1
|
Singh S, Habib M, Kumar Y, Mondal D, Bashir K, Jan K. Structural reorganization and antioxidant enhancement of sorghum kafirin isolates induced by gamma irradiation. Food Chem 2025; 486:144647. [PMID: 40339418 DOI: 10.1016/j.foodchem.2025.144647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/21/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Sorghum protein (kafirin) isolates were treated with gamma irradiation at doses of 5, 10, and 15 kGy to explore how it influences physicochemical, molecular, and thermal properties. Irradiation improved solubility and emulsifying activity, which reached their highest levels at 10 kGy (35.74 % and 135.41 %, respectively). However, higher doses (15 kGy) reduced solubility due to aggregation. Structural analyses revealed irradiation-induced fragmentation of high-molecular-weight subunits (SDS-PAGE), reduced α-helix content, and increased β-sheets and random coils (CD), indicating structural reorganization. FTIR and XRD confirmed enhanced β-sheet content and crystallinity. Antioxidant activities (DPPH, FRAP, TPC) significantly increased at 10 kGy (61.11 %, 35.92 %, 0.71 mg GAE/g), correlating with exposed phenolic and amino acid residues. Rheological studies highlighted improved shear-thinning behavior at 5 kGy, while higher doses weakened gelation capacity. These findings show that gamma irradiation can effectively enhance functional and antioxidant properties of kafirin, enabling its applications in food to improve quality, stability, and processability.
Collapse
Affiliation(s)
- Sakshi Singh
- Department of Food Technology, Jamia Hamdard, 110062 New Delhi, India
| | - Mehvish Habib
- Department of Food Technology, Jamia Hamdard, 110062 New Delhi, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, 148106 Longowal, Punjab, India.
| | - Debarchan Mondal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, 700027 Kolkata, West Bengal, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, 110062 New Delhi, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, 110062 New Delhi, India.
| |
Collapse
|
2
|
Yang X, Yu T, Shen Y, Liu H, Cheng Y, Dai R, Yan D, Gao J, Chen H, Wu Y. Irradiation alters the structure and reduces the sensitization of sesame proteins in the liquid state. Food Funct 2025; 16:2474-2486. [PMID: 40019315 DOI: 10.1039/d4fo05355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Irradiation is extensively utilized in food processing as an effective and convenient method. At present, numerous studies have investigated the potential of irradiation to reduce food allergenicity. The objective of this study was to investigate the effects of irradiation treatment on the structure and allergenicity of liquid and solid sesame proteins. Sesame protein extracts and lyophilized powders were irradiated at doses of 0, 2.5, 5, 7.5, and 10 kGy, respectively. The effects of irradiation on sesame proteins were investigated by CD spectroscopy, fluorescence spectroscopy, indirect competitive ELISA, western blot and degranulation experiments on KU812 cells. The experimental results demonstrated that irradiation had a more pronounced effect on liquid sesame proteins. Irradiation altered the secondary structure and increased the surface hydrophobicity, with the α-helix content decreasing from 14.27% to 13.53% and the β-sheet content increasing from 33.91% to 39.53%. Additionally, protein aggregation resulted in a reduction of free sulfhydryl groups. Following irradiation, the IC50 value obtained by indirect competitive ELISA increased from 0.695 μg mL-1 to 18.546 μg mL-1, while the release of cellular β-Hex and IL-6 was reduced, indicating that irradiation diminished the IgE binding capacity of liquid sesame proteins and their ability to induce cell degranulation. Western blotting results corroborated the findings from the ELISA assay. In conclusion, irradiation modifies the structure and reduces the potential allergenicity of liquid sesame proteins.
