1
|
Kelleter L, Marek L, Echner G, Ochoa-Parra P, Winter M, Harrabi S, Jakubek J, Jäkel O, Debus J, Martisikova M. An in-vivo treatment monitoring system for ion-beam radiotherapy based on 28 Timepix3 detectors. Sci Rep 2024; 14:15452. [PMID: 38965349 PMCID: PMC11224389 DOI: 10.1038/s41598-024-66266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Ion-beam radiotherapy is an advanced cancer treatment modality offering steep dose gradients and a high biological effectiveness. These gradients make the therapy vulnerable to patient-setup and anatomical changes between treatment fractions, which may go unnoticed. Charged fragments from nuclear interactions of the ion beam with the patient tissue may carry information about the treatment quality. Currently, the fragments escape the patient undetected. Inter-fractional in-vivo treatment monitoring based on these charged nuclear fragments could make ion-beam therapy safer and more efficient. We developed an ion-beam monitoring system based on 28 hybrid silicon pixel detectors (Timepix3) to measure the distribution of fragment origins in three dimensions. The system design choices as well as the ion-beam monitoring performance measurements are presented in this manuscript. A spatial resolution of 4 mm along the beam axis was achieved for the measurement of individual fragment origins. Beam-range shifts of1.5 mm were identified in a clinically realistic treatment scenario with an anthropomorphic head phantom. The monitoring system is currently being used in a prospective clinical trial at the Heidelberg Ion Beam Therapy Centre for head-and-neck as well as central nervous system cancer patients.
Collapse
Affiliation(s)
- Laurent Kelleter
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- Division of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany.
| | | | - Gernot Echner
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Pamela Ochoa-Parra
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Marcus Winter
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Oliver Jäkel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Division of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Maria Martisikova
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Baran J, Borys D, Brzeziński K, Gajewski J, Silarski M, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopeć R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Perez Del Rio E, Raczyński L, Simbarashe M, Sharma S, Shivani, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień EŁ, Tayefi K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Ruciński A. Feasibility of the J-PET to monitor the range of therapeutic proton beams. Phys Med 2024; 118:103301. [PMID: 38290179 DOI: 10.1016/j.ejmp.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Karol Brzeziński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland; Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antony J Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Keegan McNamara
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Moyo Simbarashe
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Damien C Weber
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zürich, Zürich Switzerland; Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
3
|
Borys D, Baran J, Brzezinski KW, Gajewski J, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopec R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Del Río EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień E, Tayefi Ardebili K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Rucinski A. ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging. Phys Med Biol 2022; 67:224002. [PMID: 36137551 DOI: 10.1088/1361-6560/ac944c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
Collapse
Affiliation(s)
- Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, Gliwice, 44-100, POLAND
| | - Jakub Baran
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Karol W Brzezinski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Neha Chug
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, 30-348, POLAND
| | - Aurelien Coussat
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Eryk Czerwiński
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Meysam Dadgar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kamil Dulski
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kavya Valsan Eliyan
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Aleksander Gajos
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Krzysztof Kacprzak
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Krakow, Lojasiewicza 11, Krakow, Malopolskie, 31-007, POLAND
| | - Konrad Klimaszewski
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Grzegorz Korcyl
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Tomasz Kozik
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Wojciech Krzemień
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Deepak Kumar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antony John Lomax
- Department of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen PSI, Villigen, 5232, SWITZERLAND
| | - Keegan McNamara
- Center for Proton Therapy, Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Szymon Niedźwiecki
- Institute of Physics, Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Pawel Olko
- PAN, Institute of Nuclear Physics Polish Academy of Science, ul Radzikowskiego 152, Krakow, Kraków, 31-342, POLAND
| | - Dominik Panek
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Szymon Parzych
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Elena Pérez Del Río
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Lech Raczyński
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Sushil Sharma
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Shivani Shivani
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Roman Y Shopa
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Tomasz Skóra
- Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Krakow Branch, Walerego Eljasza, Radzikowskiego 152, Kraków, 31-342, POLAND
| | - Magdalena Skurzok
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, PL 31-342, POLAND
| | - Ewa Stępień
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Keyvan Tayefi Ardebili
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Faranak Tayefi
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, SWITZERLAND
| | - Carla Winterhalter
- Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Wojciech Wiślicki
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Pawel Moskal
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antoni Rucinski
- Institute of Nuclear Physics PAS, Radzikowskiego 152, Krakow, 31-342, POLAND
| |
Collapse
|
4
|
Shiba S, Okamoto M, Sakai M, Ohno T. Visualizing Bioabsorbable Spacer Effectiveness by Confirming the Distal-Tail of Carbon-Ion Beams: First-In-Human Report. Tomography 2022; 8:2339-2346. [PMID: 36287794 PMCID: PMC9610790 DOI: 10.3390/tomography8050195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/01/2023] Open
Abstract
In particle therapy, bioabsorbable polyglycolic acid (PGA) spacer was developed to reduce the healthy organ irradiation dose, especially in the gastrointestinal tract. The PGA spacer is safe and effective; however, there are no reports that have confirmed whether the PGA spacer which inserted in the body actually stops the carbon-ion (C-ion) beams. Here, we visualized and confirmed that the PGA spacer stops the C-ion beams in the body based on the dose distribution using auto-activation positron emission tomography (AAPET). A 59-year-old dedifferentiated retroperitoneal liposarcoma patient underwent C-ion radiotherapy (C-ion RT) on referral. A month before C-ion RT initiation, the patient underwent PGA spacer placement. Postoperatively, the patient received 4.4 Gy (RBE) per fraction of C-ion RT, followed by AAPET. AAPET revealed lower positron emitter concentrations at the distal tissue ventral to the PGA spacer than in the planning target volume. In observing the efficacy of the PGA spacer, the AAPET images and the average count per second of the positron emitter suggested that the PGA spacer stopped the C-ion beams in the body in accordance with the dose distribution. Therefore, AAPET was useful in confirming the PGA spacer's effectiveness in this study, and the PGA spacer stopped the C-ion beams.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura-City 247-8533, Kanagawa, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi-City 371-8511, Gunma, Japan
- Correspondence: ; Tel.: +81-467-46-1717
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi-City 371-8511, Gunma, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-Machi, Maebashi-City 371-8511, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi-City 371-8511, Gunma, Japan
| |
Collapse
|
5
|
Mohammadi A, Tashima H, Takyu S, Iwao Y, Akamatsu G, Kang HG, Obata F, Nishikido F, Parodi K, Yamaya T. Feasibility of triple gamma ray imaging of 10C for range verification in ion therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In carbon ion therapy, the visualization of the range of incident particles in a patient body is important for treatment verification. In-beam positron emission tomography (PET) imaging is one of the methods to verify the treatment in ion therapy due to the high quality of PET images. We have shown the feasibility of in-beam PET imaging of radioactive 15O and 11C ion beams for range verification using our OpenPET system. Recently, we developed a whole gamma imager (WGI) that can simultaneously work as PET, single gamma ray and triple gamma ray imaging. The WGI has high potential to detect the location of 10C, which emits positrons with a simultaneous gamma ray of 718 keV, within the patient’s body during ion therapy. Approach. In this work, we focus on investigating the performance of WGI for 10C imaging and its feasibility for range verification in carbon ion therapy. First, the performance of the WGI was studied to image a 10C point source using the Geant4 toolkit. Then, the feasibility of WGI was investigated for an irradiated polymethyl methacrylate (PMMA) phantom with a 10C ion beam at the carbon therapy facility of the Heavy Ion Medical Accelerator in Chiba. Main results. The average spatial resolution and sensitivity for the simulated 10C point source at the centre of the field of view were 5.5 mm FWHM and 0.010%, respectively. The depth dose of the 10C ion beam was measured, and the triple gamma image of 10C nuclides for an irradiated PMMA phantom was obtained by applying a simple back projection to the detected triple gammas. Significance. The shift between Bragg peak position and position of the peak of the triple gamma image in an irradiated PMMA phantom was 2.8 ± 0.8 mm, which demonstrates the capability of triple gamma imaging using WGI for range verification of 10C ion beams.
