1
|
Xia TJ, Xie FY, Chen J, Zhang XG, Li S, Sun QY, Zhang Q, Yin S, Ou XH, Ma JY. CDK1 mediates the metabolic regulation of DNA double-strand break repair in metaphase II oocytes. BMC Biol 2025; 23:37. [PMID: 39915808 PMCID: PMC11803938 DOI: 10.1186/s12915-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND During oocyte maturation, DNA double-strand breaks (DSBs) can decrease oocyte quality or cause mutations. How DSBs are repaired in dividing oocytes and which factors influence DSB repair are not well understood. RESULTS By analyzing DSB repair pathways in oocytes at different stages, we found that break-induced replication (BIR) and RAD51-mediated homology-directed repair (HDR) were highly active in germinal vesicle breakdown (GVBD) oocytes but suppressed in metaphase II (MII) oocytes and the BIR in oocytes was promoted by CDK1 activity. By culturing oocytes in different media, we found that high-energy media, such as DMEM, decreased CDK1 protein levels and suppressed BIR or HDR in MII oocytes. In contrast, 53BP1-mediated nonhomologous end joining (NHEJ) repair was inhibited in germinal vesicle (GV) and GVBD oocytes but promoted in MII oocytes, and NHEJ was not affected by DMEM medium and CDK1 activity. In addition, in DSB MII oocytes, polymerase theta-mediated end joining (TMEJ) was found to be suppressed by CDK1 activity and promoted by high-energy media. CONCLUSIONS In summary, MII oocytes exhibit high heterogeneity in DSB repair, which is regulated by both metabolic factors and CDK1 activity. These results not only expand our understanding of oocyte DSB repair but also contribute to the modification of in vitro maturation medium for oocytes.
Collapse
Affiliation(s)
- Tian-Jin Xia
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Feng-Yun Xie
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Juan Chen
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xiao-Guohui Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sen Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qin Zhang
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Jun-Yu Ma
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Huertas-Castaño C, Martínez-López L, Cabrera-Roldán P, Pastor N, Mateos JC, Mateos S, Pardal R, Domínguez I, Orta ML. Influence of stromal neural crest progenitor cells on neuroblastoma radioresistance. Int J Radiat Biol 2025; 101:153-163. [PMID: 39750107 DOI: 10.1080/09553002.2024.2440865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation. In this paper we wanted to study the radiobiological behavior of these cells (NB14t) and how they influence the growth of tumorigenic neuroblasts after radiotherapy. MATERIALS AND METHODS To achieve our aim, we employed a wide list of methods either using NB14t cells as well as commercial NB cells. We have analyzed viability, survival, cell cyle profiles and differentiation. In addition, cocultured experiments were performed to monitor the influence of stroma cells to tumorigenic neuroblasts. RESULTS We found that stromal progenitor cells showed an extraordinary radio-resistance either cultured in attached or suspension conditions. In good agreement, we found an enhanced repair of irradiation-induced DNA lesions as compared with commercial cell lines. In addition, according to our data these cells differentiate into a Cancer Associated Fibroblasts (CAFs)-like phenotype, hence contributing to the formation of mesenchymal stroma enhancing the growth of tumor cells after irradiation. CONCLUSION Our data show that neural progenitor cells from high risk NB stroma are radio-resistant and promote cancer growth after irradiation. This paper can help to understand the complex cell relationships within a tumor that will determine patient prognosis after radiotherapy.
Collapse
Affiliation(s)
| | | | - Patricia Cabrera-Roldán
- Departamento de Oncología Radioterápica, Hospital Universitario Virgen del Rocío (HUVR), Seville, Spain
| | - Nuria Pastor
- Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain
| | - Juan Carlos Mateos
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Santiago Mateos
- Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain
| | - Ricardo Pardal
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS) (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | | | - Manuel Luis Orta
- Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Mancarella D, Ellinghaus H, Sigismondo G, Veselinov O, Kühn A, Goyal A, Hartmann M, Fellenberg J, Krijgsveld J, Plass C, Popanda O, Schmezer P, Bakr A. Deposition of onco-histone H3.3-G34W leads to DNA repair deficiency and activates cGAS/STING-mediated immune responses. Int J Cancer 2024; 154:2106-2120. [PMID: 38353495 DOI: 10.1002/ijc.34883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 04/14/2024]
Abstract
Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.
