1
|
Lucia F, Miranda O, Bourbonne V, Martin E, Pradier O, Schick U. Integration of functional imaging in brachytherapy. Cancer Radiother 2021; 26:517-525. [PMID: 34172398 DOI: 10.1016/j.canrad.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Functional imaging allows the evaluation of numerous biological properties that could be considered at all steps of the therapeutic management of patients treated with brachytherapy. Indeed, it enables better initial staging of the disease, and some parameters may also be used as predictive biomarkers for treatment response, allowing better selection of patients eligible for brachytherapy. It may also improve the definition of target volumes with the aim of dose escalations by dose-painting. Finally, it could be useful during the follow-up to assess response to treatment. In this review, we report how functional imaging is integrated at the present time during the brachytherapy procedure, and what are its potential future contributions in the main tumour locations where brachytherapy is recommended. Functional imaging has great potential in the contact of brachytherapy, but still, several issues remain to be resolved before integrating it into clinical practice, especially as a biomarker or in dose painting strategies.
Collapse
Affiliation(s)
- F Lucia
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France.
| | - O Miranda
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - V Bourbonne
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - E Martin
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - O Pradier
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - U Schick
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| |
Collapse
|
2
|
Chen Y, Xing L, Yu L, Bagshaw HP, Buyyounouski MK, Han B. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet. Med Phys 2020; 47:6421-6429. [PMID: 33012016 DOI: 10.1002/mp.14517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Contouring intraprostatic lesions is a prerequisite for dose-escalating these lesions in radiotherapy to improve the local cancer control. In this study, a deep learning-based approach was developed for automatic intraprostatic lesion segmentation in multiparametric magnetic resonance imaging (mpMRI) images contributing to clinical practice. METHODS Multiparametric magnetic resonance imaging images from 136 patient cases were collected from our institution, and all these cases contained suspicious lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥ 4. The contours of the lesion and prostate were manually created on axial T2-weighted (T2W), apparent diffusion coefficient (ADC) and high b-value diffusion-weighted imaging (DWI) images to provide the ground truth data. Then a multiple branch UNet (MB-UNet) was proposed for the segmentation of an indistinct target in multi-modality MRI images. An encoder module was designed with three branches for the three MRI modalities separately, to fully extract the high-level features provided by different MRI modalities; an input module was added by using three sub-branches for three consecutive image slices, to consider the contour consistency among different image slices; deep supervision strategy was also integrated into the network to speed up the convergency of the network and improve the performance. The probability maps of the background, normal prostate and lesion were output by the network to generate the segmentation of the lesion, and the performance was evaluated using the dice similarity coefficient (DSC) as the main metric. RESULTS A total of 162 lesions were contoured on 652 image slices, with 119 lesions in the peripheral zone, 38 in the transition zone, four in the central zone and one in the anterior fibromuscular stroma. All prostates were also contoured on 1,264 image slices. As for the segmentation of lesions in the testing set, MB-UNet achieved a per case DSC of 0.6333, specificity of 0.9993, sensitivity of 0.7056; and global DSC of 0.7205, specificity of 0.9993, sensitivity of 0.7409. All the three deep learning strategies adopted in this study contributed to the performance promotion of the MB-UNet. Missing the DWI modality would degrade the segmentation performance more markedly compared with the other two modalities. CONCLUSIONS A deep learning-based approach with proposed MB-UNet was developed to automatically segment suspicious lesions in mpMRI images. This study makes it feasible to adopt boosting intraprostatic lesions in clinical practice to achieve better outcomes.
Collapse
Affiliation(s)
- Yizheng Chen
- Department of Radiation Oncology, Stanford University, Stanford, 94305, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, 94305, USA
| | - Lequan Yu
- Department of Radiation Oncology, Stanford University, Stanford, 94305, USA
| | - Hilary P Bagshaw
- Department of Radiation Oncology, Stanford University, Stanford, 94305, USA
| | | | - Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, 94305, USA
| |
Collapse
|
3
|
Hellebust T. Place of modern imaging in brachytherapy planning. Cancer Radiother 2018; 22:326-333. [DOI: 10.1016/j.canrad.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
|
4
|
[Therapeutic innovations in radiation oncology for localized prostate cancer]. Cancer Radiother 2017; 21:454-461. [PMID: 28890087 DOI: 10.1016/j.canrad.2017.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022]
Abstract
Intensity-modulated radiation therapy, image-guided radiation therapy with fiducial markers and prostate brachytherapy allow the delivery of dose escalation for localized prostate cancer with very low rates of long-term toxicity and sequelae. Nowadays, modern radiotherapy techniques make it possible to shorten treatment time with hypofractionation, to better protect surrounding healthy tissues and to escalate the dose even further. Advances in radiotherapy are closely linked to advances in magnetic resonance imaging (MRI) and/or PET imaging. Functional imaging makes it possible to deliver personalised pelvic nodal radiotherapy, targeting the nodal areas at higher risk of microscopic involvement. In patients with an index lesion at baseline or at failure, MR-based focal therapy or focal dose escalation with brachytherapy or stereotactic body radiation therapy is also currently investigated. MR-based adaptive radiotherapy, which makes it possible to track prostate shifts during radiation delivery, is another step forward in the integration of MR imaging in radiation delivery.
