1
|
Zhao H, Nelson G, Sarkar V, Oare C, Szegedi M, James SS, Kunz J, Price R, Huang YJ. Comprehensive Image Quality Evaluation and Motion Phantom Studies of an Ultra-Fast (6-Second) Cone-Beam Computed Tomography Imaging System on a Ring Gantry Linear Accelerator. Adv Radiat Oncol 2025; 10:101681. [PMID: 39717196 PMCID: PMC11665466 DOI: 10.1016/j.adro.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose To evaluate the image quality of an ultrafast cone-beam computed tomography (CBCT) system-Varian HyperSight. Methods and Materials In this evaluation, 5 studies were performed to assess the image quality of HyperSight CBCT. First, a HyperSight CBCT image quality evaluation was performed and compared with Siemens simulation-CT and Varian TrueBeam CBCT. Second, a visual comparison of image quality among simulation-CTs, HyperSight CBCT, and TrueBeam CBCT was performed for a patient with head and neck cancer and patients with metal dental fillings and prostheses. Third, the Hounsfield unit (HU) versus electron density curve of HyperSight CBCT was compared with GE and Siemens simulation CTs. Fourth, Siemens simulation-CT and HyperSight CBCT scans were acquired on the Catphan set-up at different locations inside the bore (±10 cm in all 3 principal directions from the center), and the HU variations for different materials were evaluated. Fifth, a 4-dimensional lung tumor phantom study was performed to assess moving tumor alignment during image registration. Results Significant improvement of image contrast, HU constancy, and noise level on HyperSight CBCT was observed compared with TrueBeam CBCT. Significant image quality improvement was observed on HyperSight CBCT for patients with dental fillings and prostheses compared with simulation-CT without metal artifact reduction. The linear fit trendline of HU versus electron density curves for GE simulation-CT, Siemens simulation-CT, and HyperSight CBCT showed a 0.6% difference for HU values below 2000. The maximum HU difference for HyperSight CBCT when Catphan was positioned within ±10 cm in all 3 principal directions was ≤ 98 on bone 50%, ≤ 29 other than bone, and was ≤ 31 on bone 50%, and ≤ 17 other than bone for Siemens simulation-CT. Both tumor shape and tumor alignment discrepancies on CBCT scans were observed in a 4-dimensional phantom study. Conclusions This evaluation shows significant image improvement of HyperSight CBCT over conventional CBCT on image contrast, HU constancy, and noise level with scatter correction and metal artifact reduction reconstruction methods. HyperSight CBCT has similar image quality to simulation-CTs and shows the potential application for treatment planning. The rapid acquisition of HyperSight CBCT showed both tumor shape and tumor alignment discrepancies of moving targets. Careful considerations of patient respiratory motion monitoring and target matching are highly recommended.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Geoff Nelson
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Vikren Sarkar
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Courtney Oare
- Department of Radiation Oncology, University of Minnesota, Minnesota
| | - Martin Szegedi
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Sara St. James
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Jeremy Kunz
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Ryan Price
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| | - Y. Jessica Huang
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
MacDonald RL, Fallone C, Chytyk‐Praznik K, Robar J, Cherpak A. The feasibility of CT simulation-free adaptive radiation therapy. J Appl Clin Med Phys 2024; 25:e14438. [PMID: 38889325 PMCID: PMC11492295 DOI: 10.1002/acm2.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Novel on-board CBCT allows for improved image quality and Hounsfield unit accuracy. When coupled with online adaptive tools, this may have potential to allow for simulation and treatment to be completed in a single on-table session. PURPOSE To study the feasibility of a high-efficiency radiotherapy treatment workflow without the use of a separate session for simulation imaging. The dosimetric accuracy, overall efficiency, and technical feasibility were used to evaluate the clinical potential of CT simulation-free adaptive radiotherapy. METHODS Varian's Ethos adaptive radiotherapy treatment platform was upgraded with a novel CBCT system, HyperSight which reports image quality and Hounsfield unit accuracy specifications comparable to standard fan-beam CT. Using in-house developed MATLAB software, CBCT images were imported into the system and used for planning. Two test cases were completed on anthropomorphic phantoms equipped with small volume ion chambers (cross-calibrated to an ADCL traceable dose standard) to evaluate the feasibility and