Collapse
Affiliation(s)
- Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Henrik Ellinghaus
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Kühn
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Hartmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Fellenberg
- Department of Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Chen LW, Wang SS, Chen LY, Huang HY, He SM, Hung CH, Lin CL, Chang PJ. Interaction and assembly of the DNA replication core proteins of Kaposi's sarcoma-associated herpesvirus. Microbiol Spectr 2023; 11:e0225423. [PMID: 37874136 PMCID: PMC10715029 DOI: 10.1128/spectrum.02254-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Eukaryotic DNA replication is a highly regulated process that requires multiple replication enzymes assembled onto DNA replication origins. Due to the complexity of the cell's DNA replication machinery, most of what we know about cellular DNA replication has come from the study of viral systems. Herein, we focus our study on the assembly of the Kaposi's sarcoma-associated herpesvirus core replication complex and propose a pairwise protein-protein interaction network of six highly conserved viral core replication proteins. A detailed understanding of the interaction and assembly of the viral core replication proteins may provide opportunities to develop new strategies against viral propagation.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Yun Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Si-min He
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
5
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
6
|
Bakr A, Hey J, Sigismondo G, Liu CS, Sadik A, Goyal A, Cross A, Iyer RL, Müller P, Trauernicht M, Breuer K, Lutsik P, Opitz C, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021; 49:11666-11689. [PMID: 34718742 PMCID: PMC8599806 DOI: 10.1093/nar/gkab964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Imperial College London, London, SW7 2AZ, UK
| | - Ramya Lakshmana Iyer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Patrick Müller
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Max Trauernicht
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, INF672, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Dempke WCM, Reck M. KEAP1/NRF2 (NFE2L2) mutations in NSCLC - Fuel for a superresistant phenotype? Lung Cancer 2021; 159:10-17. [PMID: 34303275 DOI: 10.1016/j.lungcan.2021.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/04/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022]
Abstract
The transcription factor NRF2 (nuclear factor E2-related factor 2) (also known as nuclear factor, erythroid 2 like 2 [NFE2L2]) is the master regulator of cellular antioxidant responses. NRF2 is repressed by interaction with a redox-sensitive protein KEAP1 (Kelch-like ECH-associated protein 1). Dysregulation of KEAP1/NRF2 transcriptional activity has been associated with the pathogenesis of multiple diseases, and the KEAP1/NRF2 axis has emerged to be the most important modulator of cellular homeostasis. Oxidative stress plays an important role in the initiation and progression of many chronic diseases, including diabetes, cancer, and neurodegenerative diseases. Although its role in immunotherapy is still somewhat controversial, it is well documented from clinical studies that KEAP1/NRF2 mutations in NSCLCs are associated with resistance to various cancer treatments including chemotherapy, X-irradiation, TKI treatment, and a shorter OS and currently available results from clinical trials suggest that KEAP1/NRF2 mutations can be used as a prognostic biomarker (poorer prognosis) for determining prognosis following immunotherapy and a predictive marker for chemo-, radio-, immunotherapy- and TKI-resistance. Despite overwhelming enthusiasm about the various KEAP1/NRF2 inhibitors that have been described during the last decades, none of these inhibitors are currently explored in clinical trials or in clinical applications which clearly add weight to the proposal that the development of these inhibitors remains challenging, but will be beneficial for novel treatment approaches in NSCLC in the near future. In this review we highlight the molecular features, the key components, and possible inhibitors of the KEAP1/NRF2 pathway, its role as prognostic and predictive biomarker, and the resulting clinical implications in NSCLC patients.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- University Clinic LMU Munich, Medical Clinic III, Marchioninistr. 15, D-81377 Munich, Germany.
