1
|
Compter I, Eekers DBP, Hoeben A, Rouschop KMA, Reymen B, Ackermans L, Beckervordersantforth J, Bauer NJC, Anten MM, Wesseling P, Postma AA, De Ruysscher D, Lambin P. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: a phase IB trial. Autophagy 2020; 17:2604-2612. [PMID: 32866424 PMCID: PMC8496728 DOI: 10.1080/15548627.2020.1816343] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Treatment of glioblastoma xenografts with chloroquine results in macroautophagy/autophagy inhibition, resulting in a reduction of tumor hypoxia and sensitization to radiation. Preclinical data show that EGFRvIII-expressing glioblastoma may benefit most from chloroquine because of autophagy dependency. This study is the first to explore the safety, pharmacokinetics and maximum tolerated dose of chloroquine in combination with radiotherapy and concurrent daily temozolomide in patients with a newly diagnosed glioblastoma. This study is a single-center, open-label, dose-finding phase I trial. Patients received oral chloroquine daily starting one week before the course of chemoradiation (temozolomide 75 mg/m2/d) until the end of radiotherapy (59.4 Gy/33 fractions). Thirteen patients were included in the study (n = 6: 200 mg, n = 3: 300 mg, n = 4: 400 mg chloroquine). A total of 44 adverse events, possibly related to chloroquine, were registered including electrocardiogram QTc prolongation, irreversible blurred vision and nausea/vomiting resulting in cessation of temozolomide or delay of adjuvant cycles. The maximum tolerated dose was 200 mg chloroquine. Median overall survival was 16 months (range 2–32). Median survival was 11.5 months for EGFRvIII- patients and 20 months for EGFRvIII+ patients. A daily dose of 200 mg chloroquine was determined to be the maximum tolerated dose when combined with radiotherapy and concurrent temozolomide for newly diagnosed glioblastoma. Favorable toxicity and promising overall survival support further clinical studies. Abbreviations: AE: adverse events; CQ: chloroquine; DLT: dose-limiting toxicities; EGFR: epidermal growth factor receptor; GBM: glioblastoma; HCQ: hydroxychloroquine; IDH1/2: isocitrate dehydrogenase (NADP(+)) 1/2; MTD: maximum tolerated dose; CTC: National Cancer Institute Common Toxicity Criteria; MGMT: O-6-methylguanine-DNA methyltransferase; OS: overall survival; po qd: per os quaque die; SAE: serious adverse events; TMZ: temozolomide; WHO: World Health Organization
Collapse
Affiliation(s)
- Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Noel J C Bauer
- Department of Ophthalmology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Monique M Anten
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Sciences, Maastricht University Medical Centre+, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiology and Nuclear Medicine, School for Mental Health and Sciences, Maastricht University Medical Centre+, Maastricht University Medical Center, Maastricht, The Netherlands.,The D-Lab & the M-lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Tumors Responsive to Autophagy-Inhibition: Identification and Biomarkers. Cancers (Basel) 2020; 12:cancers12092463. [PMID: 32878084 PMCID: PMC7563256 DOI: 10.3390/cancers12092463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the principle of personalized medicine has been the focus of attention, many cancer therapies are still based on a one-size-fits-all approach. The same holds true for targeting cancer cell survival mechanism that allows cancer cells to recycle their constituents (autophagy). In the past several indicators of elevated dependence of cancer cells on autophagy have been described. Addition of autophagy-inhibiting agents could be beneficial in treatment of these tumors. The biomarkers and mechanisms that lead to elevated dependence on autophagy are reviewed in the current manuscript. Abstract Recent advances in cancer treatment modalities reveal the limitations of the prevalent “one-size-fits-all” therapies and emphasize the necessity to develop personalized approaches. In this perspective, identification of predictive biomarkers and intrinsic vulnerabilities are an important advancement for further therapeutic strategies. Autophagy is an important lysosomal degradation and recycling pathway that provides energy and macromolecular precursors to maintain cellular homeostasis. Although all cells require autophagy, several genetic and/or cellular changes elevate the dependence of cancer cells on autophagy for their survival and indicates that autophagy inhibition in these tumors could provide a favorable addition to current therapies. In this context, we review the current literature on tumor (sub)types with elevated dependence on autophagy for their survival and highlight an exploitable vulnerability. We provide an inventory of microenvironmental factors, genetic alterations and therapies that may be exploited with autophagy-targeted approaches to improve efficacy of conventional anti-tumor therapies.