Collapse
Affiliation(s)
- Xintong Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Youdou Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ruoyan Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Dongxia Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
3
|
Xiang PF, Zhang ZS, Le W, Wei YY, Li BZ. Effect of thermal pretreatments on the quality attributes and irradiation markers of sesame oil extracted from sesame seeds without and with gamma irradiation. Food Chem 2025; 463:141401. [PMID: 39326314 DOI: 10.1016/j.foodchem.2024.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
This study comparatively studied the effects of three thermal pretreatment methods, i.e., wet-heat (WT), roasting (RT) and microwave (MT), on the quality attributes and irradiation markers of sesame oil obtained from sesame seeds without and with gamma irradiation. Results showed that gamma irradiation had negligible effect on the quality of sesame seeds and their extracted oils. The effects of thermal pretreatments on irradiated and non-irradiated sesame seeds and their oils were similar, little synergistic effects were observed. The RT-treated oils had more carotenoids, chlorophyll, total phenols, tocopherols, and heterocyclic volatiles content, as well as longer oxidation induction time, but darker color compared with their WT- and MT-treated counterparts. All oil samples had identical FTIR spectra. Eight radiolytic hydrocarbons were identified in the irradiated sesame oils. Thermal pretreatments reduced the content of radiolytic hydrocarbons, but did not significantly change their composition. Our study helps to identify products from irradiated sesame seeds.
Collapse
Affiliation(s)
- Peng-Fei Xiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 45001, PR China
| | - Zhen-Shan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 45001, PR China.
| | - Wu Le
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 45001, PR China
| | - Yun-Yi Wei
- College of Food and Quality Engineering, Nanning University, Nanning 530200, China
| | - Bing-Zheng Li
- College of Food and Quality Engineering, Nanning University, Nanning 530200, China; Institute of Grand Health, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Wang K, Zhang R, Hu W, Dang Y, Huang M, Wang N, Du S, Gao X. Effect of exogenous selenium on physicochemical, structural, functional, thermal, and gel rheological properties of mung bean (Vigna radiate L.) protein. Food Res Int 2024; 191:114706. [PMID: 39059959 DOI: 10.1016/j.foodres.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) biofortification during the growth process of mung bean is an effective method to improve the Se content and quality. However, the effect of Se biofortification on the physicochemical properties of mung bean protein is unclear. The objective of this study was to clarify the changes in the composition, Se forms, particle structure, functional properties, thermal stability, and gel properties of mung bean protein at four Se application levels. The results showed that the Se content of mung bean protein increased in a dose-dependent manner, with 7.96-fold (P1) and 8.52-fold (P2) enhancement at the highest concentration. Exogenous Se application promotes the conversion of inorganic Se to organic Se. Among them, selenomethionine (SeMet) and methyl selenocysteine (MeSeCys) replaced Met and Cys through the S metabolic pathway and became the dominant organic Se forms in Se-enriched mung bean protein, accounting for more than 80 % of the total Se content. Exogenous Se at 30 g/hm2 significantly up-regulated protein content and promoted the synthesis of sulfur-containing protein components and hydrophobic amino acids in the presence of increased levels of SeMet and MeSeCys. Meanwhile, Cys and Met substitution altered the sulfhydryl groups (SH), β-sheets, and β-turns of protein. The particle size and microstructural characteristics depend on the protein itself and were not affected by exogenous Se. The Se-induced increase in the content of hydrophobic amino acids and β-sheets synergistically increases the thermal stability of the protein. Moderate Se application altered the functional properties of mung bean protein, which was mainly reflected in the significant increase in oil holding capacity (OHC) and foaming capacity (FC). In addition, the increase in SH and β-sheets induced by exogenous Se could alter the protein intermolecular network, contributing to the increase in storage modulus (G') and loss modulus (G″), which resulted in the formation of more highly elastic gels. This study further promotes the application of mung bean protein in the field of food processing and provides a theoretical basis for the extensive development of Se-enriched mung bean protein.
Collapse
Affiliation(s)
- Kexin Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China; Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Ruipu Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Wenxuan Hu
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Yueyi Dang
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Mengdi Huang
- Luoyang Academy of Agricultural and Forestry Science, Luoyang 471000, Henan Province, China
| | - Na Wang
- Weinan Institute of Agricultural Sciences, Weinan 714000, Shaanxi Province, China
| | - Shuangkui Du
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China.
| | - Xiaoli Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
5
|
Zeng J, Ma F, Zhai L, Du C, Zhao J, Li Z, Wang J. Recent advance in sesame allergens: Influence of food processing and their detection methods. Food Chem 2024; 448:139058. [PMID: 38531299 DOI: 10.1016/j.foodchem.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Sesame (Sesamum indicum L.) is a valuable oilseed crop with numerous nutritional benefits containing a diverse range of bioactive compounds. However, sesame is also considered an allergenic food that triggers various mild to severe adverse reactions (e.g., anaphylaxis). Strict dietary avoidance of sesame components is the best option to protect the sensitized consumers. Sesame or sesame-derived foods are always consumed after certain food processing operations, which would cause a considerable impact on the structure of sesame proteins, changing their sensitization capacity and detectability. In the review, the molecular structure properties, and immunological characteristics of the sesame allergens were described. Meanwhile, the influence of food processing techniques on sesame proteins and the relevant detection techniques used for the sesame allergens quantification are also emphasized critically. Hopefully, this review could provide valuable insight into the development and management for the new "Big Eight" sesame allergen in food industry.