accuracy of the workflows. A simulated palliative spine treatment was planned with 8 Gy in one fraction, and an intact prostate treatment was planned with 60 Gy in 20 fractions. The CBCTs were acquired using HyperSight with default thorax and pelvis imaging protocols and reconstructed using an iterative algorithm with scatter removal, iCBCT Acuros. CBCTs were used for contouring and planning, and treatment was delivered via an online adaptive workflow. In addition, an external dosimetry audit was completed using only on-board CBCT imaging in an end-to-end head and neck phantom irradiation. RESULTS An extended-field CBCT acquisition can be acquired in 12 s, in addition to the time for longitudinal table shifts, and reconstructed in approximately 1 min. The superior-inferior extent for the CBCT planning images was 38.2 cm, which captured the full extent of relevant anatomy. The contouring and treatment planning for the spine and prostate were completed in 30 and 18 min, respectively. The dosimetric agreement between ion chamber measurements and the treatment plan was within a range of -1.4 to 1.6%, and a mean and standard deviation of 0.41 ± 1.16%. All metrics used in the external audit met the passing criteria, and the dosimetric comparison between fan-beam and CBCT techniques had a gamma passing rate of 99.0% with a criteria of 2%/2 mm. CONCLUSION Using an in-house workflow, CT simulation-free radiation therapy was shown to be feasible with acceptable workflow efficiency and dosimetric accuracy. This approach may be particularly applicable for urgent palliative treatments. With the availability of software to enable this workflow, and the continued advancement of on-treatment adaptation, single-visit radiation therapy may replace current practice for some clinical indications.
Collapse
Affiliation(s)
- R. Lee MacDonald
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Clara Fallone
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Krista Chytyk‐Praznik
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - James Robar
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Amanda Cherpak
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
3
|
Kang KH, Price AT, Reynoso FJ, Laugeman E, Morris ED, Samson PP, Huang J, Badiyan SN, Kim H, Brenneman RJ, Abraham CD, Knutson NC, Henke LE. A Pilot Study of Simulation-Free Hippocampal-Avoidance Whole Brain Radiation Therapy Using Diagnostic MRI-Based and Online Adaptive Planning. Int J Radiat Oncol Biol Phys 2024; 119:1422-1428. [PMID: 38580083 DOI: 10.1016/j.ijrobp.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE We aimed to demonstrate the clinical feasibility and safety of simulation-free hippocampal avoidance whole brain radiation therapy (HA-WBRT) in a pilot study (National Clinical Trial 05096286). METHODS AND MATERIALS Ten HA-WBRT candidates were enrolled for treatment on a commercially available computed tomography (CT)-guided linear accelerator with online adaptive capabilities. Planning structures were contoured on patient-specific diagnostic magnetic resonance imaging (MRI), which were registered to a CT of similar head shape, obtained from an atlas-based database (AB-CT). These patient-specific diagnostic MRI and AB-CT data sets were used for preplan calculation, using NRG-CC001 constraints. At first fraction, AB-CTs were used as primary data sets and deformed to patient-specific cone beam CTs (CBCT) to give patient-matched density information. Brain, ventricle, and brain stem contours were matched through rigid translation and rotation to the corresponding anatomy on CBCT. Lens, optic nerve, and brain contours were manually edited based on CBCT visualization. Preplans were then reoptimized through online adaptation to create final, simulation-free plans, which were used if they met all objectives. Workflow tasks were timed. In addition, patients underwent CT-simulation to create immobilization devices and for prospective dosimetric comparison of simulation-free and simulation-based plans. RESULTS Median time from MRI importation to completion of "preplan" was 1 weekday (range, 1-4). Median on-table workflow duration was 41 minutes (range, 34-70). NRG-CC001 constraints were achieved by 90% of the simulation-free plans. One patient's simulation-free plan failed a planning target volume coverage objective (89% instead of 90% coverage); this was deemed acceptable for first-fraction delivery, with an offline replan used for subsequent fractions. Both simulation-free and simulation CT-based plans otherwise met constraints, without clinically meaningful differences. CONCLUSIONS Simulation-free HA-WBRT using online adaptive radiation therapy is feasible, safe, and results in dosimetrically comparable treatment plans to simulation CT-based workflows while providing convenience and time savings for patients.
