1
|
Sholom S, McKeever SWS, Escalona MB, Ryan TL, Balajee AS. A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021515. [PMID: 35196651 DOI: 10.1088/1361-6498/ac5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Large-scale radiological accidents or nuclear terrorist incidents involving radiological or nuclear materials can potentially expose thousands, or hundreds of thousands, of people to unknown radiation doses, requiring prompt dose reconstruction for appropriate triage. Two types of dosimetry methods namely, biodosimetry and physical dosimetry are currently utilized for estimating absorbed radiation dose in humans. Both methods have been tested separately in several inter-laboratory comparison exercises, but a direct comparison of physical dosimetry with biological dosimetry has not been performed to evaluate their dose prediction accuracies. The current work describes the results of the direct comparison of absorbed doses estimated by physical (smartphone components) and biodosimetry (dicentric chromosome assay (DCA) performed in human peripheral blood lymphocytes) methods. For comparison, human peripheral blood samples (biodosimetry) and different components of smartphones, namely surface mount resistors (SMRs), inductors and protective glasses (physical dosimetry) were exposed to different doses of photons (0-4.4 Gy; values refer to dose to blood after correction) and the absorbed radiation doses were reconstructed by biodosimetry (DCA) and physical dosimetry (optically stimulated luminescence (OSL)) methods. Additionally, LiF:Mg,Ti (TLD-100) chips and Al2O3:C (Luxel) films were used as reference TL and OSL dosimeters, respectively. The best coincidence between biodosimetry and physical dosimetry was observed for samples of blood and SMRs exposed toγ-rays. Significant differences were observed in the reconstructed doses by the two dosimetry methods for samples exposed to x-ray photons with energy below 100 keV. The discrepancy is probably due to the energy dependence of mass energy-absorption coefficients of the samples extracted from the phones. Our results of comparative validation of the radiation doses reconstructed by luminescence dosimetry from smartphone components with biodosimetry using DCA from human blood suggest the potential use of smartphone components as an effective emergency triage tool for high photon energies.
Collapse
Affiliation(s)
- Sergey Sholom
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
| | - Stephen W S McKeever
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| |
Collapse
|
2
|
McKeever SWS, Sholom S, Chandler JR. DEVELOPMENTS IN THE USE OF THERMOLUMINESCENCE AND OPTICALLY STIMULATED LUMINESCENCE FROM MOBILE PHONES IN EMERGENCY DOSIMETRY. RADIATION PROTECTION DOSIMETRY 2020; 192:205-235. [PMID: 33406531 DOI: 10.1093/rpd/ncaa208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Proposed physical dosimetry methods for emergency dosimetry in radiological, mass-casualty incidents include both thermoluminescence (TL) and optically stimulated luminescence (OSL). Potential materials that could feasibly be used for TL and OSL dosimetry include clothing, shoes and personal accessories. However, the most popular target of study has been personal electronics, especially different components from smartphones. Smartphones have been a focus because they are widely available and, in principle, may be viewed as surrogates for commercial TL or OSL dosimeters. The components of smartphones that have been studied include surface mount devices (such as resistors, capacitors and inductors) and glass materials, including front protective glass, display glass and (with more modern devices) back protective glass. This paper reviews the most recent developments in the use of TL and OSL with these materials and guides the way to future, and urgently needed, research.
Collapse
Affiliation(s)
- S W S McKeever
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74074, USA
| | - S Sholom
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74074, USA
| | - J R Chandler
- Department of Nuclear Engineering, University of Tennessee, TN 87996, USA
| |
Collapse
|
3
|
Sholom S, Wieser A, McKeever SWS. A COMPARISON OF DIFFERENT SPECTRA DECONVOLUTION METHODS USED IN EPR DOSIMETRY WITH GORILLA® GLASSES. RADIATION PROTECTION DOSIMETRY 2019; 186:54-59. [PMID: 30561671 DOI: 10.1093/rpd/ncy260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/11/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Two different spectra deconvolution methods have been compared on samples of Gorilla® Glass (GG) irradiated in the dose range 0-20 Gy and measured with X-band EPR. The first method used a matrix deconvolution procedure using sample-specific sets of reference signals. The second method used a 'universal' set of eight reference signals (due to five electron centers, two hole centers and a background) to fit EPR spectra from any GG sample. Dose-responses curves were constructed for each individual reference signal. These were then used to test reconstruction of a laboratory-administered dose of 2 Gy. For the matrix method, the values of the reconstructed and nominal doses were within ± 20% after averaging measurements from three aliquots of each sample. For the universal method, the most promising results were obtained with E1, E4 and H1 signals. The fitting failed for one sample, due to dominance of the background signal.