Collapse
Affiliation(s)
- Jianhua Zeng
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Feifei Ma
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense 32004, Spain
| | - Ligong Zhai
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
6
|
Bai R, Li Z, Zhang L, Jiang S, Yu J, Madina A, Ye X, Yang C, Chen Y, Wang S, Ding W. Electron beam irradiation induced aggregation, structural and functional changes of soybean 11S globulin. Int J Biol Macromol 2024; 260:129585. [PMID: 38246473 DOI: 10.1016/j.ijbiomac.2024.129585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of different irradiation doses of an electron beam (e-beam) (0, 2, 4, 6, 8, and 10 kGy) on the structure, emulsification, foaming, and rheological and gel properties of soybean 11S globulin. The irradiation treatment at 4 and 6 kGy significantly increased the solubility, surface hydrophobicity, disulfide bonding, and ζ-potential of 11S globulin, decreased the particle size of the protein solution, and effectively improved the emulsifying activity and foaming stability of the protein solution. Moreover, irradiation induced moderate cross-linking and aggregation of the proteins, thereby increasing the apparent viscosity and shear stress of the protein solution. In addition, the low-field NMR and microstructure analysis results revealed that protein gels formed a dense and homogeneous three-dimensional mesh structure after irradiation (6 kGy), along with increased content of bound water (T2b) and water not readily flowable (T21) and a decrease content of free water (T22). Overall, our results confirmed that e-beam irradiation could significantly improve the physicochemical properties of soybean 11S globulin. Our study thus provides a new technical means for the application of electron beam irradiation technology toward protein modification and broadens the high-value utilization of soybean 11S globulin in the food processing industry.
Collapse
Affiliation(s)
- Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd, Yangling, Shaanxi 712100, China
| | - Aitmagambetova Madina
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Hoon Lee J, Kim YJ, Choi YJ, Kim TK, Yoon Cha J, Kyung Park M, Jung S, Choi YS. Effect of gamma-ray and electron-beam irradiation on the structural changes and functional properties of edible insect proteins from Protaetia brevitarsis larvae. Food Chem 2024; 434:137463. [PMID: 37742545 DOI: 10.1016/j.foodchem.2023.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Edible insects are regarded as future food sources to replace traditional livestock proteins. However, insect proteins have poor processing properties owing to various structural limitations. We investigated the structure of Protaetia brevitarsis larvae proteins modified by irradiation, and analyzed their resulting processing abilities. Following irradiation with gamma rays and electron beams, the ratio of parallel β-sheets to β-turns changed significantly, and changes in the tertiary protein structures were also confirmed. The polydispersity indices of the proteins remained relatively constant following irradiation, although the zeta potential and mean diameter changed. Furthermore, the pH, protein solubility, surface hydrophobicity, foaming capacity, and emulsion stability were higher than those of the control, whereas the viscosity and foaming stability were lower. Thus, gamma ray and electron beam irradiation clearly lead to changes in the structures of edible insect proteins and improves their processing properties, promoting the industrial utilization of such proteins in the food industry.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yoo-Jeong Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min Kyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
8
|
Kaur G, Kaur N, Wadhwa R, Tushir S, Yadav DN. Techno-functional attributes of oilseed proteins: influence of extraction and modification techniques. Crit Rev Food Sci Nutr 2023; 65:1518-1537. [PMID: 38153305 DOI: 10.1080/10408398.2023.2295434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Plant-based protein isolates and concentrates are nowadays becoming popular due to their nutritional, functional as well as religious concerns. Among plant proteins, oilseeds, a vital source of valuable proteins, are continuously being explored for producing protein isolates/concentrates. This article delineates the overview of conventional as well as novel methods for the extraction of protein and their potential impact on its hydration, surface properties, and rheological characteristics. Moreover, proteins undergo several modifications using physical, chemical, and biological techniques to enhance their functionality by altering their microstructure and physical performance. The modified proteins hold a pronounced scope in novel food formulations. An overview of these protein modification approaches and their effects on the functional properties of proteins have also been presented in this review.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Navjot Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Ritika Wadhwa