Collapse
|
3
|
Chen JWE, Lumibao J, Blazek A, Gaskins HR, Harley B. Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells. Biomater Sci 2018; 6:854-862. [PMID: 29485655 PMCID: PMC5869158 DOI: 10.1039/c7bm01195d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is the most common, aggressive, and deadly form of adult brain cancer, and is associated with a short survival rate (median 12-15 months, 5+ year less than 5%). The complex tumor microenvironment includes matrix transitions at the tumor margin, such as gradations in hyaluronic acid (HA). In addition, metabolic stress induced by decreased oxygen content across the tumor may contribute to tumor progression. However, cross-talk between matrix composition and metabolic stress remains unclear. In this study, we fabricated an in vitro brain memetic HA-decorated gelatin hydrogel platform incorporating variable oxygen concentrations to mimic intra-tumoral hypoxia. We observed that EGFR status (wildtype vs. a constitutively active EGFRvIII mutant) of U87 GBM cells affected proliferation and metabolic activity in response to hypoxia and matrix-bound HA. The use of an invasion assay revealed that invasion was significantly enhanced in both cell types under hypoxia. Moreover, we observed compensatory secretion of soluble HA in cases of enhanced GBM cell invasion, consistent with our previous findings using other GBM cell lines. Interestingly, U87 GBM cells adapted to hypoxia by shifting toward a more anaerobic metabolic state, a mechanism that may contribute to GBM cell invasion. Collectively, these data demonstrate that the use of a three-dimensional hydrogel provides a robust method to study the impact of matrix composition and metabolic challenges on GBM cell invasion, a key factor contributing to the most common, aggressive, and deadly form of adult brain cancer.
Collapse
Affiliation(s)
- Jee-Wei Emily Chen
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
4
|
Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget 2018; 8:3870-3880. [PMID: 27965472 PMCID: PMC5354801 DOI: 10.18632/oncotarget.13910] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022] Open
Abstract
Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging. Seventeen patients with stage III-IV LAHNSCC received a loading dose unlabeled cetuximab, followed by 10 mg 54.5±9.6 MBq 89Zr-cetuximab. PET/CT images were acquired either 3 and 6 or 4 and 7 days post-injection. 89Zr-cetuximab uptake was quantified using standardized uptake value (SUV) and tumor-to-background ratio (TBR), and correlated to EGFR immunohistochemistry. TBR was compared between scan days to determine optimal timing. Uptake of 89Zr-cetuximab varied between patients (day 6-7: SUVpeak range 2.5-6.2). TBR increased significantly (49±28%, p < 0.01) between first (1.1±0.3) and second scan (1.7±0.6). Between groups with a low and high EGFR expression a significant difference in SUVmean (2.1 versus 3.0) and SUVpeak (3.2 versus 4.7) was found, however, not in TBR. Data is available at www.cancerdata.org (DOI: 10.17195/candat.2016.11.1). In conclusion, 89Zr-cetuximab PET imaging shows large inter-patient variety in LAHNSCC and provides additional information over FDG-PET and EGFR expression. Validation of the predictive value is recommended with scans acquired 6-7 days post-injection.
Collapse
|
5
|
Jutten B, Keulers TG, Peeters HJM, Schaaf MBE, Savelkouls KGM, Compter I, Clarijs R, Schijns OEMG, Ackermans L, Teernstra OPM, Zonneveld MI, Colaris RME, Dubois L, Vooijs MA, Bussink J, Sotelo J, Theys J, Lammering G, Rouschop KMA. EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition. Autophagy 2018; 14:283-295. [PMID: 29377763 PMCID: PMC5902239 DOI: 10.1080/15548627.2017.1409926] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023] Open
Abstract
Expression of EGFRvIII is frequently observed in glioblastoma and is associated with increased cellular proliferation, enhanced tolerance to metabolic stresses, accelerated tumor growth, therapy resistance and poor prognosis. We observed that expression of EGFRvIII elevates the activation of macroautophagy/autophagy during starvation and hypoxia and explored the underlying mechanism and consequence. Autophagy was inhibited (genetically or pharmacologically) and its consequence for tolerance to metabolic stress and its therapeutic potential in (EGFRvIII+) glioblastoma was assessed in cellular systems, (patient derived) tumor xenopgrafts and glioblastoma patients. Autophagy inhibition abrogated the enhanced proliferation and survival advantage of EGFRvIII+ cells during stress conditions, decreased tumor hypoxia and delayed tumor growth in EGFRvIII+ tumors. These effects can be attributed to the supporting role of autophagy in meeting the high metabolic demand of EGFRvIII+ cells. As hypoxic tumor cells greatly contribute to therapy resistance, autophagy inhibition revokes the radioresistant phenotype of EGFRvIII+ tumors in (patient derived) xenograft tumors. In line with these findings, retrospective analysis of glioblastoma patients indicated that chloroquine treatment improves survival of all glioblastoma patients, but patients with EGFRvIII+ glioblastoma benefited most. Our findings disclose the unique autophagy dependency of EGFRvIII+ glioblastoma as a therapeutic opportunity. Chloroquine treatment may therefore be considered as an additional treatment strategy for glioblastoma patients and can reverse the worse prognosis of patients with EGFRvIII+ glioblastoma.