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, LungenClinic, Wöhrendamm 80, D-22927 Grosshansdorf, Germany
| |
Collapse
|
8
|
Jung KW, Jung JH, Park HY. Functional Roles of Homologous Recombination and Non-Homologous End Joining in DNA Damage Response and Microevolution in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7070566. [PMID: 34356945 PMCID: PMC8307084 DOI: 10.3390/jof7070566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most deleterious type of DNA lesions because they cause loss of genetic information if not properly repaired. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are required for DSB repair. However, the relationship of HR and NHEJ in DNA damage stress is unknown in the radiation-resistant fungus Cryptococcus neoformans. In this study, we found that the expression levels of HR- and NHEJ-related genes were highly induced in a Rad53-Bdr1 pathway-dependent manner under genotoxic stress. Deletion of RAD51, which is one of the main components in the HR, resulted in growth under diverse types of DNA damage stress, whereas perturbations of KU70 and KU80, which belong to the NHEJ system, did not affect the genotoxic stresses except when bleomycin was used for treatment. Furthermore, deletion of both RAD51 and KU70/80 renders cells susceptible to oxidative stress. Notably, we found that deletion of RAD51 induced a hypermutator phenotype in the fluctuation assay. In contrast to the fluctuation assay, perturbation of KU70 or KU80 induced rapid microevolution similar to that induced by the deletion of RAD51. Collectively, Rad51-mediated HR and Ku70/Ku80-mediated NHEJ regulate the DNA damage response and maintain genome stability.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
- Correspondence: ; Tel.: +82-63-570-3337
| | - Jong-Hyun Jung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| | - Ha-Young Park
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
| |
Collapse
|
9
|
Köcher S, Volquardsen J, Perugachi Heinsohn A, Petersen C, Roggenbuck D, Rothkamm K, Mansour WY. Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation. DNA Repair (Amst) 2021; 102:103100. [PMID: 33812230 DOI: 10.1016/j.dnarep.2021.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022]
Abstract
Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated γH2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as γH2AX and 53BP1 in adherent tumor cells.
Collapse
Affiliation(s)
- S Köcher
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - J Volquardsen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Perugachi Heinsohn
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | - K Rothkamm
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Y Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Anglada T, Genescà A, Martín M. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Aging (Albany NY) 2020; 12:24872-24893. [PMID: 33361520 PMCID: PMC7803562 DOI: 10.18632/aging.202419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
DNA repair mechanisms play a crucial role in maintaining genome integrity. However, the increased frequency of DNA double-strand breaks (DSBs) and genome rearrangements in aged individuals suggests an age-associated DNA repair deficiency. Previous work from our group revealed a delayed firing of the DNA damage response in human mammary epithelial cells (HMECs) from aged donors. We now report a decreased activity of the main DSB repair pathways, the canonical non-homologous end-joining (c-NHEJ) and the homologous recombination (HR) in these HMECs from older individuals. We describe here a deficient recruitment of 53BP1 to DSB sites in G1 cells, probably influenced by an altered epigenetic regulation. 53BP1 absence at some DSBs is responsible for the age-associated DNA repair defect, as it permits the ectopic formation of BRCA1 foci while still in the G1 phase. CtIP and RPA foci are also formed in G1 cells from aged donors, but RAD51 is not recruited, thus indicating that extensive DNA-end resection occurs in these breaks although HR is not triggered. These results suggest an age-associated switch of DSB repair from canonical to highly mutagenic alternative mechanisms that promote the formation of genome rearrangements, a source of genome instability that might contribute to the aging process.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
11
|
Deville SS, Luft S, Kaufmann M, Cordes N. Keap1 inhibition sensitizes head and neck squamous cell carcinoma cells to ionizing radiation via impaired non-homologous end joining and induced autophagy. Cell Death Dis 2020; 11:887. [PMID: 33087706 PMCID: PMC7578798 DOI: 10.1038/s41419-020-03100-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
The function of Keap1 (Kelch-like ECH-associated protein 1), a sensor of oxidative and electrophilic stress, in the radiosensitivity of cancer cells remains elusive. Here, we investigated the effects of pharmacological inhibition of Keap1 with ML344 on radiosensitivity, DNA double-strand break (DSB) repair and autophagy in head and neck squamous cell carcinoma (HNSCC) cell lines. Our data demonstrate that Keap1 inhibition enhances HNSCC cell radiosensitivity. Despite elevated, Nrf2-dependent activity of non-homologous end joining (NHEJ)-related DNA repair, Keap1 inhibition seems to impair DSB repair through delayed phosphorylation of DNA-PKcs. Moreover, Keap1 inhibition elicited autophagy and increased p62 levels when combined with X-ray irradiation. Our findings suggest HNSCC cell radiosensitivity, NHEJ-mediated DSB repair, and autophagy to be co-regulated by Keap1.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Susanne Luft