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Surya Tushir
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Deep Narayan Yadav
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| |
Collapse
|
9
|
Hu S, Gao H, Ouyang L, Li X, Zhu S, Wu Y, Yuan L, Zhou J. Mechanistic insights into the improving effects of germination on physicochemical properties and antioxidant activity of protein isolate derived from black and white sesame. Food Chem 2023; 429:136833. [PMID: 37454620 DOI: 10.1016/j.foodchem.2023.136833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Germination is a natural green technology to improve the nutritional and techno-functional quality of plant-based proteins. In this study, the mechanism of improving the functional and antioxidant properties of black and white sesame protein isolates (SPI) through germination process was investigated. Results showed that the surface hydrophobicity and sulfhydryl content increased significantly after germination, which were supported by multispectral analysis suggesting the exposed and unfolded conformational transition of germinated SPI. Moreover, the increased particle size was observed by microscopy analysis and reducing electrophoresis, which indicated that depolymerized protein molecules were rearranged to form protein aggregates during germination. The structural modification induced by germination contributed to the superior solubility (increased to 3.15-fold and 2.36-fold at pH 8 for black and white SPI, respectively), foaming capacity (increased to 3.99-fold and 1.69-fold, respectively), emulsifying ability (increased to 2.84-fold and 2.71-fold, respectively), and diverse chemical antioxidant activities (increased up to 5.60-fold) of SPI in both varieties. This was the first comprehensive study to investigate germination as a promising technology for obtaining high-quality SPI.
Collapse
Affiliation(s)
- Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| | - Hongxia Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Linghua Ouyang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xin Li
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Shuilan Zhu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Linfeng Yuan
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jinying Zhou
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
10
|
Hassan AB, Almaiman SA, AlFaris NA, AlTamimi JZ, AlGhamdi FA. Validation of low dosages of γ-radiation and their effect on red beetle mortality, storability characteristics, and nutritional value of sorghum ( Sorghum bicolor L. Moench) grain. Saudi J Biol Sci 2023; 30:103808. [PMID: 37771371 PMCID: PMC10522891 DOI: 10.1016/j.sjbs.2023.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/30/2023] Open
Abstract
This research was undertaken to validate the low dosages of γ-radiation of sorghum to examine the efficiency of gamma irradiation doses in quality attributes and storability of sorghum grain. Infested sorghum grains with the red flour beetle at the adult stage were irradiated at 0.25, 0.5, 0.75, 1.0, and 2.0 kGy emitted by 60CO. Subsequently, the mortality rate of the red flour beetle as affected by gamma doses was estimated and the storability characteristics and nutritional value of sorghum grains were measured. Eventually, the Partial Least Squares regression (PLS) analysis was executed to confirm the optimum dose of gamma which eliminate the red flour beetle and enhanced the grain quality. Results provide that the storability characteristics were enhanced after treatments. However, the changes in the germination rate of the grains were not different significantly after radiation. On the other hand, the radiation process enhanced sorghum grins' nutritional quality. Both tannins and phytic acid content dropped significantly and the digestibility and solubility of protein were gradually incremented in the grains. The PLS results indicated that using 1 and 2 kGy reflect the utmost effective dosage for sorghum. It can be concluded that this method is a potent rapid and operative preservation process to the alternate smoking chemical procedure for improving sorghum's nutritional and functional quality and prolong its shelf life. Possibility of providing effective and rapid quarantine security as an alternative to chemical fumigation protocol to extend shelf life and enhance the nutritional and functional quality of sorghum.