Collapse
|
6
|
Bauer J, Hildebrandt M, Baumgartl M, Fiedler F, Robert C, Buvat I, Enghardt W, Parodi K. Quantitative assessment of radionuclide production yields in in-beam and offline PET measurements at different proton irradiation facilities. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7a89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Reliable radionuclide production yield data are a prerequisite for positron-emission-tomography (PET) based in vivo proton treatment verification. In this context, activation data acquired at two different treatment facilities with different imaging systems were analyzed to provide experimentally determined radionuclide yields in thick targets and were compared with each other to investigate the impact of the respective imaging technique. Approach. Homogeneous thick targets (PMMA, gelatine, and graphite) were irradiated with mono-energetic proton pencil-beams at two distinct energies. Material activation was measured (i) in-beam during and after beam delivery with a double-head prototype PET camera and (ii) offline shortly after beam delivery with a commercial full-ring PET/CT scanner. Integral as well as depth-resolved β
+-emitter yields were determined for the dominant positron-emitting radionuclides 11C, 15O, 13N and (in-beam only) 10C. In-beam data were used to investigate the qualitative impact of different monitoring time schemes on activity depth profiles and their quantitative impact on count rates and total activity. Main results. Production yields measured with the in-beam camera were comparable to or higher compared to respective offline results. Depth profiles of radionuclide-specific yields obtained from the double-head camera showed qualitative differences to data acquired with the full-ring camera with a more convex profile shape. Considerable impact of the imaging timing scheme on the activity profile was observed for gelatine only with a range variation of up to 3.5 mm. Evaluation of the coincidence rate and the total number of observed events in the considered workflows confirmed a strongly decreasing rate in targets with a large oxygen fraction. Significance. The observed quantitative and qualitative differences between the datasets underline the importance of a thorough system commissioning. Due to the lack of reliable cross-section data, in-house phantom measurements are still considered a gold standard for careful characterization of the system response and to ensure a reliable beam range verification.
Collapse
|
7
|
Liu Y, Zhou L, Peng H. Machine learning based oxygen and carbon concentration derivation using dual-energy CT for PET-based dose verification in proton therapy. Med Phys 2022; 49:3347-3360. [PMID: 35246842 DOI: 10.1002/mp.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Online dose verification based on proton-induced positron emitters requires high accuracy in the assignment of elemental composition (e.g. C and O). We developed a machine learning framework for deriving oxygen and carbon concentration based on dual-energy CT (DECT). METHODS Digital phantoms at the head site were constructed based on single-energy CT (SECT) and stoichiometric calibration. DECT images (80 kVp and 140 kVp) were synthesized using two methods: 1) theoretical CT numbers with Gaussian noise (method 1) and 2) forward/backward image reconstruction with poly-energetic energy spectrum and Poisson noise modeled (method 2). Two architectures of convolutional neural networks, UNet and ResNet, were investigated to map from DECT images to C/O weights. Four cases (UNet-1: Method 1+UNet, ResNet-1: Method 1+ResNet, UNet-2: Method 2+UNet, and ResNet-2: Method 2 +ResNet) were tested for different tissue types and different noise levels. Monte-Carlo simulation was employed to identify the impact of fluctuation in oxygen and carbon concentration on activity/dose distribution. RESULTS When no noise present, all four cases are able to obtain <2% mean absolute errors (MAE) and <4% root mean square error (RMSE). For the worst image quality (e.g. lowest image SNR), the RMSE for O among all tissue types is 3.02% (UNet-1), 4.46% (ResNet-1), 4.38% (UNet-2) and 6.31% (ResNet-2), respectively. For UNet-1 and ResNet-1, the model performed slightly better in terms of RMSE for skeletal tissue than soft tissues. Such trend is not observed for UNet-2 and ResNet-2. With regard to the comparison between UNet and ResNet, different accuracy and noise immunity are observed. The activity profiles exhibit 3-5% difference in terms of mean relative error (MRE) between the ground truth and machine learning outcome. CONCLUSION We explored the feasibility of a machine learning framework to derive elemental concentration of oxygen and carbon based on DECT images. Two machine learning models, UNet and ResNet, are able to utilize spatial correlation and obtain accurate carbon and oxygen concentration. This study lays a foundation for us to apply the proposed approach to clinical DECT images. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Medical Physics, Wuhan University, Wuhan, 430072, China
| | - Long Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Peng
- Department of Medical Physics, Wuhan University, Wuhan, 430072, China.,ProtonSmart Ltd, Wuhan, 430072, China
| |
Collapse
|
8
|
Jäkel O, Kraft G, Karger CP. The history of ion beam therapy in Germany. Z Med Phys 2022; 32:6-22. [PMID: 35101337 PMCID: PMC9948864 DOI: 10.1016/j.zemedi.2021.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
The advantageous depth dose profile of ion beams together with state of the art beam delivery and treatment planning systems allow for highly conformal tumor treatments in patients. First treatments date back to 1954 at the Lawrence Berkeley Laboratory (LBL) and in Europe, ion beam therapy started in the mid-1990s at the Paul-Scherrer Institute (PSI) with protons and at the Helmholtz Center for Heavy Ion Research (GSI) with carbon ions, followed by the Heidelberg Ion Therapy Center (HIT) in Heidelberg. This review describes the historical development of ion beam therapy in Germany based on the pioneering work at LBL and in the context of simultaneous developments in other countries as well as recent developments.
Collapse
Affiliation(s)
- Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT) at the University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Gerhard Kraft
- Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt, Germany
| | - Christian P. Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
9
|
Zhang F, Zhang J, Lu Y, Sheng Y, Sun Y, Zhang J, Cheng J, Zhou R. Radioactivity and Space Range of Ultra-Low-Activity for in vivo Off-line PET Verification of Proton and Carbon Ion Beam-A Phantom Study. Front Public Health 2021; 9:771017. [PMID: 34938708 PMCID: PMC8687193 DOI: 10.3389/fpubh.2021.771017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose: The radioactivity induced by proton and heavy ion beam belongs to the ultra-low-activity (ULA). Therefore, the radioactivity and space range of commercial off-line positron emission tomography (PET) acquisition based on ULA should be evaluated accurately to guarantee the reliability of clinical verification. The purpose of this study is to quantify the radioactivity and space range of off-line PET acquisition by simulating the ULA triggered by proton and heavy ion beam. Methods: PET equipment validation phantom and low activity 18F-FDG were used to simulate the ULA with radioactivity of 11.1-1480 Bq/mL. The radioactivity of ULA was evaluated by comparing the radioactivity in the images with the values calculated from the decay function with a radioactivity error tolerance of 5%. The space range of ULA was evaluated by comparing the width of the R50 analyzed activity distribution curve with the actual width of the container with a space range error tolerance of 4 mm. Results: When radioactivity of ULA was >148 Bq/mL, the radioactivity error was <5%. When radioactivity of ULA was >30 Bq/mL, the space range error was below 4 mm. Conclusions: Off-line PET can be used to quantify the radioactivity of proton and heavy ion beam when the ULA exceeds 148 Bq/mL, both in radioactivity and in space range.