Collapse
Affiliation(s)
- Kylie H Kang
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Alex T Price
- University Hospitals, Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio
| | - Francisco J Reynoso
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Eric Laugeman
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Eric D Morris
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Pamela P Samson
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Jiayi Huang
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Shahed N Badiyan
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, Texas
| | - Hyun Kim
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Randall J Brenneman
- Banner MD Anderson Cancer Center at Banner North Colorado Medical Center, Greeley, Colorado
| | - Christopher D Abraham
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Nels C Knutson
- Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri
| | - Lauren E Henke
- University Hospitals, Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
4
|
Dohopolski M, Visak J, Choi B, Meng B, Parsons D, Zhong X, Inam E, Avkshtol V, Moon D, Sher D, Lin MH. In silico evaluation and feasibility of near margin-less head and neck daily adaptive radiotherapy. Radiother Oncol 2024; 197:110178. [PMID: 38453056 DOI: 10.1016/j.radonc.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE We explore the potential dosimetric benefits of reducing treatment volumes through daily adaptive radiation therapy for head and neck cancer (HNC) patients using the Ethos system/Intelligent Optimizer Engine (IOE). We hypothesize reducing treatment volumes afforded by daily adaption will significantly reduce the dose to adjacent organs at risk. We also explore the capability of the Ethos IOE to accommodate this highly conformal approach in HNC radiation therapy. METHODS Ten HNC patients from a phase II trial were chosen, and their cone-beam CT (CBCT) scans were uploaded to the adaptive RT (ART) emulator. A new initial reference plan was generated using both a 1 mm and 5 mm planning target volume (PTV) expansion. Daily adaptive ART plans (1 mm) were simulated from the clinical CBCT taken every fifth fraction. Additionally, using physician-modified ART contours the larger 5 mm plan was recalculated on this recontoured on daily anatomy. Changes in target and OAR contours were measured using Dice coefficients as a surrogate of clinician effort. PTV coverage and organ-at-risk (OAR) doses were statistically compared, and the robustness of each ART plan was evaluated at fractions 5 and 35 to observe if OAR doses were within 3 Gy of pre-plan. RESULTS This study involved six patients with oropharynx and four with larynx cancer, totaling 70 adaptive fractions. The primary and nodal gross tumor volumes (GTV) required the most adjustments, with median Dice scores of 0.88 (range: 0.80-0.93) and 0.83 (range: 0.66-0.91), respectively. For the 5th and 35th fraction plans, 80 % of structures met robustness criteria (quartile 1-3: 67-100 % and 70-90 %). Adaptive planning improved median PTV V100% coverage for doses of 70 Gy (96 % vs. 95.6 %), 66.5 Gy (98.5 % vs. 76.5 %), and 63 Gy (98.9 % vs. 74.9 %) (p < 0.03). Implementing ART with total volume reduction yielded median dose reductions of 7-12 Gy to key organs-at-risk (OARs) like submandibular glands, parotids, oral cavity, and constrictors (p < 0.05). CONCLUSIONS The IOE enables feasible daily ART treatments with reduced margins while enhancing target coverage and reducing OAR doses for HNC patients. A phase II trial recently finished accrual and forthcoming analysis will determine if these dosimetric improvements correlate with improved patient-reported outcomes.