Collapse
Affiliation(s)
- Barry Jutten
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom G. Keulers
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Hanneke J. M. Peeters
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marco B. E. Schaaf
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kim G. M. Savelkouls
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Ruud Clarijs
- Department of Clincial Pathology, Zuyderland MC, Sittard-Geleen, The Netherlands
| | | | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre
| | | | - Marijke I. Zonneveld
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Resi M. E. Colaris
- Department of Clincial Pathology, Zuyderland MC, Sittard-Geleen, The Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marc A. Vooijs
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julio Sotelo
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Jan Theys
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Guido Lammering
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Heinrich- Heine University Duesseldorf, Germany
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
6
|
Keulers TG, Schaaf MBE, Rouschop KMA. Autophagy-Dependent Secretion: Contribution to Tumor Progression. Front Oncol 2016; 6:251. [PMID: 27933272 PMCID: PMC5122571 DOI: 10.3389/fonc.2016.00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review, we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e., the effect on inflammation and insulin/hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumor microenvironment (TME) and tumor progression. The autophagy-mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy-mediated release of immune modulating proteins changes the immunosuppresive TME and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking, or alterations in homeostasis and/or autonomous cell signaling.
Collapse
Affiliation(s)
- Tom G Keulers
- Maastricht Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , Netherlands
| | - Marco B E Schaaf
- Cell Death Research and Therapy (CDRT) Laboratory, Department Cellular and Molecular Medicine, KU Leuven, University of Leuven , Leuven , Belgium
| | - Kasper M A Rouschop
- Maastricht Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , Netherlands
| |
Collapse
|
7
|
Liu Z, Han L, Dong Y, Tan Y, Li Y, Zhao M, Xie H, Ju H, Wang H, Zhao Y, Zheng Q, Wang Q, Su J, Fang C, Fu S, Jiang T, Liu J, Li X, Kang C, Ren H. EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis. Oncotarget 2016; 7:4680-94. [PMID: 26717039 PMCID: PMC4826235 DOI: 10.18632/oncotarget.6730] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal brain tumors with a short survival time. EGFR amplification and mutation is the most significant genetic signature in GBM. About half of the GBMs with EGFR amplification express a constitutively autophosphorylated variant of EGFR, known as EGFRvIII. Our in vitro data demonstrated further enhanced EGFRvIII activity and tumor cell invasion in the tumor microenvironment of hypoxia plus extracellular matrix (ECM) vitronectin, in which EGFRvIII and integrin β3 tended to form complexes. The treatment with ITGB3 siRNA or the integrin antagonist cilengetide preferentially interrupted the EGFRvIII/integrin β3 complex, effectively reduced tumor cell invasion and activation of downstream signaling effectors. Cilengitide is recently failed in Phase III CENTRIC trial in unselected patients with GBM. However, we found that cilengitide demonstrated efficacious tumor regression via inhibition of tumor growth and angiogenesis in EGFRvIII orthotopic xenografts. Bioinformatics analysis emphasized key roles of integrin β3, hypoxia and vitronectin and their strong correlations with EGFRvIII expression in malignant glioma patient samples in vivo. In conclusion, we demonstrate that EGFRvIII/integrin β3 complexes promote GBM progression and metastasis in the environment of hypoxia and vitronectin-enrichment, and cilengitide may serve as a promising therapeutics for EGFRvIII-positive GBMs.
