serum GDF15 levels (r = −0.472, p < 0.001), serum resistin levels (r = −0.291, p = 0.035), and serum TNF-α levels (r = −0.433, p = 0.001). Finally, the predictive power of SWEmean [area under the curve (AUC): 0.863] in the diagnosis of sarcopenia was higher than that of RFthick (AUC: 0.802) and RFcsa (AUC: 0.816). Conclusion: Compared with grayscale US, SWE was not affected by the patient’s height, weight, or BMI and better represented skeletal muscle function and physical function. Furthermore, SWE is a promising potential tool to predict sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Yanxia Li
- Respiratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Chaonan Liang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Jingwen Lu
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Mengchan Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yue Sun
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Ruixia Li
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Liming Yan
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital Affiliated to Capital Medical University Beijing, Beijing, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
15
|
Hutchinson LA, Lichtwark GA, Willy RW, Kelly LA. The Iliotibial Band: A Complex Structure with Versatile Functions. Sports Med 2022; 52:995-1008. [PMID: 35072941 PMCID: PMC9023415 DOI: 10.1007/s40279-021-01634-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/20/2022]
Abstract
The development of a pronounced iliotibial band (ITB) is an anatomically distinct evolution of humans. The mechanical behaviour of this “new” structure is still poorly understood and hotly debated in current literature. Iliotibial band syndrome (ITBS) is one of the leading causes of lateral knee pain injuries in runners. We currently lack a comprehensive understanding of the healthy behaviour of the ITB, and this is necessary prior to further investigating the aetiology of pathologies like ITBS. Therefore, the purpose of this narrative review was to collate the anatomical, biomechanical and clinical literature to understand how the mechanical function of the ITB is influenced by anatomical variation, posture and muscle activation. The complexity of understanding the mechanical function of the ITB is due, in part, to the presence of its two in-series muscles: gluteus maximus (GMAX) and tensor fascia latae (TFL). At present, we lack a fundamental understanding of how GMAX and TFL transmit force through the ITB and what mechanical role the ITB plays for movements like walking or running. While there is a range of proposed ITBS treatment strategies, robust evidence for effective treatments is still lacking. Interventions that directly target the running biomechanics suspected to increase either ITB strain or compression of lateral knee structures may have promise, but clinical randomised controlled trials are still required.
Collapse
Affiliation(s)
- L A Hutchinson
- School of Human Movement and Nutrition, The University of Queensland, Brisbane, QLD, Australia.
| | - G A Lichtwark
- School of Human Movement and Nutrition, The University of Queensland, Brisbane, QLD, Australia
| | - R W Willy
- School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, MT, USA
| | - L A Kelly
- School of Human Movement and Nutrition, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Wang TJ, Stecco A. Fascial thickness and stiffness in hypermobile Ehlers-Danlos syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2021; 187:446-452. [PMID: 34741592 DOI: 10.1002/ajmg.c.31948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 10/16/2021] [Indexed: 11/05/2022]
Abstract
There is a high prevalence of myofascial pain in people with hypermobile Ehlers-Danlos Syndrome (hEDS). The fascial origin of pain may correspond to changes in the extracellular matrix. The objective of this study was to investigate structural changes in fascia in hEDS. A series of 65 patients were examined prospectively-26 with hEDS, and 39 subjects with chronic neck, knee, or back pain without hEDS. The deep fascia of the sternocleidomastoid, iliotibial tract, and iliac fascia were examined with B-mode ultrasound and strain elastography, and the thicknesses were measured. Stiffness (strain index) was measured semi-quantitatively using elastography comparing fascia to muscle. Differences between groups were compared using one-way analysis of variance. hEDS subjects had a higher mean thickness in the deep fascia of the sternocleidomastoid compared with non-hEDS subjects. There was no significant difference in thickness of the iliac fascia and iliotibial tract between groups. Non-hEDS subjects with pain had a higher strain index (more softening of the fascia with relative stiffening of the muscle) compared with hEDS subjects and non-hEDS subjects without back or knee pain. In myofascial pain, softening of the fascia may occur from increase in extracellular matrix content and relative increase in stiffness of the muscle; this change is not as pronounced in hEDS.
Collapse
Affiliation(s)
- Tina J Wang
- Department of Physical Medicine & Rehabilitation, Loma Linda University School of Medicine, Upland, California, USA
| | - Antonio Stecco
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Besomi M, Salomoni SE, Hug F, Tier L, Vicenzino B, Hodges PW. Exploration of shear wave elastography measures of the iliotibial band during different tasks in pain-free runners. Phys Ther Sport 2021; 50:121-129. [PMID: 33975135 DOI: 10.1016/j.ptsp.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine whether shear wave velocity (SWV) of the iliotibial band (ITB): i) increases with active and passive static tasks, and a dynamic task, ii) differs between ITB regions, iii) changes after exposure to running. Additionally, it aimed to determine the between-day reliability. DESIGN Case series & test-retest. SETTING Human movement unit laboratory. PARTICIPANTS Fifteen runners. MAIN OUTCOME MEASURES SWV was measured unilaterally in three regions of the ITB (proximal, middle and distal), during six tasks: rest and contraction (pre- and post-running), modified Ober test, standing, pelvic drop, and weight shift. RESULTS Compared to rest, SWV was higher during contraction and Ober test in the distal and middle regions, and higher for the middle region in standing and pelvic drop. No differences were found between regions. A tendency of decreased SWV was observed after running. Compared to the start of the dynamic task, SWV was greater at the end of the movement. Reliability was moderate-to-good for the middle region in the standing tasks (ICCs = 0.68 to 0.84). CONCLUSION SVW of the ITB was higher under passive or active tension. Comparisons between tasks/regions need to be considered in light of the small sample size and poor repeatability of some regions/conditions.
Collapse
Affiliation(s)
- Manuela Besomi
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld, 4072, Australia
| | - Sauro E Salomoni
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld, 4072, Australia
| | - François Hug
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld, 4072, Australia; Faculty of Sport Sciences, Laboratory "Movement, Interactions, Performance" (EA 4334), University of Nantes, Nantes, France; Institut Universitaire de France (IUF), Paris, France
| | - Louise Tier
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld, 4072, Australia
| | - Bill Vicenzino
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld, 4072, Australia
| | - Paul W Hodges
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld, 4072, Australia.
| |
Collapse
|