Collapse
Affiliation(s)
- Amro B. Hassan
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Salah A. Almaiman
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nora Abdullah. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Jozaa Zaidan. AlTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fatima Ali. AlGhamdi
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
11
|
Naebi M, Torbati M, Azadmard-Damirchi S, Siabi S, Savage GP. An overview of effects of gamma radiation on the biological, physicochemical and nutritional parameters of oilseeds and oils. Int J Radiat Biol 2023; 99:1495-1502. [PMID: 36867080 DOI: 10.1080/09553002.2023.2187473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Gamma irradiation is a non-thermal method for prolonging the shelf-life of foods and it is a possible alternative technology for oilseeds. After harvest, the development of pests and microorganisms, as well as the reactions caused by enzymes reason numerous problems in the oilseeds. Gamma radiation is one of the methods that could inhibit undesired microorganisms, but it can also change the physicochemical and nutritive characteristics of oils. CONCLUSION This paper is a brief review of recent publications on the effects of gamma radiation on the biological, physicochemical and nutritional parameters of oils. Overall, gamma radiation is a safe and environmentally friendly method that improves the quality, stability and safety characteristics of oilseeds and oils. In the future, there may also be many health reasons to produce oils using gamma radiation. Investigation of other radiation techniques such as x-rays and electron beams have a good potential once the specific doses that would free them from pests and contaminants have been identified while conserving the benefits without altering their sensory properties.
Collapse
Affiliation(s)
- Maryam Naebi
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Shahla Siabi
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Geoffrey P Savage
- Food Group, Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
12
|
Flores‐Jiménez NT, Ulloa JA, Urías‐Silvas JE, Hidalgo‐Millán A. Modification of rheological properties of animal and vegetable proteins treated with high‐intensity ultrasound: A review. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
| | - José Armando Ulloa
- Posgrado en Ciencias Biológico Agropecuarias Universidad Autónoma de Nayarit Nayarit México
- Centro de Tecnología de Alimentos Universidad Autónoma de Nayarit Nayarit México
| | - Judith Esmeralda Urías‐Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Tecnología Alimentaria. Unidad Zapopan Jalisco México
| | - Antonio Hidalgo‐Millán
- Unidad Académica de Ciencias e Ingenierías Universidad Autónoma de Nayarit Nayarit México
| |
Collapse
|
13
|
Cold Plasma Bubbling: Impact on Safety, Physicochemical Properties, and Nutritional Quality of Sesame Milk. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
14
|
Evaluating the influence of cold plasma bubbling on protein structure and allergenicity in sesame milk. Allergol Immunopathol (Madr) 2023; 51:1-13. [PMID: 36924386 DOI: 10.15586/aei.v51isp1.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 03/16/2023]
Abstract
BACKGROUND Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds. OBJECTIVE The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk. Method: Sesame milk (300 mL) was processed using atmospheric pressure plasma bubbling unit (dielectric barrier discharge, power: 200 V, and airflow rate: 16.6 mL/min) at different exposure times (10, 20, and 30 min). RESULTS The efficiency of plasma-bubbling unit as measured by electron paramagnetic resonance in terms of producing reactive hydroxyl (OH) radicals proved that generation of reactive species increased with exposure time. Further, the plasma-processed sesame milk subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetery analysis revealed that plasma bubbling increased the oxidation of proteins with respect to bubbling time. The structural analysis by Fourier transform infrared spectroscopy and circular dichroism revealed that the secondary structure of proteins was altered after plasma application. This change in the protein structure helped in changing the immunoglobulin E (IgE)-binding epitopes of the protein, which in turn reduced the allergen-binding capacity by 23% at 20-min plasma bubbling as determined by the sandwich-type enzyme-linked immunosorbent assay. However, 30-min plasma bubbling intended to increase allergenicity, possibly because of increase in IgE binding due to the generation of neo epitopes. CONCLUSION These changes proved that plasma bubbling is a promising technology in oxidizing protein structure, and thereby reducing the allergenicity of sesame milk. However, increase in binding at 30-min bubbling is to be studied to facilitate further reduction of the binding capacity of IgE antibodies.