Collapse
Affiliation(s)
- Zhaoyu Liu
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yucui Dong
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Yanli Tan
- College of Fundamental Medicine, Hebei University, Baoding 071000, China
| | - Yongsheng Li
- College of Bioinformatics, Harbin Medical University, Harbin 150081, China
| | - Manli Zhao
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Hui Xie
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - He Wang
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Yu Zhao
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Qifan Zheng
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Jun Su
- Department of Neurosurgery, The Oncology Hospital affiliated to Harbin Medical University, Harbin 150081, China
| | - Chuan Fang
- Department of Neurosurgery, The Hospital affiliated to Hebei University, 071000 Baoding, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Department of Biology, Harbin Medical University, 150081 Harbin, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiaren Liu
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xia Li
- College of Bioinformatics, Harbin Medical University, Harbin 150081, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
8
|
Keulers TG, Schaaf MB, Peeters HJ, Savelkouls KG, Vooijs MA, Bussink J, Jutten B, Rouschop KM. GABARAPL1 is required for increased EGFR membrane expression during hypoxia. Radiother Oncol 2015; 116:417-22. [DOI: 10.1016/j.radonc.2015.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
9
|
Jutten B, Rouschop KMA. EGFR signaling and autophagy dependence for growth, survival, and therapy resistance. Cell Cycle 2013; 13:42-51. [PMID: 24335351 DOI: 10.4161/cc.27518] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is amplified or mutated in various human epithelial tumors. Its expression and activation leads to cell proliferation, differentiation, and survival. Consistently, EGFR amplification or expression of EGFR variant 3 (EGFRvIII) is associated with resistance to conventional cancer therapy through activation of pro-survival signaling and DNA-repair mechanisms. EGFR targeting has successfully been exploited as strategy to increase treatment efficacy. Nevertheless, these targeting strategies have only been proven effective in a limited percentage of human tumors. Recent knowledge indicates that EGFR deregulated tumors display differences in autophagy and dependence on autophagy for growth and survival and the use of autophagy to increase resistance to EGFR-targeting drugs. In this review the dependency on autophagy and its role in mediating resistance to EGFR-targeting agents will be discussed. Considering the current knowledge, autophagy inhibition could provide a novel strategy to enhance therapy efficacy in treatment of EGFR deregulated tumors.
Collapse
Affiliation(s)
- Barry Jutten
- Maastricht Radiation Oncology (MaastRO) Lab; GROW - School for Oncology and Developmental Biology; Maastricht University; Maastricht, the Netherlands
| | - Kasper M A Rouschop
- Maastricht Radiation Oncology (MaastRO) Lab; GROW - School for Oncology and Developmental Biology; Maastricht University; Maastricht, the Netherlands
| |
Collapse
|
10
|
Jutten B, Keulers TG, Schaaf MBE, Savelkouls K, Theys J, Span PN, Vooijs MA, Bussink J, Rouschop KMA. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. Radiother Oncol 2013; 108:479-83. [PMID: 23891088 DOI: 10.1016/j.radonc.2013.06.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. MATERIAL AND METHODS Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. RESULTS We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. CONCLUSIONS The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors.
Collapse
Affiliation(s)
- Barry Jutten
- Maastricht Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiother Oncol 2013; 108:440-445. [PMID: 23891097 DOI: 10.1016/j.radonc.2013.06.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. MATERIALS AND METHODS NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. RESULTS Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. CONCLUSIONS We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy.
Collapse
|
12
|
Lv S, Teugels E, Sadones J, De Brakeleer S, Duerinck J, Du Four S, Michotte A, De Grève J, Neyns B. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab. Int J Oncol 2012; 41:1029-35. [PMID: 22752145 DOI: 10.3892/ijo.2012.1539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/27/2012] [Indexed: 11/05/2022] Open
Abstract
Mutation and gene amplification of the epithelial growth factor receptor (EGFR) is one of the most common genetic alterations in glioblastoma (GB). EGFR is, therefore, an attractive molecular target for the treatment of GB. EGFR-targeted therapies however have been largely ineffective in clinical trials. In this study, we investigated the correlation between the EGFR gene amplification status, expression of the EGFR variant III (EGFRvIII) and EGFR variant IV (EGFRvIV) mutations, expression of the phosphatase and tensin homologue gene on chromosome 10 (PTEN) and mutation of the isocitrate dehydrogenase 1 (IDH1) gene and the survival of patients suffering from recurrent glioblastoma who were treated with the EGFR-targeted monoclonal antibody cetuximab in a prospective phase II clinical trial. EGFR amplification was detected in 19 out of 35 GB (54%), EGFRvIII expression in 11 (31.4%) and EGFRvIV expression in 7 (20%). The EGFRvIII and EGFRvIV mutations were exclusively found in GB with EGFR amplification and were almost mutually exclusive with IDH1 mutation (EGFRvIII mutation was found in 1 out of 11 GB with an IDH1 mutation). Patients with an EGFR amplification lacking EGFRvIII expression had a significantly superior progression free survival (PFS) and a numerical better overall survival (OS) following treatment with cetuximab [median PFS 3.03 vs. 1.63 months (p=0.006); median OS 5.57 vs. 3.97 months (p=0.12)]. Within the subgroup of patients with EGFR amplification, patients with EGFRvIII positive glioblastoma had a worse survival [median PFS 1.63 vs. 3.03 months (p=0.01); median OS 3.27 vs. 5.57 months (p=0.08)]. Our observations indicate that the type of EGFR mutation may determine the outcome of GB patients treated with cetuximab. Prospective investigation of both the EGFR amplification and mutation status in clinical trials with EGFR-targeted therapies for GB is indicated.