Collapse
Affiliation(s)
- Fuquan Zhang
- College of Physics, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Junyu Zhang
- College of Physics, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yan Lu
- Department of Radiotherapy, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China
| | - Yixiangzi Sheng
- Department of Radiotherapy, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China
| | - Yun Sun
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jiangang Zhang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jingyi Cheng
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Rong Zhou
- College of Physics, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Boscolo D, Kostyleva D, Safari MJ, Anagnostatou V, Äystö J, Bagchi S, Binder T, Dedes G, Dendooven P, Dickel T, Drozd V, Franczack B, Geissel H, Gianoli C, Graeff C, Grahn T, Greiner F, Haettner E, Haghani R, Harakeh MN, Horst F, Hornung C, Hucka JP, Kalantar-Nayestanaki N, Kazantseva E, Kindler B, Knöbel R, Kuzminchuk-Feuerstein N, Lommel B, Mukha I, Nociforo C, Ishikawa S, Lovatti G, Nitta M, Ozoemelam I, Pietri S, Plaß WR, Prochazka A, Purushothaman S, Reidel CA, Roesch H, Schirru F, Schuy C, Sokol O, Steinsberger T, Tanaka YK, Tanihata I, Thirolf P, Tinganelli W, Voss B, Weber U, Weick H, Winfield JS, Winkler M, Zhao J, Scheidenberger C, Parodi K, Durante M. Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI. Front Oncol 2021; 11:737050. [PMID: 34504803 PMCID: PMC8422860 DOI: 10.3389/fonc.2021.737050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.
Collapse
Affiliation(s)
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daria Kostyleva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Juha Äystö
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | | | - Tim Binder
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vasyl Drozd
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,University of Groningen, Groningen, Netherlands
| | | | - Hans Geissel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tuomas Grahn
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | - Florian Greiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emma Haettner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christine Hornung
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Jan-Paul Hucka
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Erika Kazantseva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Birgit Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ronja Knöbel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Bettina Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ivan Mukha
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Chiara Nociforo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | | | | | - Stephane Pietri
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | | - Heidi Roesch
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Fabio Schirru
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Olga Sokol
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Timo Steinsberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Isao Tanihata
- Research Center for Nuclear Physics, Osaka University, Osaka, Japan.,Peking University, Beijing, China.,Institute of Modern Physics, Lanzhou, China
| | - Peter Thirolf
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Bernd Voss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Helmut Weick
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - John S Winfield
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Martin Winkler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jianwei Zhao
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Peking University, Beijing, China
| | - Christoph Scheidenberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
12
|
Dose Calculation Algorithms for External Radiation Therapy: An Overview for Practitioners. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation therapy (RT) is a constantly evolving therapeutic technique; improvements are continuously being introduced for both methodological and practical aspects. Among the features that have undergone a huge evolution in recent decades, dose calculation algorithms are still rapidly changing. This process is propelled by the awareness that the agreement between the delivered and calculated doses is of paramount relevance in RT, since it could largely affect clinical outcomes. The aim of this work is to provide an overall picture of the main dose calculation algorithms currently used in RT, summarizing their underlying physical models and mathematical bases, and highlighting their strengths and weaknesses, referring to the most recent studies on algorithm comparisons. This handy guide is meant to provide a clear and concise overview of the topic, which will prove useful in helping clinical medical physicists to perform their responsibilities more effectively and efficiently, increasing patient benefits and improving the overall quality of the management of radiation treatment.
Collapse
|
13
|
Zhao J, Chen Z, Wu X, Xing Y, Li Y. Study of an Online Plan Verification Method and the Sensitivity of Plan Delivery Accuracy to Different Beam Parameter Errors in Proton and Carbon Ion Radiotherapy. Front Oncol 2021; 11:666141. [PMID: 34123830 PMCID: PMC8193983 DOI: 10.3389/fonc.2021.666141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
For scanning beam particle therapy, the plan delivery accuracy is affected by spot size deviation, position deviation and particle number deviation. Until now, all plan verification systems available for particle therapy have been designed for pretreatment verification. The purpose of this study is to introduce a method for online plan delivery accuracy checks and to evaluate the sensitivity of plan delivery accuracy to different beam parameter errors. A program was developed using MATLAB to reconstruct doses from beam parameters recorded in log files and to compare them with the doses calculated by treatment planning system (TPS). Both carbon ion plans and proton plans were evaluated in this study. The dose reconstruction algorithm is verified by comparing the dose from the TPS with the reconstructed dose under the same beam parameters. The sensitivity of plan delivery accuracy to different beam parameter errors was analyzed by comparing the dose reconstructed from the pseudo plans that manually added errors with the original plan dose. For the validation of dose reconstruction algorithm, mean dose difference between the reconstructed dose and the plan dose were 0.70% ± 0.24% and 0.51% ± 0.25% for carbon ion beam and proton beam, respectively. According to our simulation, the delivery accuracy of the carbon ion plan is more sensitive to spot position deviation and particle number deviation, and the delivery accuracy of the proton plan is more sensitive to spot size deviation. To achieve a 90% gamma pass rate with 3 mm/3% criteria, the average spot size deviation, position deviation, particle number deviation should be within 23%, 1.9 mm, and 1.5% and 20%, 2.1 mm, and 1.6% for carbon ion beam and proton beam, respectively. In conclusion, the method that we introduced for online plan delivery verification is feasible and reliable. The sensitivity of plan delivery accuracy to different errors was clarified for our system. The methods used in this study can be easily repeated in other particle therapy centers.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhi Chen
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianwei Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ying Xing
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yongqiang Li
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
14
|
Sun L, Hu W, Lai S, Shi L, Chen J. In Vivo 3-D Dose Verification Using PET/CT Images After Carbon-Ion Radiation Therapy. Front Oncol 2021; 11:621394. [PMID: 33791210 PMCID: PMC8006088 DOI: 10.3389/fonc.2021.621394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the usefulness of positron emission tomography (PET) images obtained after carbon-ion irradiation for dose verification in carbon-ion radiotherapy. Methods and Materials An anthropomorphic head phantom was used in this study. Three cubes with volumes of 1, 4, and 10 ml were contoured as targets in the phantom CT through a treatment planning system. Treatment plans with six prescriptions from 2.5 to 10 Gy (2.5, 3, 5, 6, 8, and 10 Gy effective dose) were designed and delivered by 90° fixed carbon-ion beams, respectively. After irradiation of the phantom, a PET/CT scan was performed to fuse the treatment-planning CT image with the PET/CT image. The relationship between target volume and the standard uptake value (SUV) in PET/CT was evaluated for corresponding plan prescription. The MIM Maestro software was used for the image fusion and data analysis. Results SUV in the target had an approximate linear relationship with the effective dose. The same effective dose could generate a roughly equal SUV for different target volumes (p < 0.05). Conclusions It is feasible to verify the actual 3-D dose distribution of carbon-ion radiotherapy by the approach in this study.