Collapse
|
5
|
Westendorp H, Surmann K, van de Pol SM, Hoekstra CJ, Kattevilder RA, Nuver TT, Moerland MA, Slump CH, Minken AW. Dosimetric impact of contouring and image registration variability on dynamic 125 I prostate brachytherapy. Brachytherapy 2017; 16:572-578. [DOI: 10.1016/j.brachy.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
|
6
|
Thorwarth D, Notohamiprodjo M, Zips D, Müller AC. Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer: A feasibility study. Z Med Phys 2017; 27:21-30. [DOI: 10.1016/j.zemedi.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/18/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
|
7
|
Westendorp H, Hoekstra CJ, Immerzeel JJ, van de Pol SMG, Niël CGHJ, Kattevilder RAJ, Nuver TT, Minken AW, Moerland MA. Cone-beam CT-based adaptive planning improves permanent prostate brachytherapy dosimetry: An analysis of 1266 patients. Med Phys 2017; 44:1257-1267. [PMID: 28192614 DOI: 10.1002/mp.12156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate adaptive planning for permanent prostate brachytherapy and to identify the prostate regions that needed adaptation. METHODS AND MATERIALS After the implantation of stranded seeds, using real-time intraoperative planning, a transrectal ultrasound (TRUS)-scan was obtained and contoured. The positions of seeds were determined on a C-arm cone-beam computed tomography (CBCT)-scan. The CBCT-scan was registered to the TRUS-scan using fiducial gold markers. If dose coverage on the combined image-dataset was inadequate, an intraoperative adaptation was performed by placing remedial seeds. CBCT-based intraoperative dosimetry was analyzed for the prostate (D90, V100, and V150) and the urethra (D30). The effects of the adaptive dosimetry procedure for Day 30 were separately assessed. RESULTS We analyzed 1266 patients. In 17.4% of the procedures, an adaptation was performed. Without the dose contribution of the adaptation Day 30 V100 would be < 95% for half of this group. On Day 0, the increase due to the adaptation was 11.8 ± 7.2% (1SD) for D90 and 9.0 ± 6.4% for V100. On Day 30, we observed an increase in D90 of 12.3 ± 6.0% and in V100 of 4.2 ± 4.3%. For the total group, a D90 of 119.6 ± 9.1% and V100 of 97.7 ± 2.5% was achieved. Most remedial seeds were placed anteriorly near the base of the prostate. CONCLUSION CBCT-based adaptive planning enables identification of implants needing adaptation and improves prostate dose coverage. Adaptations were predominantly performed near the anterior base of the prostate.
Collapse
Affiliation(s)
- Hendrik Westendorp
- Department of Medical Physics, Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Carel J Hoekstra
- Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Jos J Immerzeel
- Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Sandrine M G van de Pol
- Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Charles G H J Niël
- Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Robert A J Kattevilder
- Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Tonnis T Nuver
- Department of Medical Physics, Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - André W Minken
- Department of Medical Physics, Department of Radiation Oncology, Radiotherapiegroep behandellocatie Deventer, Nico Bolkesteinlaan 85, 7416 SE, Deventer, The Netherlands
| | - Marinus A Moerland
- Department of Medical Physics, Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
8
|
Tanderup K, Ménard C, Polgar C, Lindegaard JC, Kirisits C, Pötter R. Advancements in brachytherapy. Adv Drug Deliv Rev 2017; 109:15-25. [PMID: 27637454 DOI: 10.1016/j.addr.2016.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/14/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022]
Abstract
Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications.
Collapse
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Cynthia Ménard
- Centre Hospitalier de l'Université de Montréal, Montréal and Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Csaba Polgar
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| | | | - Christian Kirisits
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Richard Pötter
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Magnetic resonance imaging for prostate cancer radiotherapy. Phys Med 2016; 32:446-51. [PMID: 26858164 DOI: 10.1016/j.ejmp.2016.01.484] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 11/21/2022] Open
|