Collapse
|
15
|
A Comparative Study of Pectin Green Extraction Methods from Apple Waste: Characterization and Functional Properties. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:2865921. [PMID: 36578434 PMCID: PMC9792233 DOI: 10.1155/2022/2865921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
Traditional methods of pectin extraction led to drop quality, yield, functional properties, and excessive time. The objective of our research is to produce high-quality pectin from apple pomace as food processing by-product. Four nonconventional methods of extraction (microwave, ultrasound, citric acid, and organic acid mixture (citric acid, ascorbic acid, and acetic acid)) were compared to conventional extraction of pectin in terms of yields, thermal behavior, functional groups, antioxidant activity, and functional properties. Citric acid extraction method gave the highest yield (22%) compared to other methods. The extraction of pectin by organic acid mixture maximized the galacturonic acid index to 87.58%;. Also, it was changed from structural into: compacted, multilaminated, and flaky surface compared to the other samples (more porous and hollow opening structural) as well as increased stability of pectin particles in colloids as a result of increasing the charge on particles to -59.42, beside its higher thermal stability of pectin behaviors, which reflected on improving all functional properties compared to the other methods. On the other side, microwave-extracted pectin had the highest antioxidant activity (3-4 times) compared to other extraction methods. In conclusion, extraction using organic acids, microwave, and ultrasonic led to improve the pectin quality and could be used in high-temperature food products, like bakery products.
Collapse
|
16
|
Masoumi B, Tabibiazar M, Golchinfar Z, Mohammadifar M, Hamishehkar H. A review of protein-phenolic acid interaction: reaction mechanisms and applications. Crit Rev Food Sci Nutr 2022; 64:3539-3555. [PMID: 36222353 DOI: 10.1080/10408398.2022.2132376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenolic acids (PA) are types of phytochemicals with health benefits. The interaction between proteins and PAs can cause minor or extensive changes in the structure of proteins and subsequently affect various protein properties. This study investigates the protein/PA (PPA) interaction and its effects on the structural, physicochemical, and functional properties of the system. This work particularly focused on the ability of PAs as a subgroup of phenolic compounds (PC) on the modification of proteins. Different aspects including the influence of structure affinity relationship and molecular weight of PA on the protein interaction have been discussed in this review. The physicochemical properties of PPA change mainly due to the change of hydrophilic/hydrophobic parts and/or the formation of some covalent and non-covalent interactions. Furthermore, PPA interactions affecting functional properties were discussed in separate sections. Due to insufficient studies on the interaction of PPAs, understanding the mechanism and also the type of binding between protein and PA can help to develop a new generation of PPA. These systems seem to have good capabilities in the formulation of low-fat foods like high internal Phase Emulsions, drug delivery systems, hydrogel structures, multifunctional fibers or packaging films, and 3 D printing in the meat processing industry.
Collapse
Affiliation(s)
- Behzad Masoumi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Golchinfar
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadamin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Dash DR, Singh SK, Singha P. Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:3151-3166. [PMID: 36218326 DOI: 10.1080/10408398.2022.2130161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent trend in consumption of plant-based protein over animal protein opens up a new avenue for sustainable agriculture practice, less environmental impact and greenhouse gas emission. The modification of plant-based proteins by novel non-thermal technologies includes the structural transformation followed by the modulation of their functional properties that are exploited to develop a protein ingredient system for application in food formulation. This review explores the impact of non-thermal process technologies on structural modification of plant proteins followed by improvement in protein's function in food formulation. Novel concepts articulating the impact of non-thermal technologies on structural and functional modification of plant proteins affecting it's digestibility and bioavailability are addressed. Limitations and prospects of applying non-thermal technologies in developing an alternative plant-based protein food system are also summarized. Non-thermal processes are considered as the emerging technologies that results in conformational changes in secondary, tertiary and quaternary structure of plant proteins which helps in modification of functional properties without jeopardizing the organoleptic properties and bioactivity of the protein. However, extensive future study is needed to optimize the non-thermal process parameters along with the finding of new protein sources to achieve healthy and sustainable plant-based food system.