Collapse
Affiliation(s)
- Shasha Lv
- Laboratory of Molecular Oncology and Department of Medical Oncology, University Hospital Brussels, Free University Brussels, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huber SM, Misovic M, Mayer C, Rodemann HP, Dittmann K. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells. Radiother Oncol 2012; 103:373-9. [PMID: 22516777 DOI: 10.1016/j.radonc.2012.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 02/13/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Solid tumor cells may adapt to an ischemic microenvironment by upregulation of sodium/glucose cotransport (SGLT) in the plasma membrane which supplies the tumor cell with glucose even at very low extracellular glucose concentration. Since SGLT activity has been shown to depend on the epithelial growth factor receptor (EGFR) and EGFR reportedly is activated by ionizing radiation, we tested for irradiation-induced SGLT activity. MATERIALS AND METHODS A549 lung adenocarcinoma and FaDu head and neck squamous cancer cells were irradiated with 0 and 4 Gy X-ray and electrogenic SGLT transport activity was recorded by patch clamp current clamp in the presence and absence of extracellular glucose (5mM), the SGLT inhibitor phlorizin (500 μM), and the inhibitor of the EGFR tyrosine kinase activity erlotinib (1 μM). In addition, the effect of phlorizin and erlotinib on glucose uptake and clonogenic survival was tested in irradiated and control cells by tracer flux and colony formation assays, respectively. RESULTS Irradiated A549 cells exhibited a significantly lower membrane potential 3h after irradiation than the control cells. Phlorizin, erlotinib or removal of extracellular glucose, hyperpolarized the irradiated A549 cells to a significantly higher extent than the control cells. Similarly, but less pronounced, glucose removal hyperpolarized irradiated FaDu cells. In addition, irradiated A549 cells exhibited a highly increased (3)H-glucose uptake which was sensitive to phlorizin. Finally, phlorizin radiosensitized the A549 and FaDu cells as evident from the colony formation assays. CONCLUSIONS Taken together, these data suggest an irradiation-stimulated and EGFR-mediated increase in SGLT-generated glucose uptake which is required for the survival of the genotoxically stressed tumor cells.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Rodemann HP, Wouters BG. Frontiers in molecular radiation biology/oncology. Radiother Oncol 2011; 101:1-6. [DOI: 10.1016/j.radonc.2011.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/15/2022]
|
15
|
Overgaard J. Advancing radiation oncology through scientific publication – 100 volumes of Radiotherapy and Oncology. Radiother Oncol 2011; 100:1-6. [DOI: 10.1016/j.radonc.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Halle C, Lando M, Sundfør K, Kristensen GB, Holm R, Lyng H. Phosphorylation of EGFR measured with in situ proximity ligation assay: relationship to EGFR protein level and gene dosage in cervical cancer. Radiother Oncol 2011; 101:152-7. [PMID: 21680035 DOI: 10.1016/j.radonc.2011.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE We have applied the sensitive and specific in situ proximity ligation assay (PLA) to characterize Tyr1068 phosphorylation of the epidermal growth factor receptor (EGFR) in cervical cancer in relation to the protein level and gene dosage. MATERIALS AND METHODS Pretreatment tumor biopsies from 178 patients were analyzed. EGFR protein level was determined by immunohistochemistry, and Tyr1068 phosphorylation was detected with PLA in 97 EGFR positive tumors. EGFR gene dosage was derived from array comparative genomic hybridization of 86 cases. RESULTS EGFR was expressed in most tumors, whereas phosphorylation was seen in about half of the EGFR positive ones. A correlation was found between the expression of EGFR and phosphorylated EGFR (p=0.016, membrane; p=0.012, cytoplasm). However, tumor regions with high protein level without phosphorylation were occasionally seen and the percentage of EGFR positive cells was higher than the phosphorylated percentage (p<0.001). Moreover, an increase in the phosphorylation in both the membrane (p=0.014) and cytoplasm (p=0.002) was seen in 11 tumors with gain of EGFR. The protein level was not correlated with gene dosage. CONCLUSION In contrast to gain of the EGFR chromosomal region, high EGFR protein level may not necessarily indicate Tyr1068 phosphorylation and thereby receptor activation in cervical cancer.