Collapse
Affiliation(s)
- Michael Dohopolski
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Visak
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Byongsu Choi
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Radiation Oncology, Yonsei Cancer Center, Seoul, Republic of Korea; Medical Physics and Biomedical Engineering Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boyu Meng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Parsons
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xinran Zhong
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Enobong Inam
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vladimir Avkshtol
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dominic Moon
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Sher
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Mu-Han Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Price AT, Schiff JP, Silberstein A, Beckert R, Zhao T, Hugo GD, Samson PP, Laugeman E, Henke LE. Feasibility of simulation free abdominal stereotactic adaptive radiotherapy using an expedited pre-plan workflow. Phys Imaging Radiat Oncol 2024; 31:100611. [PMID: 39253730 PMCID: PMC11382001 DOI: 10.1016/j.phro.2024.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background and Purpose Improved hounsfield-unit accuracy of on-board imaging may lead to direct-to-unit treatment approaches We aimed to demonstrate the feasibility of using only a diagnostic (dx) computed tomography (CT)-defined target pre-plan in an in silico study of simulation-free abdominal stereotactic adaptive radiotherapy (ART). Materials and Methods Eight patients with abdominal treatment sites (five pancreatic cancer, three oligometastases) were treated using an integrated adaptive O-Ring gantry system. Each patient's target was delineated on a dxCT. The target only pre-plan served primarily to seed the ART process. During the ART session, all structures were delineated. All simulated cases were treated to 50 Gy in 5 fractions to a planning target optimization structure (PTV_OPT) to allow for dose escalation within the planning target volume. Timing of steps during this workflow was recorded. Plan quality was compared between ART treatment plans and a plan created on a CT simulation scan using the traditional planning workflow. Results The workflow was feasible in all attempts, with organ-at-risk (OAR) constraints met in all fractions despite lack of initial OAR contours. Median absolute difference between the adapted plan and simulation CT plan for the PTV_Opt V95% was 2.0 %. Median absolute difference in the D0.5 cm3 between the adapted plan and simulation CT plan was -0.9 Gy for stomach, 1.2 Gy for duodenum, -5.3 Gy for small bowel, and 0.3 Gy for large bowel. Median end-to-end workflow time was 63 min. Conclusion The workflow was feasible for a dxCT-defined target-only pre-plan approach to stereotactic abdominal ART.
Collapse
Affiliation(s)
- Alex T Price
- University Hospitals Seidman Cancer Center, Department of Radiation Oncology, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joshua P Schiff
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Alice Silberstein
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Robbie Beckert
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Tianyu Zhao
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Geoffrey D Hugo
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Pamela P Samson
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Eric Laugeman
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Lauren E Henke
- University Hospitals Seidman Cancer Center, Department of Radiation Oncology, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
6
|
Åström LM, Sibolt P, Chamberlin H, Serup-Hansen E, Andersen CE, van Herk M, Mouritsen LS, Aznar MC, Behrens CP. Artificial intelligence-generated targets and inter-observer variation in online adaptive radiotherapy of bladder cancer. Phys Imaging Radiat Oncol 2024; 31:100640. [PMID: 39297081 PMCID: PMC11407955 DOI: 10.1016/j.phro.2024.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Background and purpose Daily target re-delineation in online adaptive radiotherapy (oART) introduces uncertainty. The aim of this study was to evaluate artificial intelligence (AI) generated contours and inter-observer target variation among radiotherapy technicians in cone-beam CT (CBCT) guided oART of bladder cancer. Materials and methods For each of 10 consecutive patients treated with oART for bladder cancer, one CBCT was randomly selected and retrospectively included. The bladder (CTV-T) was AI-segmented (CTV-TAI). Seven radiotherapy technicians independently reviewed and edited CTV-TAI, generating CTV-TADP. Contours were benchmarked against a ground truth contour (CTV-TGT) delineated blindly from scratch. CTV-TADP and CTV-TAI were compared to CTV-TGT using volume, dice similarity coefficient, and bidirectional local distance. Dose coverage (D99%>95 %) of CTV-TGT was evaluated for treatment plans optimized for CTV-TAI and CTV-TADP with clinical margins. Inter-observer variation among CTV-TADP was assessed using coefficient of variation and generalized conformity index. Results CTV-TGT ranged from 48.7 cm3 to 211.6 cm3. The median [range] volume difference was 4.5 [-17.8, 42.4] cm3 for CTV-TADP and -15.5 [-54.2, 4.3] cm3 for CTV-TAI, compared to CTV-TGT. Corresponding dice similarity coefficients were 0.87 [0.71, 0.95] and 0.84 [0.64, 0.95]. CTV-TGT was adequately covered in 68/70 plans optimized on CTV-TADP and in 6/10 plans optimized on CTV-TAI with clinical margins. The median [range] coefficient of variation was 0.08 [0.05, 0.11] and generalized conformity index was 0.78 [0.71, 0.88] among CTV-TADP. Conclusions Target re-delineation in CBCT-guided oART of bladder cancer demonstrated non-isotropic inter-observer variation. Manual adjustment of AI-generated contours was necessary to cover ground truth targets.