Collapse
Affiliation(s)
- Dibya Ranjan Dash
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
18
|
Ohanenye IC, Ekezie FGC, Sarteshnizi RA, Boachie RT, Emenike CU, Sun X, Nwachukwu ID, Udenigwe CC. Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies. Foods 2022; 11:foods11152299. [PMID: 35954065 PMCID: PMC9368013 DOI: 10.3390/foods11152299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The increased consumption of legume seeds as a strategy for enhancing food security, reducing malnutrition, and improving health outcomes on a global scale remains an ongoing subject of profound research interest. Legume seed proteins are rich in their dietary protein contents. However, coexisting with these proteins in the seed matrix are other components that inhibit protein digestibility. Thus, improving access to legume proteins often depends on the neutralisation of these inhibitors, which are collectively described as antinutrients or antinutritional factors. The determination of protein quality, which typically involves evaluating protein digestibility and essential amino acid content, is assessed using various methods, such as in vitro simulated gastrointestinal digestibility, protein digestibility-corrected amino acid score (IV-PDCAAS), and digestible indispensable amino acid score (DIAAS). Since most edible legumes are mainly available in their processed forms, an interrogation of these processing methods, which could be traditional (e.g., cooking, milling, extrusion, germination, and fermentation) or based on emerging technologies (e.g., high-pressure processing (HPP), ultrasound, irradiation, pulsed electric field (PEF), and microwave), is not only critical but also necessary given the capacity of processing methods to influence protein digestibility. Therefore, this timely and important review discusses how each of these processing methods affects legume seed digestibility, examines the potential for improvements, highlights the challenges posed by antinutritional factors, and suggests areas of focus for future research.
Collapse
Affiliation(s)
- Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Flora-Glad C. Ekezie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Roghayeh A. Sarteshnizi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran P.O. Box 14115-336, Iran
| | - Ruth T. Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Chijioke U. Emenike
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Natural and Applied Sciences, Faculty of Science, Hezekiah University, Umudi, Nkwerre 471115, Nigeria
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ifeanyi D. Nwachukwu
- Center for Nutrition and Healthy Lifestyles, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: (I.D.N.); (C.C.U.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: (I.D.N.); (C.C.U.)
| |
Collapse
|
19
|
Amino Acid Profiling and SDS-PAGE Analysis of Protein Isolates Obtained from Nonconventional Sources. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1926527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proteins play an imperative role in enhancing the nutritional status of the human body. The present study was designed to determine the molecular weight of protein isolates prepared from defatted oilseeds, i.e., sesame, flaxseed, and canola, using SDS-PAGE. The electropherogram revealed protein bands ranging from 15 to 65 kDa. Furthermore, proteins were subjected to amino acid profiling followed by calculation of amino acid score with reference to requirement for preschool children. The amino acid profiling results indicated that sesame protein isolates (SPI) exhibited the highest values for aromatic amino acids, histidine, isoleucine, and valine. However, the maximum values for sulfur-containing amino acids were depicted by flaxseed protein isolates (FPI). Moreover, the lysine content was highest in canola protein isolates (CPI). Results indicated better profile and quality of proteins, capable to meet the requirements of essential amino acids, especially for preschoolers. Moreover, the values for the protein digestibility corrected amino acid score (PDCAAS) and in vitro protein digestibility (IVPD) were also determined. Conclusively, protein isolates from defatted oilseeds exhibit better-quality proteins with a balanced amino acid profile. By potential utilization in numerous food products, these proteins can play a pivotal role in fulfilling the nutritional requirements of individuals, especially in developing economies.
Collapse
|
20
|
Chen Y, Liao X, Zhang C, Kong X, Hua Y. Hydrolyzing behaviors of endogenous proteases on proteins in sesame milk and application for producing low-phytate sesame protein hydrolysate. Food Chem 2022; 385:132617. [DOI: 10.1016/j.foodchem.2022.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
21
|
Lastra-Ripoll SE, Quintana SE, García-Zapateiro LA. Chemical, technological, and rheological properties of hydrocolloids from sesame (Sesamum indicum) with potential food applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Effect of γ-irradiation in combination with natural antimicrobial formulation on microbial inactivation, protein digestibility and quality of mothers’ milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Functional modification of grain proteins by dual approaches: Current progress, challenges, and future perspectives. Colloids Surf B Biointerfaces 2022; 211:112306. [PMID: 34998177 DOI: 10.1016/j.colsurfb.2021.112306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022]
Abstract
Protein modification is a practical strategy to enhance the functional characteristics of proteins and broaden their commercial applications. Various chemical (e.g., pH-shifting, deamidation, succinylation), physical (e.g., sonication, high-speed shearing), or biological (e.g., microbial transglutaminase cross-linking, enzymatic hydrolysis) modification methods have frequently been employed to improve the functionality of native grain proteins. However, progress in intensification has led to the emergence of advanced methodologies, which involve the combination of modification techniques, generally known as "Dual Modification". This paper aims to comprehensively review the most recent researches focusing on the effects of dual modification on the functionality of grain proteins. Particular emphasis is given to elucidate the impact of this technique on physicochemical and structural properties. Furthermore, existing challenges and limitations associated with the utilization of this approach are highlighted, and prospects are proposed.