Collapse
Affiliation(s)
- Lining Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songtao Lai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leijun Shi
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Junchao Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Chalise AR, Chi Y, Lai Y, Shao Y, Jin M. Carbon-11 and Carbon-12 beam range verifications through prompt gamma and annihilation gamma measurements: Monte Carlo simulations. Biomed Phys Eng Express 2020; 6:065013. [PMID: 34040798 PMCID: PMC8148632 DOI: 10.1088/2057-1976/abb8b6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Range uncertainty remains a big concern in particle therapy, as it may cause target dose degradation and normal tissue overdosing. Positron emission tomography (PET) and prompt gamma imaging (PGI) are two promising modalities for range verification. However, the relatively long acquisition time of PET and the relatively low yield of PGI pose challenges for real-time range verification. In this paper, we explore using the primary Carbon-11 (C-11) ion beams to enhance the gamma yield compared to the primary C-12 ion beams to improve PET and PGI by using Monte Carlo simulations of water and PMMA phantoms at four incident energies (95, 200, 300, and 430 MeV u-1). Prompt gammas (PGs) and annihilation gammas (AGs) were recorded for post-processing to mimic PGI and PET imaging, respectively. We used both time-of-flight (TOF) and energy selections for PGI, which boosted the ratio of PGs to background neutrons to 2.44, up from 0.87 without the selections. At the lowest incident energy (100 MeVu-1), PG yield from C-11 was 0.82 times of that from C-12, while AG yield from C-11 was 6 ∼ 11 folds higher than from C-12 in PMMA. At higher energies, PG differences between C-11 and C-12 were much smaller, while AG yield from C-11 was 30%∼90% higher than from C-12 using minute-acquisition. With minute-acquisition, the AG depth distribution of C-11 showed a sharp peak coincident with the Bragg peak due to the decay of the primary C-11 ions, but that of C-12 had no such one. The high AG yield and distinct peaks could lead to more precise range verification of C-11 than C-12. These results demonstrate that using C-11 ion beams for potentially combined PGI and PET has great potential to improve online single-spot range verification accuracy and precision.
Collapse
Affiliation(s)
- Ananta Raj Chalise
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| |
Collapse
|
16
|
Hu Z, Li G, Zhang X, Ye K, Lu J, Peng H. A machine learning framework with anatomical prior for online dose verification using positron emitters and PET in proton therapy. Phys Med Biol 2020; 65:185003. [PMID: 32460246 DOI: 10.1088/1361-6560/ab9707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We developed a machine learning framework in order to establish the correlation between dose and activity distributions in proton therapy. A recurrent neural network was used to predict dose distribution in three dimensions based on the information of proton-induced positron emitters. Hounsfield Unit (HU) information from CT images and analytically derived stopping power (SP) information were incorporated as auxiliary inputs. Four different scenarios were investigated: Activity only, Activity + HU, Activity + SP and Activity + HU + SP. The performance was quantitatively studied in terms of mean absolute error (MAE) and mean relative error (MRE), under different signal-to-noise ratios (SNRs). In addition to the first dataset of mono-energetic beams, three additional datasets were validated to help evaluate the generalization capability of our proposed model: a dataset of a lower SNR, five reconstructed PET images, and a dataset of spread-out Bragg peaks. Good verification accuracy of dose verification in three dimensions is demonstrated. The inclusion of anatomical information improves both accuracy and generalization. For an activity profile with an SNR of 4 (the mono-energetic case), the framework is able to obtain an MRE of ∼ 0.99% over the whole range and a range uncertainty of ∼ 0.27 mm. The machine learning-based framework may emerge as a useful tool to allow for online dose verification and quality assurance in proton therapy.
Collapse
Affiliation(s)
- Zongsheng Hu
- Department of Medical Physics, Wuhan University, Wuhan, 430072 People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Ma S, Hu Z, Ye K, Zhang X, Wang Y, Peng H. Feasibility study of patient-specific dose verification in proton therapy utilizing positron emission tomography (PET) and generative adversarial network (GAN). Med Phys 2020; 47:5194-5208. [PMID: 32772377 DOI: 10.1002/mp.14443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Online dose verification based on proton-induced positron emitters is a promising strategy for quality assurance in proton therapy. Because of the nonlinear correlation between dose and the activity distributions, a machine learning-based approach was developed to establish their relationship. METHODS Simulations were carried out using a pencil beam scanning system and a computed tomography (CT) image-based phantom. A DiscoGAN model was developed to perform dose verification for both central and off-center lines. Besides the activity as input, HU information from CT images and stopping power (SP) prior were incorporated as auxiliary features for the model. The performance was quantitatively studied in terms of mean absolute error (MAE) and mean relative error (MRE), under different signal-to-noise ratios (SNRs). In addition to a dataset comprising monoenergetic beams, two additional datasets were generated to evaluate the model's generalization capability: five reconstructed PET images based on an in-beam PET system and a dataset comprising spread-out Bragg peaks (SOBPs). RESULTS The feasibility of dose verification was successfully demonstrated for all three datasets. For the monoenergetic case (i.e., raw activity of positron emitters), the MRE is found to be <1% for the central lines and 5% for the off-center lines, respectively. The range uncertainty is found to be less than 1 mm. The prediction based on five PET images, which take into account the detection of 511-keV photons and image reconstruction, yields slightly inferior performance. For the SOBP case, the MRE of the center lines is found to be <3% and the range uncertainty is <1 mm. The inclusion of anatomical information (HU and SP) improves both accuracy and generalization of the DiscoGAN model. CONCLUSION The combination of proton-induced positron emitters, in-beam PET, and machine learning may become a useful tool allowing for patient-specific online dose verification in proton therapy.