Collapse
Affiliation(s)
- Lina M Åström
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Patrik Sibolt
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Hannah Chamberlin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eva Serup-Hansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Claus E Andersen
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lene S Mouritsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Marianne C Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Claus P Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| |
Collapse
|
7
|
Nasser N, Perez BA, Penagaricano JA, Caudell JJ, Oliver DE, Latifi K, Moros EG, Redler G. Technical feasibility of novel immunostimulatory low-dose radiation for polymetastatic disease with CBCT-based online adaptive and conventional approaches. J Appl Clin Med Phys 2024; 25:e14303. [PMID: 38377378 PMCID: PMC11163490 DOI: 10.1002/acm2.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
PURPOSE A workflow/planning strategy delivering low-dose radiation therapy (LDRT) (1 Gy) to all polymetastatic diseases using conventional planning/delivery (Raystation/Halcyon = "conventional") and the AI-based Ethos online adaptive RT (oART) platform is developed/evaluated. METHODS Using retrospective data for ten polymetastatic non-small cell lung cancer patients (5-52 lesions each) with PET/CTs, gross tumor volumes (GTVs) were delineated using PET standardized-uptake-value (SUV) thresholding. A 1 cm uniform expansion of GTVs to account for setup/contour uncertainty and organ motion-generated planning target volumes (PTVs). Dose optimization/calculation used the diagnostic CT from PET/CT. Dosimetric objectives were: Dmin,0.03cc ≥ 95% (acceptable variation (Δ) ≥ 90%), V100% ≥ 95% (Δ ≥ 90%), and D0.03cc ≤ 120% (Δ ≤ 125%). Additionally, online adaptation was simulated. When available, subsequent diagnostic CT was used to represent on-treatment CBCT. Otherwise, the CT from PET/CT used for initial planning was deformed to simulate clinically representative changes. RESULTS All initial plans generated, both for Raystation and Ethos, achieved clinical goals within acceptable variation. For all patients, Dmin,0.03cc ≥ 95%, V100% ≥ 95%, and D0.03cc ≤ 120% goals were achieved for 84.8%/99.5%, 97.7%/98.7%, 97.4%/92.3%, in conventional/Ethos plans, respectively. The ratio of 50% isodose volume to PTV volume (R50%), maximum dose at 2 cm from PTV (D2cm), and the ratio of the 100% isodose volume to PTV volume (conformity index) in Raystation/Ethos plans were 7.9/5.9; 102.3%/88.44%; and 0.99/1.01, respectively. In Ethos, online adapted plans maintained PTV coverage whereas scheduled plans often resulted in geographic misses due to changes in tumor size, patient position, and body habitus. The average total duration of the oART workflow was 26:15 (min:sec) ranging from 6:43 to 57:30. The duration of each oART workflow step as a function of a number of targets showed a low correlation coefficient for influencer generation and editing (R2 = 0.04 and 0.02, respectively) and high correlation coefficient for target generation, target editing and plan generation (R2 = 0.68, 0.63 and 0.69, respectively). CONCLUSIONS This study demonstrates feasibility of conventional planning/treatment with Raystation/Halcyon and highlights efficiency gains when utilizing semi-automated planning/online-adaptive treatment with Ethos for immunostimulatory LDRT conformally delivered to all sites of polymetastatic disease.