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maria Kaufmann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany. .,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Turesson I, Simonsson M, Hermansson I, Book M, Sigurdadottir S, Thunberg U, Qvarnström F, Johansson KA, Fessé P, Nyman J. Epidermal Keratinocyte Depletion during Five Weeks of Radiotherapy is Associated with DNA Double-Strand Break Foci, Cell Growth Arrest and Apoptosis: Evidence of Increasing Radioresponsiveness and Lack of Repopulation; the Number of Melanocytes Remains Unchanged. Radiat Res 2020; 193:481-496. [PMID: 32196412 DOI: 10.1667/rr15417.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During fractionated radiotherapy, epithelial cell populations are thought to decrease initially, followed by accelerated repopulation to compensate cell loss. However, previous findings in skin with daily 1.1 Gy dose fractions indicate continued and increasing cell depletion. Here we investigated epidermal keratinocyte response with daily 2 Gy fractions as well as accelerated and hypofractionation. Epidermal interfollicular melanocytes were also assessed. Skin-punch biopsies were collected from breast cancer patients before, during and after mastectomy radiotherapy to the thoracic wall with daily 2 Gy fractions for 5 weeks. In addition, 2.4 Gy radiotherapy four times per week and 4 Gy fractions twice per week for 5 weeks, and two times 2 Gy daily for 2.5 weeks, were used. Basal keratinocyte density of the interfollicular epidermis was determined and immunostainings of keratinocytes for DNA double-strand break (DSB) foci, growth arrest, apoptosis and mitosis were quantified. In addition, interfollicular melanocytes were counted. Initially minimal keratinocyte loss was observed followed by pronounced depletion during the second half of treatment and full recovery at 2 weeks post treatment. DSB foci per cell peaked towards the end of treatment. p21-stained cell counts increased during radiotherapy, especially the second half. Apoptotic frequency was low throughout radiotherapy but increased at treatment end. Mitotic cell count was significantly suppressed throughout radiotherapy and did not recover during weekend treatment gaps, but increased more than threefold compared to unexposed skin 2 weeks post-radiotherapy. The number of melanocytes remained constant over the study period. Germinal keratinocyte loss rate increased gradually during daily 2 Gy fractions for 5 weeks, and similarly for hypofractionation. DSB foci number after 2 Gy irradiation revealed an initial radioresistance followed by increasing radiosensitivity. Growth arrest mediated by p21 strongly suggests that cells within or recruited into the cell cycle during treatment are at high risk of loss and do not contribute significantly to repopulation. It is possible that quiescent (G0) cells at treatment completion accounted for the accelerated post-treatment repopulation. Recent knowledge of epidermal tissue regeneration and cell cycle progression during genotoxic and mitogen stress allows for a credible explanation of the current finding. Melanocytes were radioresistant regarding cell depletion.
Collapse
Affiliation(s)
- Ingela Turesson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Martin Simonsson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | | | - Majlis Book
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Sunna Sigurdadottir
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Ulf Thunberg
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Fredrik Qvarnström
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Karl-Axel Johansson
- Department of Radiophysics, University of Göteborg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Fessé
- Department of Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | | |
Collapse
|
13
|
Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol 2019; 13:681-700. [PMID: 30714316 PMCID: PMC6441925 DOI: 10.1002/1878-0261.12467] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Therapies that take advantage of defects in DNA repair pathways have been explored in the context of breast, ovarian, and other tumor types, but not yet systematically in CRC. At present, only immune checkpoint blockade therapies have been FDA approved for use in mismatch repair-deficient colorectal tumors. Here, we discuss how systematic identification of alterations in DNA repair genes could provide new therapeutic opportunities for CRCs. Analysis of The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) and Rectal Adenocarcinoma (TCGA-READ) PanCancer Atlas datasets identified 141 (out of 528) cases with putative driver mutations in 29 genes associated with DNA damage response and repair, including the mismatch repair and homologous recombination pathways. Genetic defects in these pathways might confer repair-deficient characteristics, such as genomic instability in the absence of homologous recombination, which can be exploited. For example, inhibitors of poly(ADP)-ribose polymerase are effectively used to treat cancers that carry mutations in BRCA1 and/or BRCA2 and have shown promising results in CRC preclinical studies. HR deficiency can also occur in cells with no detectable BRCA1/BRCA2 mutations but exhibiting BRCA-like phenotypes. DNA repair-targeting therapies, such as ATR and CHK1 inhibitors (which are most effective against cancers carrying ATM mutations), can be used in combination with current genotoxic chemotherapies in CRCs to further improve therapy response. Finally, therapies that target alternative DNA repair mechanisms, such as thiopurines, also have the potential to confer increased sensitivity to current chemotherapy regimens, thus expanding the spectrum of therapy options and potentially improving clinical outcomes for CRC patients.