Collapse
Affiliation(s)
- Saiqun Ma
- Department of Medical Physics, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zongsheng Hu
- Department of Medical Physics, Wuhan University, Wuhan, Hubei, 430072, China
| | - Kuangkuang Ye
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaoke Zhang
- Department of Medical Physics, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yuenan Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hao Peng
- Department of Medical Physics, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
18
|
Durante M, Parodi K. Radioactive Beams in Particle Therapy: Past, Present, and Future. FRONTIERS IN PHYSICS 2020; 8:00326. [PMID: 33224941 PMCID: PMC7116396 DOI: 10.3389/fphy.2020.00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heavy ion therapy can deliver high doses with high precision. However, image guidance is needed to reduce range uncertainty. Radioactive ions are potentially ideal projectiles for radiotherapy because their decay can be used to visualize the beam. Positron-emitting ions that can be visualized with PET imaging were already studied for therapy application during the pilot therapy project at the Lawrence Berkeley Laboratory, and later within the EULIMA EU project, the GSI therapy trial in Germany, MEDICIS at CERN, and at HIMAC in Japan. The results show that radioactive ion beams provide a large improvement in image quality and signal-to-noise ratio compared to stable ions. The main hindrance toward a clinical use of radioactive ions is their challenging production and the low intensities of the beams. New research projects are ongoing in Europe and Japan to assess the advantages of radioactive ion beams for therapy, to develop new detectors, and to build sources of radioactive ions for medical synchrotrons.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Correspondence: Marco Durante,
| | - Katia Parodi
- Department of Experimental Physics—Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
19
|
Shiba S, Parajuli RK, Sakai M, Oike T, Ohno T, Nakano T. Use of a Si/CdTe Compton Camera for In vivo Real-Time Monitoring of Annihilation Gamma Rays Generated by Carbon Ion Beam Irradiation. Front Oncol 2020; 10:635. [PMID: 32509570 PMCID: PMC7248380 DOI: 10.3389/fonc.2020.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 01/03/2023] Open
Abstract
The application of annihilation gamma-ray monitoring to the adaptive therapy of carbon ion radiotherapy (C-ion RT) requires identification of the peak intensity position and confirmation of activated elements with annihilation gamma-rays generated at the C-ion-irradiated site from those transported to unirradiated sites. Real-time monitoring of C-ion-induced annihilation gamma-rays was implemented using a Compton camera in a mouse model. An adult C57BL/6 mouse was anesthetized, and C-ion beams were directed into the abdomen at 1 × 109 particles/s for 20 s. The 511 keV annihilation gamma-rays, generated by the interaction between the irradiated C-ion beam and the target mouse, were detected using a silicon/cadmium telluride (Si/CdTe) Compton camera for 20 min immediately after irradiation. The irradiated site and the peak intensity position of 511 keV gamma emissions due to C-ion beam irradiation on a mouse were observed at the abdomen of the mouse by developing Compton images. Moreover, the positron emitter transport was observed by evaluating the range of gamma-ray emission after the C-ion beam irradiation on the mouse. Our data suggest that by confirming the peak intensity and beam range of C-ion RT with Si/CdTe-based Compton camera, it would be possible to reduce the intra-fractional and inter-fractional dose distribution degradation. Therefore, the results of this study would contribute to the future development of adaptive therapy with C-ion RT for humans.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Raj Kumar Parajuli
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| |
Collapse
|
20
|
Pinto M, Kröniger K, Bauer J, Nilsson R, Traneus E, Parodi K. A filtering approach for PET and PG predictions in a proton treatment planning system. Phys Med Biol 2020; 65:095014. [PMID: 32191932 DOI: 10.1088/1361-6560/ab8146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) and prompt gamma (PG) detection are promising proton therapy monitoring modalities. Fast calculation of the expected distributions is desirable for comparison to measurements and to develop/train algorithms for automatic treatment error detection. A filtering formalism was used for positron-emitter predictions and adapted to allow for its use for the beamline of any proton therapy centre. A novel approach based on a filtering formalism was developed for the prediction of energy-resolved PG distributions for arbitrary tissues. The method estimates PG yields and their energy spectra in the entire treatment field. Both approaches were implemented in a research version of the RayStation treatment planning system. The method was validated against PET monitoring data and Monte Carlo simulations for four patients treated with scanned proton beams. Longitudinal shifts between profiles from analytical and Monte Carlo calculations were within -1.7 and 0.9 mm, with maximum standard deviation of 0.9 mm and 1.1 mm, for positron-emitters and PG shifts, respectively. Normalized mean absolute errors were within 1.2 and 5.3%. When comparing measured and predicted PET data, the same more complex case yielded an average shift of 3 mm, while all other cases were below absolute average shifts of 1.1 mm. Normalized mean absolute errors were below 7.2% for all cases. A novel solution to predict positron-emitter and PG distributions in a treatment planning system is proposed, enabling calculation times of only a few seconds to minutes for entire patient cases, which is suitable for integration in daily clinical routine.
Collapse
Affiliation(s)
- M Pinto
- Department for Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Lai Y, Zhong Y, Chalise A, Shao Y, Jin M, Jia X, Chi Y. gPET: a GPU-based, accurate and efficient Monte Carlo simulation tool for PET. Phys Med Biol 2019; 64:245002. [PMID: 31711051 PMCID: PMC10593186 DOI: 10.1088/1361-6560/ab5610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo (MC) simulation method plays an essential role in the refinement and development of positron emission tomography (PET) systems. However, most existing MC simulation packages suffer from long execution time for practical PET simulations. To fully address this issue, we developed and validated gPET, a graphics processing unit (GPU)-based MC simulation tool for PET. gPET was built on the NVidia CUDA platform. The simulation process was modularized into three functional parts and carried out by the GPU parallel threads: (1) source management, including positron decay, transport and annihilation; (2) gamma transport inside the phantom; and (3) signal detection and processing inside the detector. A hybrid of voxelized (for patient phantoms) and parametrized (for detectors) geometries were employed to sufficiently support particle navigations. Multiple inputs and outputs were available. Hence, a user can flexibly examine different aspects of a PET simulation. We evaluated the performance of gPET in three test cases with benchmark work from GATE8.0, in terms of the testing of the functional modules, the physics models used for gamma transport inside the detector, and the geometric configuration of an irregularly shaped PET detector. Both accuracy and efficiency were quantified. In all test cases, the differences between gPET and GATE for the coincidences with respect to the energy and crystal index distributions are below 3.18% and 2.54%, respectively. The speedup factor is 500 for gPET on a single Titan Xp GPU (1.58 GHz) over GATE8.0 on a single core of Intel i7-6850K CPU (3.6 GHz) for all test cases. In summary, gPET is an accurate and efficient MC simulation tool for PET.
Collapse
Affiliation(s)
- Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | | | | | | | | | | | | |
Collapse
|
22
|
Bauer J, Tessonnier T, Debus J, Parodi K. Offline imaging of positron emitters induced by therapeutic helium, carbon and oxygen ion beams with a full-ring PET/CT scanner: experiments in reference targets. Phys Med Biol 2019; 64:225016. [PMID: 31561234 DOI: 10.1088/1361-6560/ab48b4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo verification of light ion therapy based on positron-emission tomography (PET) imaging of irradiation induced patient activation relies on activity predictions from Monte-Carlo (MC) or analytical computational engines for comparison to the measurements. In order to achieve the necessary accuracy, experimental data are indispensable for the validation of the calculation models. For this we irradiated thick reference targets with mono-energetic helium, carbon and oxygen ion beams and measured the resulting material activation offline with a commercial full-ring PET/CT scanner located nearby the treatment room. Acquired PET data were analysed over time to separate the activity contribution of different radionuclides. Determined production yields were compared to published findings obtained from in-beam activation measurements with a limited-angle double-head PET camera. In addition, we investigated the time-dependence of the measured radionuclide-specific contributions and of the distal activity range, as well as the lateral spread of the activity signal as a function of beam penetration depth. We present radionuclide-specific depth-resolved activity distributions and production yields for the radionuclides [Formula: see text], [Formula: see text] and [Formula: see text], dominating irradiation-induced patient activation. We observe systematically lower production yields with a ratio between the dual-head and our full-ring PET measurements of, on average, 1.7 and 1.3 for the oxygen and carbon beam irradiations, and 1.7 (2.1) for the high (low) energy helium beam irradiations. Findings on the temporal development of the activity range confirm the expectation, with the oxygen beam induced signal being the most sensitive scenario. The experimental data reported in this work, acquired with a state-of-the-art full ring PET scanner, provide a comprehensive and consistent basis for the benchmarking of PET signal calculation engines. In particular, they can support a fine-tuning of the underlying physics models used by the respective implementation and therefore improve the accuracy of PET-based therapy verifications at current and future treatment facilities.