Collapse
Affiliation(s)
- S Sholom
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, USA
| | - A Wieser
- Helmholtz Zentrum Muenchen, Institute of Radiation Protection, Neuherberg, Germany
| | - S W S McKeever
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
4
|
Hayes RB, O'Mara RP. Retrospective dosimetry at the natural background level with commercial surface mount resistors. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Construction of dose response curves up to 6 Gy for Micronucleus and Dicentric Chromosome Aberration Assay with 6 MV X-ray Beam. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Swarts SG, Sidabras JW, Grinberg O, Tipikin DS, Kmiec M, Petryakov S, Schreiber W, Wood VA, Williams BB, Flood AB, Swartz HM. Developments in Biodosimetry Methods for Triage With a Focus on X-band Electron Paramagnetic Resonance In Vivo Fingernail Dosimetry. HEALTH PHYSICS 2018; 115:140-150. [PMID: 29787440 PMCID: PMC5967651 DOI: 10.1097/hp.0000000000000874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Instrumentation and application methodologies for rapidly and accurately estimating individual ionizing radiation dose are needed for on-site triage in a radiological/nuclear event. One such methodology is an in vivo X-band, electron paramagnetic resonance, physically based dosimetry method to directly measure the radiation-induced signal in fingernails. The primary components under development are key instrument features, such as resonators with unique geometries that allow for large sampling volumes but limit radiation-induced signal measurements to the nail plate, and methodological approaches for addressing interfering signals in the nail and for calibrating dose from radiation-induced signal measurements. One resonator development highlighted here is a surface resonator array designed to reduce signal detection losses due to the soft tissues underlying the nail plate. Several surface resonator array geometries, along with ergonomic features to stabilize fingernail placement, have been tested in tissue-equivalent nail models and in vivo nail measurements of healthy volunteers using simulated radiation-induced signals in their fingernails. These studies demonstrated radiation-induced signal detection sensitivities and quantitation limits approaching the clinically relevant range of ≤ 10 Gy. Studies of the capabilities of the current instrument suggest that a reduction in the variability in radiation-induced signal measurements can be obtained with refinements to the surface resonator array and ergonomic features of the human interface to the instrument. Additional studies are required before the quantitative limits of the assay can be determined for triage decisions in a field application of dosimetry. These include expanded in vivo nail studies and associated ex vivo nail studies to provide informed approaches to accommodate for a potential interfering native signal in the nails when calculating the radiation-induced signal from the nail plate spectral measurements and to provide a method for calibrating dose estimates from the radiation-induced signal measurements based on quantifying experiments in patients undergoing total-body irradiation or total-skin electron therapy.
Collapse
Affiliation(s)
- Steven G. Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32618
| | - Jason W. Sidabras
- Max Planck for Chemical Energy Conversion, Biophysical Chemistry, Mülheim, Germany
| | - Oleg Grinberg
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | | | - Maciej Kmiec
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Sergey Petryakov
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Wilson Schreiber
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Victoria A. Wood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | | | - Ann Barry Flood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Harold M. Swartz
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| |
Collapse
|
7
|
Geber-Bergstrand T, Bernhardsson C, Christiansson M, Mattsson S, Rääf CL. Optically stimulated luminescence (OSL) dosimetry in irradiated alumina substrates from mobile phone resistors. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:69-75. [PMID: 29255926 PMCID: PMC5816098 DOI: 10.1007/s00411-017-0725-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/10/2017] [Indexed: 05/03/2023]
Abstract
In this study the dosimetric properties of alumina (Al2O3) substrates found in resistors retrieved from mobile phones were investigated. Measurements of the decline of optically stimulated luminescence (OSL) generated following exposure of these substrates to ionising radiation showed that 16% of the signal could still be detected after 2 years (735 days). Further, the magnitude of the regenerative dose (calibration dose; D i) had no impact on the accuracy of dose estimates. Therefore, it is recommended that the D i be set as low as is practicable, so as to accelerate data retrieval. The critical dose, D CL, and dose limit of detection, D DL, taking into account the uncertainty in the dose-response relation as well as the uncertainty in the background signal, was estimated to be 7 and 13 mGy, respectively, 1 h after exposure. It is concluded that given the significant long-term component of fading, an absorbed dose of 0.5 Gy might still be detectable up to 6 years after the exposure. Thus, OSL from alumina substrates can be used for dosimetry for time periods far in excess of those previously thought.
Collapse
Affiliation(s)
- Therése Geber-Bergstrand
- Medical Radiation Physics, Department of Translational Medicine, Malmö, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden.
| | - Christian Bernhardsson
- Medical Radiation Physics, Department of Translational Medicine, Malmö, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Maria Christiansson
- Medical Radiation Physics, Department of Translational Medicine, Malmö, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Sören Mattsson
- Medical Radiation Physics, Department of Translational Medicine, Malmö, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Christopher L Rääf
- Medical Radiation Physics, Department of Translational Medicine, Malmö, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| |
Collapse
|
8
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|