Collapse
Affiliation(s)
- Cathinka Halle
- Department of Radiation Biology, Oslo University Hospital, Norway
| | | | | | | | | | | |
Collapse
|
17
|
E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol 2011; 99:392-397. [PMID: 21680037 DOI: 10.1016/j.radonc.2011.05.044] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia is a hallmark of solid cancers and associated with metastases and treatment failure. During tumor progression epithelial cells often acquire mesenchymal features, a phenomenon known as epithelial-to-mesenchymal transition (EMT). Intratumoral hypoxia has been linked to EMT induction. We hypothesized that signals from the tumor microenvironment such as growth factors and tumor oxygenation collaborate to promote EMT and thereby contribute to radioresistance. MATERIALS AND METHODS Gene expression changes under hypoxia were analyzed using microarray and validated by qRT-PCR. Conversion of epithelial phenotype upon hypoxic exposure, TGFβ addition or oncogene activation was investigated by Western blot and immunofluorescence. Cell survival following ionizing radiation was assayed using clonogenic survival. RESULTS Upon hypoxia, TGFβ addition or EGFRvIII expression, MCF7, A549 and NMuMG epithelial cells acquired a spindle shape and lost cell-cell contacts. Expression of epithelial markers such as E-cadherin decreased, whereas mesenchymal markers such as vimentin and N-cadherin increased. Combining hypoxia with TGFβ or EGFRvIII expression, lead to more rapid and pronounced EMT-like phenotype. Interestingly, E-cadherin expression and the mesenchymal appearance were reversible upon reoxygenation. Mesenchymal conversion and E-cadherin loss were associated with radioresistance. CONCLUSIONS Our findings describe a mechanism by which the tumor microenvironment may contribute to tumor radioresistance via E-cadherin loss and EMT.
Collapse
|
18
|
Dubois L, Peeters S, Lieuwes NG, Geusens N, Thiry A, Wigfield S, Carta F, McIntyre A, Scozzafava A, Dogné JM, Supuran CT, Harris AL, Masereel B, Lambin P. Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol 2011; 99:424-31. [PMID: 21676479 DOI: 10.1016/j.radonc.2011.05.045] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. The aim of this study was to evaluate the antitumor activity of a high CAIX-affinity indanesulfonamide (11c) combined with irradiation, compared with the general CA inhibitor acetazolamide (AZA). MATERIAL AND METHODS HT-29 carcinoma cells with or without (genetic knockdown, KD) CAIX expression were incubated with 11c/AZA under different oxygen levels and proliferation, apoptosis and radiosensitivity were evaluated. 11c/AZA was administered intravenously (1×/day; 5 days) to tumor-bearing mice and tumor irradiation (10 Gy) was performed at day 3 of the injection period. Tumor growth and potential treatment toxicity were monitored (3×/week). RESULTS Treatment with 11c/AZA alone resulted in tumor regression, which was further increased in CAIX expressing cells by combining 11c with irradiation. AZA demonstrated also an additional effect in the KD tumors when combined with irradiation. CAIX inhibition in vitro significantly reduced proliferation and increased apoptosis upon hypoxia exposure without affecting intrinsic radiosensitivity. CONCLUSIONS Specific inhibition of CAIX activity enhanced the effect of tumor irradiation and might, therefore, be an attractive strategy to improve overall cancer treatment.