Collapse
Affiliation(s)
- J Bauer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital, Heidelberg, Germany. National Centre for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | | | | | | |
Collapse
|
23
|
Li Z, Wang Y, Yu Y, Fan K, Xing L, Peng H. Technical Note: Machine learning approaches for range and dose verification in proton therapy using proton‐induced positron emitters. Med Phys 2019; 46:5748-5757. [DOI: 10.1002/mp.13827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhongxing Li
- Department of Medical Physics Wuhan University Wuhan 430072China
| | - Yiang Wang
- Department of Medical Physics Wuhan University Wuhan 430072China
| | - Yajun Yu
- Department of Medical Physics Wuhan University Wuhan 430072China
| | - Kuanjun Fan
- School of Electrical Engineering Huazhong University of Science & Technology Wuhan 430074China
| | - Lei Xing
- Department of Radiation Oncology Stanford University Stanford CA 94305USA
| | - Hao Peng
- Department of Medical Physics Wuhan University Wuhan 430072China
- Department of Radiation Oncology Stanford University Stanford CA 94305USA
- Global Institution for Collaborative Research and Education (GI‐CoRE) Hokkaido University Sapporo Japan
| |
Collapse
|
24
|
Carbon ion radiotherapy in the treatment of gliomas: a review. J Neurooncol 2019; 145:191-199. [DOI: 10.1007/s11060-019-03303-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
25
|
Rucinski A, Traini G, Roldan AB, Battistoni G, De Simoni M, Dong Y, Fischetti M, Frallicciardi PM, Gioscio E, Mancini-Terracciano C, Marafini M, Mattei I, Mirabelli R, Muraro S, Sarti A, Schiavi A, Sciubba A, Solfaroli Camillocci E, Valle SM, Patera V. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles. Phys Med 2019; 64:45-53. [PMID: 31515035 DOI: 10.1016/j.ejmp.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 11/27/2022] Open
Abstract
Particle therapy is a therapy technique that exploits protons or light ions to irradiate tumor targets with high accuracy. Protons and 12C ions are already used for irradiation in clinical routine, while new ions like 4He and 16O are currently being considered. Despite the indisputable physical and biological advantages of such ion beams, the planning of charged particle therapy treatments is challenged by range uncertainties, i.e. the uncertainty on the position of the maximal dose release (Bragg Peak - BP), during the treatment. To ensure correct 'in-treatment' dose deposition, range monitoring techniques, currently missing in light ion treatment techniques, are eagerly needed. The results presented in this manuscript indicate that charged secondary particles, mainly protons, produced by an 16O beam during target irradiation can be considered as candidates for 16O beam range monitoring. Hereafter, we report on the first yield measurements of protons, deuterons and tritons produced in the interaction of an 16O beam impinging on a PMMA target, as a function of detected energy and particle production position. Charged particles were detected at 90° and 60° with respect to incoming beam direction, and homogeneous and heterogeneous PMMA targets were used to probe the sensitivity of the technique to target inhomogeneities. The reported secondary particle yields provide essential information needed to assess the accuracy and resolution achievable in clinical conditions by range monitoring techniques based on secondary charged radiation.
Collapse
Affiliation(s)
- A Rucinski
- INFN - Sezione di Roma 1, Italy; Institute of Nuclear Physics PAN, Krakow, Poland
| | - G Traini
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy.
| | | | | | - M De Simoni
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy
| | - Y Dong
- INFN - Sezione di Milano, Italy; Dipartimento di Fisica, Università di Milano, Milano, Italy
| | - M Fischetti
- Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy
| | - P M Frallicciardi
- Azienda Ospedaliero-Universitaria 'Ospedali Riuniti di Foggia', Foggia, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| | - E Gioscio
- Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| | - C Mancini-Terracciano
- INFN - Sezione di Roma 1, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
| | - M Marafini
- Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy; INFN - Sezione di Roma 1, Italy
| | | | - R Mirabelli
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| | | | - A Sarti
- Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; Laboratori Nazionali di Frascati dell'INFN, Frascati, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| | - A Schiavi
- Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy
| | - A Sciubba
- Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| | - E Solfaroli Camillocci
- INFN - Sezione di Roma 1, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy; Scuola di Specializzazione in Fisica Medica, Sapienza Università di Roma, Roma, Italy
| | - S M Valle
- INFN - Sezione di Milano, Italy; Dipartimento di Fisica, Università di Milano, Milano, Italy
| | - V Patera
- Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; INFN - Sezione di Roma 1, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| |
Collapse
|
26
|
Liu C, Li Z, Hu W, Xing L, Peng H. Range and dose verification in proton therapy using proton-induced positron emitters and recurrent neural networks (RNNs). ACTA ACUST UNITED AC 2019; 64:175009. [DOI: 10.1088/1361-6560/ab3564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Hofmann T, Fochi A, Parodi K, Pinto M. Prediction of positron emitter distributions for range monitoring in carbon ion therapy: an analytical approach. Phys Med Biol 2019; 64:105022. [PMID: 30970340 DOI: 10.1088/1361-6560/ab17f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Range verification is one of the most relevant tasks in ion beam therapy. In the case of carbon ion therapy, positron emission tomography (PET) is the most widely used method for this purpose, which images the [Formula: see text]-activation following nuclear interactions of the ions with the tissue nuclei. Since the positron emitter activity profile is not directly proportional to the dose distribution, until today only its comparison to a prediction of the PET profile allows for treatment verification. Usually, this prediction is obtained from time-consuming Monte Carlo simulations of high computational effort, which impacts the clinical workflow. To solve this issue in proton therapy, a convolution approach was suggested to predict positron emitter activity profiles from depth dose distributions analytically. In this work, we introduce an approach to predict positron emitter distributions from depth dose profiles in carbon ion therapy. While the distal fall-off position of the positron emitter profile is predicted from a convolution approach similar to the one suggested for protons, additional analytical functions are introduced to describe the characteristics of the positron emitter distribution in tissue. The feasibility of this approach is demonstrated with monoenergetic depth dose profiles and spread out Bragg peaks in homogeneous and heterogeneous phantoms. In all cases, the positron emitter profile is predicted with high precision and the distal fall-off position is reproduced with millimeter accuracy.
Collapse
Affiliation(s)
- T Hofmann
- Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching b. München, Germany
| | | | | | | |
Collapse
|
28
|
Giza OM, Sánchez-Parcerisa D, Sánchez-Tembleque V, Herraiz JL, Camacho J, Avery S, Udías JM. Photoacoustic dose monitoring in clinical high-energy photon beams. Biomed Phys Eng Express 2019; 5:035028. [DOI: 10.1088/2057-1976/ab04ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Hofmann T, Pinto M, Mohammadi A, Nitta M, Nishikido F, Iwao Y, Tashima H, Yoshida E, Chacon A, Safavi-Naeini M, Rosenfeld A, Yamaya T, Parodi K. Dose reconstruction from PET images in carbon ion therapy: a deconvolution approach. ACTA ACUST UNITED AC 2019; 64:025011. [DOI: 10.1088/1361-6560/aaf676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Application of variance‐based uncertainty and sensitivity analysis to biological modeling in carbon ion treatment plans. Med Phys 2018; 46:437-447. [DOI: 10.1002/mp.13306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/14/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023] Open
|
31
|
Parodi K, Polf JC. In vivo range verification in particle therapy. Med Phys 2018; 45:e1036-e1050. [PMID: 30421803 PMCID: PMC6262833 DOI: 10.1002/mp.12960] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Exploitation of the full potential offered by ion beams in clinical practice is still hampered by several sources of treatment uncertainties, particularly related to the limitations of our ability to locate the position of the Bragg peak in the tumor. To this end, several efforts are ongoing to improve the characterization of patient position, anatomy, and tissue stopping power properties prior to treatment as well as to enable in vivo verification of the actual dose delivery, or at least beam range, during or shortly after treatment. This contribution critically reviews methods under development or clinical testing for verification of ion therapy, based on pretreatment range and tissue probing as well as the detection of secondary emissions or physiological changes during and after treatment, trying to disentangle approaches of general applicability from those more specific to certain anatomical locations. Moreover, it discusses future directions, which could benefit from an integration of multiple modalities or address novel exploitation of the measurable signals for biologically adapted therapy.
