1
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
2
|
El-badrawy MK, Shalabi NM, Mohamed MA, Ragab A, Wagih Abdelwahab H, Anber N, Sobh MA, Khater Y, Abdel Hamid AA. Recombinant human granulocyte colony stimulating factor versus bone marrow mononuclear cells in treatment of pulmonary emphysema model. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2017. [DOI: 10.1016/j.ejcdt.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Hirooka S, Ueno M, Fukuda S, Miyajima A, Hirota T. Effects of Simvastatin on Alveolar Regeneration and Its Relationship to Exposure in Mice with Dexamethasone-Induced Emphysema. Biol Pharm Bull 2017; 40:155-160. [PMID: 28154254 DOI: 10.1248/bpb.b16-00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the relationship between systemic exposure of simvastatin (SV) hydroxy acid (SV-acid), an active form of SV, and its alveolar regeneration rates was investigated using emphysema model mice created by postnatal treatment of dexamethasone. In a model with young animals, the mice were treated with SV for 10 d from postnatal day 42. Similar alveolar regeneration with a % mean linear intercept (Lm) recovery of 60 to 70% by histochemical observation was observed in mice after intraperitoneal administration at dose in the range of 4-100 µg/mouse. The % Lm recovery after oral administration of 20 µg/mouse was comparable with that after intraperitoneal administration at a dose of 4 µg/mouse, when their exposure of SV-acid was almost similar in both treated groups. Regardless of the route of administration, the recovery can depend on the exposure level of SV-acid, and to the maximum was about 60-70%. On the other hand, in a model with adult animals, the mice were intraperitoneally administrated SV at a dose of 4 µg/mouse for 10 d from postnatal day 152. Compared to young animals, less % Lm recovery was observed in adult mice even their systemic exposures of SV-acid were similar.
Collapse
Affiliation(s)
- Shihomi Hirooka
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | |
Collapse
|
4
|
Miyajima A, Ohashi H, Fujishiro A, Matsuoka Y, Hiramatsu A, Hirota T. Effects of All trans-Retinoic Acid on Alveolar Regeneration in Dexamethasone-Induced Emphysema Models and Its Relationship to Exposure in ICR and FVB Mice. Biol Pharm Bull 2016; 39:927-34. [DOI: 10.1248/bpb.b15-00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Miyajima
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hideaki Ohashi
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Anri Fujishiro
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yuka Matsuoka
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ayumi Hiramatsu
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Takashi Hirota
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
5
|
Fujita M. New therapies for chronic obstructive pulmonary disease, lung regeneration. World J Respirol 2015; 5:34-39. [DOI: 10.5320/wjr.v5.i1.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by the presence of airflow limitations that are not fully reversible and is a major cause of chronic morbidity and mortality worldwide. Although there has been extensive research examining the molecular mechanisms underlying the development of COPD, there is no proven clinically effective treatment for promoting recovery from established COPD. At present, regeneration is the only hope for a cure in patients with COPD. In this article, we review current treatments for COPD, focusing particularly on recent advances in lung regeneration based on two major approaches: regeneration-promoting agents and cell therapy. Retinoic acids are the major focus among regeneration-promoting agents, while mesenchymal stem cells are the main topic in the field of cell-based therapy. This article aims to provide valuable information for developing new therapies for COPD.
Collapse
|
6
|
Lipiäinen T, Peltoniemi M, Sarkhel S, Yrjönen T, Vuorela H, Urtti A, Juppo A. Formulation and stability of cytokine therapeutics. J Pharm Sci 2014; 104:307-26. [PMID: 25492409 DOI: 10.1002/jps.24243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022]
Abstract
Cytokines are messenger proteins that regulate the proliferation and differentiation of cells and control immune responses. Interferons, interleukins, and growth factors have applications in cancer, autoimmune, and viral disease treatment. The cytokines are susceptible to chemical and physical instability. This article reviews the structure and stability issues of clinically used cytokines, as well as formulation strategies for improved stability. Some general aspects for identifying most probable stability concerns, selecting excipients, and developing stable cytokine formulations are presented. The vast group of cytokines offers possibilities for new biopharmaceuticals. The formulation approaches of the current cytokine products could facilitate development of new biopharmaceuticals.
Collapse
Affiliation(s)
- Tiina Lipiäinen
- University of Helsinki, Faculty of Pharmacy, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|