Collapse
Affiliation(s)
- Nour Nasser
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - Bradford A. Perez
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | | | - Jimmy J. Caudell
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Daniel E. Oliver
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Kujtim Latifi
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Eduardo G. Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Gage Redler
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| |
Collapse
|
8
|
Lustermans D, Fonseca GP, Taasti VT, van de Schoot A, Petit S, van Elmpt W, Verhaegen F. Image quality evaluation of a new high-performance ring-gantry cone-beam computed tomography imager. Phys Med Biol 2024; 69:105018. [PMID: 38593826 DOI: 10.1088/1361-6560/ad3cb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively.Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom.Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU).Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.
Collapse
Affiliation(s)
- Didier Lustermans
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Agustinus van de Schoot
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Steven Petit
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
9
|
Lauria M, Miller C, Singhrao K, Lewis J, Lin W, O'Connell D, Naumann L, Stiehl B, Santhanam A, Boyle P, Raldow AC, Goldin J, Barjaktarevic I, Low DA. Motion compensated cone-beam CT reconstruction using an a priorimotion model from CT simulation: a pilot study. Phys Med Biol 2024; 69:075022. [PMID: 38452385 DOI: 10.1088/1361-6560/ad311b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Objective. To combat the motion artifacts present in traditional 4D-CBCT reconstruction, an iterative technique known as the motion-compensated simultaneous algebraic reconstruction technique (MC-SART) was previously developed. MC-SART employs a 4D-CBCT reconstruction to obtain an initial model, which suffers from a lack of sufficient projections in each bin. The purpose of this study is to demonstrate the feasibility of introducing a motion model acquired during CT simulation to MC-SART, coined model-based CBCT (MB-CBCT).Approach. For each of 5 patients, we acquired 5DCTs during simulation and pre-treatment CBCTs with a simultaneous breathing surrogate. We cross-calibrated the 5DCT and CBCT breathing waveforms by matching the diaphragms and employed the 5DCT motion model parameters for MC-SART. We introduced the Amplitude Reassignment Motion Modeling technique, which measures the ability of the model to control diaphragm sharpness by reassigning projection amplitudes with varying resolution. We evaluated the sharpness of tumors and compared them between MB-CBCT and 4D-CBCT. We quantified sharpness by fitting an error function across anatomical boundaries. Furthermore, we compared our MB-CBCT approach to the traditional MC-SART approach. We evaluated MB-CBCT's robustness over time by reconstructing multiple fractions for each patient and measuring consistency in tumor centroid locations between 4D-CBCT and MB-CBCT.Main results. We found that the diaphragm sharpness rose consistently with increasing amplitude resolution for 4/5 patients. We observed consistently high image quality across multiple fractions, and observed stable tumor centroids with an average 0.74 ± 0.31 mm difference between the 4D-CBCT and MB-CBCT. Overall, vast improvements over 3D-CBCT and 4D-CBCT were demonstrated by our MB-CBCT technique in terms of both diaphragm sharpness and overall image quality.Significance. This work is an important extension of the MC-SART technique. We demonstrated the ability ofa priori5DCT models to provide motion compensation for CBCT reconstruction. We showed improvements in image quality over both 4D-CBCT and the traditional MC-SART approach.