Collapse
Affiliation(s)
- Ludwig Dubois
- Dept. of Radiation Oncology (MAASTRO Lab), Grow-School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Molecular and translational radiation biology/oncology: What’s up? Radiother Oncol 2011; 99:257-61. [DOI: 10.1016/j.radonc.2011.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/02/2023]
|
20
|
Nowsheen S, Bonner JA, Yang ES. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother Oncol 2011; 99:331-8. [PMID: 21719137 PMCID: PMC3157293 DOI: 10.1016/j.radonc.2011.05.084] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Current therapies for head and neck cancer frequently are not curative, necessitating novel therapeutic strategies. Thus, we studied whether inhibition of poly(ADP-Ribose) polymerase (PARP), a key DNA repair enzyme, could improve efficacy of radiotherapy in human head and neck cancer. MATERIALS AND METHODS UM-SCC1, UM-SCC5, UM-SCC6, and FaDu human head and neck cancer cellular susceptibility to the PARP inhibitor (PARPi) ABT-888 and/or radiation (IR) was assessed using colony formation assays. DNA damage was evaluated using the alkaline comet assay and immunostaining for γ-H2AX foci. Non-homologous end-joining (NHEJ) mediated repair was measured using phospho-DNA-Pk foci. Epidermal growth factor receptor (EGFR) location was assessed by immunostaining. Poly ADP-Ribose polymerization (PAR) levels were assessed using immunoblotting. RESULTS Human head and neck cancer cells exhibited enhanced cytotoxicity with IR and ABT-888 compared to either agent alone. This increased susceptibility correlated with reduced nuclear EGFR, attenuation of NHEJ, and persistence of DNA damage following IR. Interestingly, a subset of head and neck cancer cells which had elevated basal PAR levels was susceptible to PARPi alone. CONCLUSIONS Combining radiotherapy and PARP inhibition may improve outcomes and quality of life for head and neck cancer patients treated with radiotherapy. Furthermore, this novel strategy may also be feasible in other tumor types. Moreover, PAR levels should be investigated as a potential biomarker for tumor susceptibility to PARP inhibition.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine
| | - James A. Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine
- Department of Cell Biology, University of Alabama at Birmingham School of Medicine
- Department of Pharmacology and Toxicology, and Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
| |
Collapse
|
21
|
Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro. Radiother Oncol 2011; 99:300-6. [DOI: 10.1016/j.radonc.2011.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/16/2023]
|
22
|
Witusik-Perkowska M, Rieske P, Hułas-Bigoszewska K, Zakrzewska M, Stawski R, Kulczycka-Wojdala D, Bieńkowski M, Stoczyńska-Fidelus E, Grešner SM, Piaskowski S, Jaskólski DJ, Papierz W, Zakrzewski K, Kolasa M, Ironside JW, Liberski PP. Glioblastoma-derived spheroid cultures as an experimental model for analysis of EGFR anomalies. J Neurooncol 2010; 102:395-407. [PMID: 20803305 PMCID: PMC3089721 DOI: 10.1007/s11060-010-0352-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/09/2010] [Indexed: 01/16/2023]
Abstract
Glioblastoma cell cultures in vitro are frequently used for investigations on the biology of tumors or new therapeutic approaches. Recent reports have emphasized the importance of cell culture type for maintenance of tumor original features. Nevertheless, the ability of GBM cells to preserve EGFR overdosage in vitro remains controversial. Our experimental approach was based on quantitative analysis of EGFR gene dosage in vitro both at DNA and mRNA level. Real-time PCR data were verified with a FISH method allowing for a distinction between EGFR amplification and polysomy 7. We demonstrated that EGFR amplification accompanied by EGFRwt overexpression was maintained in spheroids, but these phenomena were gradually lost in adherent culture. We noticed a rapid decrease of EGFR overdosage already at the initial stage of cell culture establishment. In contrast to EGFR amplification, the maintenance of polysomy 7 resulted in EGFR locus gain and stabilization even in long-term adherent culture in serum presence. Surprisingly, the EGFRwt expression pattern did not reflect the latter phenomenon and we observed no overexpression of the tested gene. Moreover, quantitative analysis demonstrated that expression of the truncated variant of receptor—EGFRvIII was preserved in GBM-derived spheroids at a level comparable to the initial tumor tissue. Our findings are especially important in the light of research using glioblastoma culture as the experimental model for testing novel EGFR-targeted therapeutics in vitro, with special emphasis on the most common mutated form of receptor—EGFRvIII.
Collapse
Affiliation(s)
- Monika Witusik-Perkowska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Czechoslowacka 8/10 str, 92-216 Lodz, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|