Collapse
Affiliation(s)
- Nicole M. Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUSCandioloItaly
| | - Luca Novara
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Federica Di Nicolantonio
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| | - Alberto Bardelli
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| |
Collapse
|
14
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
15
|
Luo H, Liang H, Chen Y, Chen S, Xu Y, Xu L, Liu J, Zhou K, Peng J, Guo G, Lai B, Song L, Yang H, Liu L, Peng J, Liu Z, Tang L, Chen W, Tang H. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chem Biol Interact 2018; 283:84-90. [PMID: 29421518 DOI: 10.1016/j.cbi.2018.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023]
Abstract
Hydroquinone (HQ), one of the major metabolic products of benzene, is a carcinogen, which induces apoptosis and inhibit proliferation in lymphoma cells. microRNA-7-5p (miR-7-5p), a tumor suppressor, participates in various biological processes including cell proliferation and apoptosis regulation by repressing expression of specific oncogenic target genes. To explore whether miR-7-5p is involved in HQ-induced cell proliferation and apoptosis, we assessed the effect of miR-7-5p overexpression on induction of apoptosis analyzed by FACSCalibur flow cytometer in transfection of TK6 cells with miR-7-5p mimic (TK6- miR-7-5p). We observed an increased apoptosis by 25.43% and decreased proliferation by 28.30% in TK6-miR-7-5p cells compared to those negative control cells (TK6-shNC) in response to HQ treatment. Furthermore, HQ might active the apoptotic pathway via partly downregulation the expression of BRCA1 and PARP-1, followed by p53 activation, in TK6-miR-7-5p cells. In contrast, attenuated p53 and BRCA1 expression was observed in shPARP-1 cells than in NC cells after HQ treatment. Therefore, we conclude that HQ may activate apoptotic signals via inhibiting the tumor suppressive effects of miR-7-5p, which may be mediated partly by upregulating the expression of PARP-1 and BRCA1 in control cells. The increase of miR-7-5p expression further intensified downregulation of PARP-1 and BRCA1 in TK6-miR-7-5p cells, resulting in an increase of apoptosis and proliferation inhibited.
Collapse
Affiliation(s)
- Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yongchun Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jucheng Peng
- Xixiang Prevention and Health Care of Baoan, Shenzhen, China
| | - Guoqiang Guo
- Xixiang Prevention and Health Care of Baoan, Shenzhen, China
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linhua Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, China
| | - Lin Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
16
|
Bakr A, Köcher S, Volquardsen J, Petersen C, Borgmann K, Dikomey E, Rothkamm K, Mansour WY. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget 2018; 7:57679-57693. [PMID: 27494840 PMCID: PMC5295381 DOI: 10.18632/oncotarget.11023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/23/2016] [Indexed: 01/30/2023] Open
Abstract
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur. We show that defective 53BP1/RIF1-mediated DSB end-protection in G1-phase stimulates CtIP/MRE11-dependent end-resection, which requires Polo-like kinase 3. This end resection activity in G1 was shown to produce only short tracks of ssDNA overhangs, as evidenced by the findings that in 53BP1 depleted cells, (i) RPA focus intensity was significantly lower in G1 compared to that in S/G2 phase, and (ii) EXO1 knockdown did not alter either number or intensity of RPA foci in G1 but significantly decreased the RPA focus intensity in S/G2 phase. Importantly, we report that the observed DSB end resection in G1 phase inhibits DNA-PK-dependent nonhomologous end joining but is not sufficient to stimulate HR. Instead, it switches the repair to the alternative PARP1-dependent end joining pathway.