Collapse
Affiliation(s)
- Katia Parodi
- Department of Medical PhysicsLudwig‐Maximilians‐Universität MünchenAm Coulombwall 1Garching b. Munich85748Germany
| | - Jerimy C. Polf
- Deparment of Radiation OncologyMaryland Proton Treatment CenterUniversity of Maryland School of Medicine22 South Greene St.BaltimoreMD21201USA
| |
Collapse
|
32
|
Augusto RS, Mohammadi A, Tashima H, Yoshida E, Yamaya T, Ferrari A, Parodi K. Experimental validation of the FLUKA Monte Carlo code for dose and [Formula: see text]-emitter predictions of radioactive ion beams. Phys Med Biol 2018; 63:215014. [PMID: 30252649 DOI: 10.1088/1361-6560/aae431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the context of hadrontherapy, whilst ions are capable of effectively destroying radio resistant, deep seated tumors, their treatment localization must be well assessed to ensure the sparing of surrounding healthy tissue and treatment effectiveness. Thus, range verification techniques, such as online positron-emission-tomography (PET) imaging, hold great potential in clinical practice, providing information on the in vivo beam range and consequent tumor targeting. Furthermore, [Formula: see text] emitting radioactive ions can be an asset in online PET imaging, depending on their half-life, compared to their stable counterparts. It is expected that using these radioactive ions the signal obtained by a PET apparatus during beam delivery will be greatly increased, and exhibit a better correlation to the Bragg Peak. To this end, FLUKA Monte Carlo particle transport and interaction code was used to evaluate, in terms of annihilation events at rest and dose, the figure of merit in using [Formula: see text] emitter, radioactive ion beams (RI [Formula: see text]). For this purpose, the simulation results were compared with experimental data obtained with an openPET prototype in various online PET acquisitions at the Heavy Ion Medical Accelerator in Chiba (HIMAC), in collaboration with colleagues from the National Institute of Radiological Sciences' (NIRS) Imaging Physics Team. The dosimetry performance evaluation with FLUKA benefits from its recent developments in fragmentation production models. The present work estimated that irradiations with RI [Formula: see text], produced via projectile fragmentation and their signal acquisition with state-of-the-art PET scanner, lead to nearly a factor of two more accurate definition of the signals' peak position. In addition to its more advantageous distribution shape, it was observed at least an order magnitude higher signal acquired from 11C and 15O irradiations, with respect to their stable counterparts.
Collapse
Affiliation(s)
- R S Augusto
- European Organization for Nuclear Research, Geneva, Switzerland. Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
The technological basis for adaptive ion beam therapy at MedAustron: Status and outlook. Z Med Phys 2018; 28:196-210. [DOI: 10.1016/j.zemedi.2017.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/02/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022]
|
34
|
Pennazio F, Battistoni G, Bisogni MG, Camarlinghi N, Ferrari A, Ferrero V, Fiorina E, Morrocchi M, Sala P, Sportelli G, Wheadon R, Cerello P. Carbon ions beam therapy monitoring with the INSIDE in-beam PET. Phys Med Biol 2018; 63:145018. [PMID: 29873299 DOI: 10.1088/1361-6560/aacab8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vivo range monitoring techniques are necessary in order to fully take advantage of the high dose gradients deliverable in hadrontherapy treatments. Positron emission tomography (PET) scanners can be used to monitor beam-induced activation in tissues and hence measure the range. The INSIDE (Innovative Solutions for In-beam DosimEtry in Hadrontherapy) in-beam PET scanner, installed at the Italian National Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) synchrotron facility, has already been successfully tested in vivo during a proton therapy treatment. We discuss here the system performance evaluation with carbon ion beams, in view of future in vivo tests. The work is focused on the analysis of activity images obtained with therapeutic treatments delivered to polymethyl methacrylate (PMMA) phantoms, as well as on the test of an innovative and robust Monte Carlo simulation technique for the production of reliable prior activity maps. Images are reconstructed using different integration intervals, so as to monitor the activity evolution during and after the treatment. Three procedures to compare activity images are presented, namely Pearson correlation coefficient, Beam's eye view and overall view. Images of repeated irradiations of the same treatments are compared to assess the integration time necessary to provide reproducible images. The range agreement between simulated and experimental images is also evaluated, so as to validate the simulation capability to provide sound prior information. The results indicate that at treatment end, or at most 20 s afterwards, the range measurement is reliable within 1-2 mm, when comparing both different experimental sessions and data with simulations. In conclusion, this work shows that the INSIDE in-beam PET scanner performance is promising towards its in vivo test with carbon ions.
Collapse
|
35
|
Fiorina E, Ferrero V, Pennazio F, Baroni G, Battistoni G, Belcari N, Cerello P, Camarlinghi N, Ciocca M, Del Guerra A, Donetti M, Ferrari A, Giordanengo S, Giraudo G, Mairani A, Morrocchi M, Peroni C, Rivetti A, Da Rocha Rolo M, Rossi S, Rosso V, Sala P, Sportelli G, Tampellini S, Valvo F, Wheadon R, Bisogni M. Monte Carlo simulation tool for online treatment monitoring in hadrontherapy with in-beam PET: A patient study. Phys Med 2018; 51:71-80. [DOI: 10.1016/j.ejmp.2018.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022] Open
|
36
|
Ou H, Zhang B, Zhao S. Monte Carlo simulation of the relative biological effectiveness and DNA damage from a 400 MeV/u carbon ion beam in water. Appl Radiat Isot 2018; 136:1-9. [DOI: 10.1016/j.apradiso.2018.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
37
|
Meißner H, Fuchs H, Hirtl A, Reschl C, Stock M. Towards offline PET monitoring of proton therapy at MedAustron. Z Med Phys 2018; 29:59-65. [PMID: 29858131 DOI: 10.1016/j.zemedi.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 11/16/2022]
Abstract
The characteristic depth-dose profile of protons traveling through material is the main advantage of proton therapy over conventional radiotherapy with photons or electrons. However, uncertainties regarding the range of the protons in human tissue prevent to exploit the full potential of proton therapy. Therefore, a non-invasive in-vivo dose monitoring is desired. At the ion beam center MedAustron in Wiener Neustadt/Austria, patient treatment with proton beams started in December 2016. A PET/CT is available in close vicinity of the treatment rooms, exclusively dedicated to offline PET monitoring directly after the therapeutic irradiation. Preparations for a patient study include workflow tests under realistic clinical conditions using two different phantoms, irradiated with protons prior to the scan in the PET/CT. GATE simulations of the C-11 production are used as basis for the prediction of the PET measurement. We present results from the workflow tests in comparison with simulation results, and by this, we demonstrate the applicability of the PET monitoring at the MedAustron facility.