Collapse
Affiliation(s)
- Michael Lauria
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Claudia Miller
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Kamal Singhrao
- Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Department of Radiation Oncology, Boston, MA, United States of America
| | - John Lewis
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Weicheng Lin
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Dylan O'Connell
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Louise Naumann
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Bradley Stiehl
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Anand Santhanam
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Peter Boyle
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Ann C Raldow
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| | - Jonathan Goldin
- UCLA, Department of Radiological Sciences, Los Angeles, CA, United States of America
| | - Igor Barjaktarevic
- UCLA, Department of Pulmonary and Critical Care Medicine, Los Angeles, CA, United States of America
| | - Daniel A Low
- UCLA, Department of Radiation Oncology, Los Angeles, CA, United States of America
| |
Collapse
|
10
|
Bogowicz M, Lustermans D, Taasti VT, Hazelaar C, Verhaegen F, Fonseca GP, van Elmpt W. Evaluation of a cone-beam computed tomography system calibrated for accurate radiotherapy dose calculation. Phys Imaging Radiat Oncol 2024; 29:100566. [PMID: 38487622 PMCID: PMC10937948 DOI: 10.1016/j.phro.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Background and purpose Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.
Collapse
Affiliation(s)
| | - Didier Lustermans
- Corresponding author at: Postbox 3035, 6202 NA Maastricht, The Netherlands.
| | - Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
11
|
Nasser N, Yang GQ, Koo J, Bowers M, Greco K, Feygelman V, Moros EG, Caudell JJ, Redler G. A head and neck treatment planning strategy for a CBCT-guided ring-gantry online adaptive radiotherapy system. J Appl Clin Med Phys 2023; 24:e14134. [PMID: 37621133 PMCID: PMC10691641 DOI: 10.1002/acm2.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
PURPOSE A planning strategy was developed and the utility of online-adaptation with the Ethos CBCT-guided ring-gantry adaptive radiotherapy (ART) system was evaluated using retrospective data from Head-and-neck (H&N) patients that required clinical offline adaptation during treatment. METHODS Clinical data were used to re-plan 20 H&N patients (10 sequential boost (SEQ) with separate base and boost plans plus 10 simultaneous integrated boost (SIB)). An optimal approach, robust to online adaptation, for Ethos-initial plans using clinical goal prioritization was developed. Anatomically-derived isodose-shaping helper structures, air-density override, goals for controlling hotspot location(s), and plan normalization were investigated. Online adaptation was simulated using clinical offline adaptive simulation-CTs to represent an on-treatment CBCT. Dosimetric comparisons were based on institutional guidelines for Clinical-initial versus Ethos-initial plans and Ethos-scheduled versus Ethos-adapted plans. Timing for five components of the online adaptive workflow was analyzed. RESULTS The Ethos H&N planning approach generated Ethos-initial SEQ plans with clinically comparable PTV coverage (average PTVHigh V100% = 98.3%, Dmin,0.03cc = 97.9% and D0.03cc = 105.5%) and OAR sparing. However, Ethos-initial SIB plans were clinically inferior (average PTVHigh V100% = 96.4%, Dmin,0.03cc = 93.7%, D0.03cc = 110.6%). Fixed-field IMRT was superior to VMAT for 93.3% of plans. Online adaptation succeeded in achieving conformal coverage to the new anatomy in both SEQ and SIB plans that was even superior to that achieved in the initial plans (which was due to the changes in anatomy that simplified the optimization). The average adaptive workflow duration for SIB, SEQ base and SEQ boost was 30:14, 22.56, and 14:03 (min: sec), respectively. CONCLUSIONS With an optimal planning approach, Ethos efficiently auto-generated dosimetrically comparable and clinically acceptable initial SEQ plans for H&N patients. Initial SIB plans were inferior and clinically unacceptable, but adapted SIB plans became clinically acceptable. Online adapted plans optimized dose to new anatomy and maintained target coverage/homogeneity with improved OAR sparing in a time-efficient manner.