Collapse
Affiliation(s)
- Ali Bakr
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Köcher
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Volquardsen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Tumor Biology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
17
|
Rodemann HP, Datta NR, Bodis S. Molecular radiation biology/oncology and its impact on preclinical and clinical research in radiotherapy. Radiother Oncol 2017; 124:339-343. [PMID: 28888706 DOI: 10.1016/j.radonc.2017.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Affiliation(s)
- H Peter Rodemann
- Division of Radiation Biology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tübingen, German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| | - Niloy Ranjan Datta
- Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau and University of Zurich, Switzerland
| | - Stephan Bodis
- Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau and University of Zurich, Switzerland
| |
Collapse
|
18
|
Double strand break induction and kinetics indicate preserved hypersensitivity in keratinocytes to subtherapeutic doses for 7weeks of radiotherapy. Radiother Oncol 2016; 122:163-169. [PMID: 28017476 DOI: 10.1016/j.radonc.2016.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Previously we reported that hyper-radiosensitivity (HRS) was evidenced by quantifying DNA double strand break (DSB) foci in epidermis biopsies collected after delivering radiotherapeutic one and five dose fractions. The aim of this study was to determine whether HRS was preserved throughout a 7-week radiotherapy treatment, and also to examine the rate of foci decline and foci persistence between dose fractions. MATERIALS AND METHODS 42 patients with prostate cancer received 7-week fractionated radiotherapy treatment (RT) with daily dose fractions of 0.05-1.10Gy to the skin. Before RT, and at several times throughout treatment, skin biopsies (n=452) were collected at 30min, and 2, 3, 24, and 72h after dose fractions. DSB-foci markers, γH2AX and 53BP1, were labelled in epidermal keratinocytes with immunofluorescence and immunohistochemical staining. Foci were counted both with digital image analysis and manually. RESULTS HRS in keratinocytes was evidenced by the dose-response relationships of DSB foci, observed throughout the treatment course, independent of sampling time and quantification method. Foci observed at 24h after dose fractions indicated considerable DSB persistence. Accordingly, foci significantly accumulated after 5 consecutive dose fractions. For doses below 0.3Gy, persistent foci could be observed even at 72h after damage induction. A comparison of γH2AX and 53BP1 quantifications in double-stained biopsies showed similar HRS dose-response relationships. CONCLUSIONS These results represented the first evidence of preserved HRS, assessed by γH2AX- and 53BP1-labelled DSB foci, throughout a 7-week treatment course with daily repeated subtherapeutic dose fractions.
Collapse
|
19
|
Graziano S, Gonzalo S. Mechanisms of oncogene-induced genomic instability. Biophys Chem 2016; 225:49-57. [PMID: 28073589 DOI: 10.1016/j.bpc.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Abstract
Activating mutations in oncogenes promote uncontrolled proliferation and malignant transformation. Approximately 30% of human cancers carry mutations in the RAS oncogene. Paradoxically, expression of mutant constitutively active Ras protein in primary human cells results in a premature proliferation arrest known as oncogene-induced senescence (OIS). This is more commonly observed in human pre-neoplasia than in neoplastic lesions, and is considered a tumor suppressor mechanism. Senescent cells are still metabolically active but in a status of cell cycle arrest characterized by specific morphological and physiological features that distinguish them from both proliferating cells, and cells growth-arrested by other means. Although the molecular mechanisms by which OIS is established are not totally understood, the current view is that OIS in human cells is tightly linked to persistent activation of the DNA damage response (DDR) pathway, as a consequence of replication stress. Here we will highlight recent advances in our understanding of molecular mechanisms leading to hyper-replication stress in response to oncogene activation, and of the crosstalk between replication stress and persistent activation of the DDR. We will also discuss new evidence for DNA repair deficiencies during OIS, which might increase the genomic instability that drives senescence bypass and malignant transformation.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
20
|
Differences in the recruitment of DNA repair proteins at subtelomeric and interstitial I-SceI endonuclease-induced DNA double-strand breaks. DNA Repair (Amst) 2016; 49:1-8. [PMID: 27842255 DOI: 10.1016/j.dnarep.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022]
Abstract
Telomeres are nucleoprotein structures that are required to protect chromosome ends. Dysfunctional telomeres are recognized as DNA double-strand breaks (DSBs), and elicit the activation of a DNA damage response (DDR). We have previously reported that DSBs near telomeres are poorly repaired, resulting in a high frequency of large deletions and gross chromosome rearrangements (GCRs). Our previous genetic studies have demonstrated that this sensitivity of telomeric regions to DSBs is a result of excessive processing. In the current study, we have further investigated the sensitivity of telomeric regions to DSBs through the analysis of repair proteins associated with DSBs at interstitial and telomeric sites. Following the inducible expression of I-SceI endonuclease, chromatin immunoprecipitation (ChIP) and real-time quantitative PCR were used to compare the recruitment of repair proteins at I-SceI-induced DSBs at interstitial and subtelomeric sites. We observed that proteins that are specifically associated with processing of DSBs during homologous recombination repair, RAD51, BRCA1, and CtIP, are present at a much greater abundance at subtelomeric DSBs. In contrast, Ku70, which is specifically involved in classical nonhomologous end joining, showed no difference at interstitial and subtelomeric DSBs. Importantly, ATM was lower in abundance at subtelomeric DSBs, while ATR was in greater abundance at subtelomeric DSBs, consistent with the accumulation of processed DSBs near telomeres, since processing is accompanied by a transition from ATM to ATR binding. Combined, our results suggest that excessive processing is responsible for the increased frequency of large deletions and GCRs at DSBs near telomeres.
Collapse
|