Collapse
Affiliation(s)
- Heide Meißner
- TU Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
| | - Hermann Fuchs
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna and Department of Radiation Therapy, Medical University of Vienna/AKH Vienna Spitalgasse 23, 1090 Vienna, Austria
| | - Albert Hirtl
- TU Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
| | - Christian Reschl
- EBG MedAustron GmbH, Marie-Curie-Straße 5, 2700 Wiener Neustadt, Austria
| | - Markus Stock
- EBG MedAustron GmbH, Marie-Curie-Straße 5, 2700 Wiener Neustadt, Austria
| |
Collapse
|
38
|
Improving the modelling of irradiation-induced brain activation for in vivo PET verification of proton therapy. Radiother Oncol 2018; 128:101-108. [PMID: 29703502 DOI: 10.1016/j.radonc.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSES A reliable Monte Carlo prediction of proton-induced brain tissue activation used for comparison to particle therapy positron-emission-tomography (PT-PET) measurements is crucial for in vivo treatment verification. Major limitations of current approaches to overcome include the CT-based patient model and the description of activity washout due to tissue perfusion. MATERIAL AND METHODS Two approaches were studied to improve the activity prediction for brain irradiation: (i) a refined patient model using tissue classification based on MR information and (ii) a PT-PET data-driven refinement of washout model parameters. Improvements of the activity predictions compared to post-treatment PT-PET measurements were assessed in terms of activity profile similarity for six patients treated with a single or two almost parallel fields delivered by active proton beam scanning. RESULTS The refined patient model yields a generally higher similarity for most of the patients, except in highly pathological areas leading to tissue misclassification. Using washout model parameters deduced from clinical patient data could considerably improve the activity profile similarity for all patients. CONCLUSIONS Current methods used to predict proton-induced brain tissue activation can be improved with MR-based tissue classification and data-driven washout parameters, thus providing a more reliable basis for PT-PET verification.
Collapse
|
39
|
Heavy Charged Particles: Does Improved Precision and Higher Biological Effectiveness Translate to Better Outcome in Patients? Semin Radiat Oncol 2018. [DOI: 10.1016/j.semradonc.2017.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Toramatsu C, Yoshida E, Wakizaka H, Mohammadi A, Ikoma Y, Tashima H, Nishikido F, Kitagawa A, Karasawa K, Hirano Y, Yamaya T. Washout effect in rabbit brain: in-beam PET measurements using
10
C,
11
C and
15
O ion beams. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaade7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Giordanengo S, Manganaro L, Vignati A. Review of technologies and procedures of clinical dosimetry for scanned ion beam radiotherapy. Phys Med 2017; 43:79-99. [DOI: 10.1016/j.ejmp.2017.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
|
42
|
Handrack J, Tessonnier T, Chen W, Liebl J, Debus J, Bauer J, Parodi K. Sensitivity of post treatment positron emission tomography/computed tomography to detect inter-fractional range variations in scanned ion beam therapy. Acta Oncol 2017; 56:1451-1458. [PMID: 28918686 DOI: 10.1080/0284186x.2017.1348628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ion therapy, especially with modern scanning beam delivery, offers very sharp dose gradients for highly conformal cancer treatment. However, it is very sensitive to uncertainties of tissue stopping properties as well as to anatomical changes and setup errors, making range verification highly desirable. To this end, positron emission tomography (PET) can be used to measure decay products of β+-emitters created in interactions inside the patient. This work investigates the sensitivity of post treatment PET/CT (computed tomography) to detect inter-fractional range variations. MATERIAL AND METHODS Fourteen patients of different indication underwent PET/CT monitoring after selected treatment fractions with scanned proton or carbon ion beams. In addition to PET/CT measurements, PET and dose distributions were simulated on different co-registered CT data. Pairs of PET data were then analyzed in terms of longitudinal shifts along the beam path, as surrogate of inter-fractional range deviations. These findings were compared to changes of dose-volume-histogram indexes and corresponding dose as well as CT shifts to disentangle the origin of possible PET shifts. RESULTS Biological washout modeling (PET simulations) and low (<55 Bq/ml) activity concentrations (offline PET measurements, especially for 12C ions) were the main limitations for clinical treatment verification. For two selected cases, the benefit of improved washout modeling based on organ segmentation could be demonstrated. Overall, inter-fractional range shifts up to ±3 mm could be deduced from both PET measurements and simulations, and found well correlated (typically within 1.8 mm) to anatomical changes derived from CT scans, in agreement with dose data. CONCLUSIONS Despite known limitations of post treatment PET/CT imaging, this work indicates its potential for assessing inter-fractional changes and points to future developments for improved PET-based treatment verification.
Collapse
Affiliation(s)
- Josefine Handrack
- Department of Radiation Oncology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Thomas Tessonnier
- Department of Radiation Oncology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wenjing Chen
- Heidelberg Ion-Beam Therapy Centre, Heidelberg, Germany
| | - Jakob Liebl
- Heidelberg Ion-Beam Therapy Centre, Heidelberg, Germany
- EBG MedAustron GmbH, Wiener-Neustadt, Austria
| | - Jürgen Debus
- Department of Radiation Oncology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre, Heidelberg, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre, Heidelberg, Germany
| | - Katia Parodi
- Department of Radiation Oncology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
43
|
Gianoli C, De Bernardi E, Ricotti R, Kurz C, Bauer J, Riboldi M, Baroni G, Debus J, Parodi K. First clinical investigation of a 4D maximum likelihood reconstruction for 4D PET-based treatment verification in ion beam therapy. Radiother Oncol 2017; 123:339-345. [DOI: 10.1016/j.radonc.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/17/2017] [Accepted: 04/16/2017] [Indexed: 11/29/2022]
|
44
|
Qin N, Pinto M, Tian Z, Dedes G, Pompos A, Jiang SB, Parodi K, Jia X. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy. Phys Med Biol 2017; 62:3682-3699. [PMID: 28140352 PMCID: PMC5730973 DOI: 10.1088/1361-6560/aa5d43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Collapse
Affiliation(s)
- Nan Qin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rohling H, Priegnitz M, Schoene S, Schumann A, Enghardt W, Hueso-González F, Pausch G, Fiedler F. Requirements for a Compton camera forin vivorange verification of proton therapy. Phys Med Biol 2017; 62:2795-2811. [DOI: 10.1088/1361-6560/aa6068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Berndt B, Landry G, Schwarz F, Tessonnier T, Kamp F, Dedes G, Thieke C, Würl M, Kurz C, Ganswindt U, Verhaegen F, Debus J, Belka C, Sommer W, Reiser M, Bauer J, Parodi K. Application of single- and dual-energy CT brain tissue segmentation to PET monitoring of proton therapy. Phys Med Biol 2017; 62:2427-2448. [DOI: 10.1088/1361-6560/aa5f9f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Sci Rep 2016; 6:38895. [PMID: 27996023 PMCID: PMC5171237 DOI: 10.1038/srep38895] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40–55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction.
Collapse
|
48
|
Kurz C, Bauer J, Unholtz D, Richter D, Herfarth K, Debus J, Parodi K. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion. Med Phys 2016; 43:975-82. [PMID: 26843257 DOI: 10.1118/1.4940356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. METHODS Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. RESULTS Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. CONCLUSIONS The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.
Collapse
Affiliation(s)
- Christopher Kurz
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Julia Bauer
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Daniel Unholtz
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Daniel Richter
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, GermanyStrahlenklinik, Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Katia Parodi
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, GermanyDepartment of Medical Physics, Ludwig-Maximilians-University, Munich 85748, Germany
| |
Collapse
|
49
|
Schumann A, Priegnitz M, Schoene S, Enghardt W, Rohling H, Fiedler F. From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions. Phys Med Biol 2016; 61:6919-6934. [DOI: 10.1088/0031-9155/61/19/6919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Durante M, Paganetti H. Nuclear physics in particle therapy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096702. [PMID: 27540827 DOI: 10.1088/0034-4885/79/9/096702] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy. Department of Physics, University Federico II, Naples, Italy
| | | |
Collapse
|