Collapse
Affiliation(s)
- Nour Nasser
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - George Q. Yang
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Jihye Koo
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - Mark Bowers
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - Kevin Greco
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | | | - Eduardo G. Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Jimmy J. Caudell
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Gage Redler
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| |
Collapse
|
12
|
Price AT, Kang KH, Reynoso FJ, Laugeman E, Abraham CD, Huang J, Hilliard J, Knutson NC, Henke LE. In silico trial of simulation-free hippocampal-avoidance whole brain adaptive radiotherapy. Phys Imaging Radiat Oncol 2023; 28:100491. [PMID: 37772278 PMCID: PMC10523006 DOI: 10.1016/j.phro.2023.100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Background and Purpose Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) can be a time-consuming process compared to conventional whole brain techniques, thus potentially limiting widespread utilization. Therefore, we evaluated the in silico clinical feasibility, via dose-volume metrics and timing, by leveraging a computed tomography (CT)-based commercial adaptive radiotherapy (ART) platform and workflow in order to create and deliver patient-specific, simulation-free HA-WBRT. Materials and methods Ten patients previously treated for central nervous system cancers with cone-beam computed tomography (CBCT) imaging were included in this study. The CBCT was the adaptive image-of-the-day to simulate first fraction on-board imaging. Initial contours defined on the MRI were rigidly matched to the CBCT. Online ART was used to create treatment plans at first fraction. Dose-volume metrics of these simulation-free plans were compared to standard-workflow HA-WBRT plans on each patient CT simulation dataset. Timing data for the adaptive planning sessions were recorded. Results For all ten patients, simulation-free HA-WBRT plans were successfully created utilizing the online ART workflow and met all constraints. The median hippocampi D100% was 7.8 Gy (6.6-8.8 Gy) in the adaptive plan vs 8.1 Gy (7.7-8.4 Gy) in the standard workflow plan. All plans required adaptation at first fraction due to both a failing hippocampal constraint (6/10 adaptive fractions) and sub-optimal target coverage (6/10 adaptive fractions). Median time for the adaptive session was 45.2 min (34.0-53.8 min). Conclusions Simulation-free HA-WBRT, with commercially available systems, was clinically feasible via plan-quality metrics and timing, in silico.
Collapse
Affiliation(s)
- Alex T. Price
- Corresponding author at: Department of Radiation Oncology, University Hospitals Seidman Cancer Center, 11100 Euclid Ave, Cleveland OH 44106, USA
| | - Kylie H. Kang
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Christopher D. Abraham
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Jessica Hilliard
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Nels C. Knutson
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | | |
Collapse
|
13
|
Liu H, Schaal D, Curry H, Clark R, Magliari A, Kupelian P, Khuntia D, Beriwal S. Review of cone beam computed tomography based online adaptive radiotherapy: current trend and future direction. Radiat Oncol 2023; 18:144. [PMID: 37660057 PMCID: PMC10475190 DOI: 10.1186/s13014-023-02340-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Adaptive radiotherapy (ART) was introduced in the late 1990s to improve the accuracy and efficiency of therapy and minimize radiation-induced toxicities. ART combines multiple tools for imaging, assessing the need for adaptation, treatment planning, quality assurance, and has been utilized to monitor inter- or intra-fraction anatomical variations of the target and organs-at-risk (OARs). Ethos™ (Varian Medical Systems, Palo Alto, CA), a cone beam computed tomography (CBCT) based radiotherapy treatment system that uses artificial intelligence (AI) and machine learning to perform ART, was introduced in 2020. Since then, numerous studies have been done to examine the potential benefits of Ethos™ CBCT-guided ART compared to non-adaptive radiotherapy. This review will explore the current trends of Ethos™, including improved CBCT image quality, a feasible clinical workflow, daily automated contouring and treatment planning, and motion management. Nevertheless, evidence of clinical improvements with the use of Ethos™ are limited and is currently under investigation via clinical trials.
Collapse
Affiliation(s)
- Hefei Liu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
- Varian Medical Systems Inc, Palo Alto, CA, USA
| | | | | | - Ryan Clark
- Varian Medical Systems Inc, Palo Alto, CA, USA
| | | | | | | | - Sushil Beriwal
- Varian Medical Systems Inc, Palo Alto, CA, USA.
- Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|