Collapse
|
24
|
Di Y, Li X, Chang X, Gu R, Duan X, Liu F, Liu X, Wang Y. Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021; 27:60. [PMID: 35011292 PMCID: PMC8746547 DOI: 10.3390/molecules27010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| |
Collapse
|
26
|
Venkateswara Rao M, C K S, Rawson A, D V C, N V. Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34751062 DOI: 10.1080/10408398.2021.1997907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plant proteins have recently gained market demand and momentum due to their environmentally friendly origins and health advantages over their animal-derived counterparts. However, their lower techno-functionalities, digestibility, bioactivities, and anti-nutritional compounds have limited their application in foods. Increased demand for physically modified proteins with better techno-functionalities resulted in the application of different thermal and non-thermal treatments to modify plant proteins. Novel physical processing technologies (NPPT) considered 'emerging high-potential treatments for tomorrow' are required to alter protein functionality, enhance bioactive peptide formations, reduce anti-nutritional, reduce loss of nutrients, prevention of damage to heat liable proteins and clean label. NPPT can be promising substitutes for the lower energy-efficient and aggressive thermal treatments in plant protein modification. These facts captivated the interest of the scientific community in designing novel functional food systems. However, these improvements are not verifiable for all the plant proteins and depend immensely on the protein type and concentration, other environmental parameters (pH, ionic strength, temperature, and co-solutes), and NPPT conditions. This review addresses the most promising approaches of NPPT for the modification of techno-functionalities of plant proteins. New insights elaborating the effect of NPPTs on proteins' structural and functional behavior in relation to other food components are discussed. The combined application of NPPTs in the field of plant-based bioactive functionalities is also explored.
Collapse
Affiliation(s)
- Madaraboina Venkateswara Rao
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Sunil C K
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Ashish Rawson
- Department of Food Safety and Quality testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Chidanand D V
- Department of Industry Academia Cell, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Venkatachlapathy N
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| |
Collapse
|
27
|
Dridi C, Millette M, Aguilar B, Manus J, Salmieri S, Lacroix M. Effect of Physical and Enzymatic Pre-Treatment on the Nutritional and Functional Properties of Fermented Beverages Enriched with Cricket Proteins. Foods 2021; 10:2259. [PMID: 34681307 PMCID: PMC8534633 DOI: 10.3390/foods10102259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to evaluate the effects of γ-irradiation (IR), ultrasound (US), and combined treatments of ultrasound followed by γ-irradiation (US-IR), ultrasound followed by enzymatic hydrolysis with and without centrifugation (US-E and US-EWC, respectively), and ultrasound followed by γ-irradiation and enzymatic hydrolysis (US-IRE), on the digestibility and the nutritional value of fermented beverages containing probiotics. Results showed that US (20 min), IR (3 kGy) and US-IR (tUS = 20 min, dose = 3 kGy) treatments raised protein solubility from 11.5 to 21.5, 24.3 and 29.9%, respectively. According to our results, these treatments were accompanied by the increased amount of total sulfhydryl groups, surface hydrophobicity and changes to the secondary structure of the proteins measured by Fourier-transform infrared spectroscopy (FTIR). Fermented probiotic beverages, non-enriched (C) and enriched with untreated (Cr) or treated cricket protein with combined treatments were also evaluated for their in vitro protein digestibility. Results showed that the soluble fraction of US-IRE fermented beverage had the highest digestibility (94%) as compared to the whole fermented tested beverages. The peptides profile demonstrated that US-IRE had a low proportion of high molecular weight (MW) peptides (0.7%) and the highest proportion of low MW peptides by over 80% as compared to the other treatments.
Collapse
Affiliation(s)
- Chaima Dridi
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| | - Mathieu Millette
- Bio-K Plus International Inc., a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada;
| | - Blanca Aguilar
- Research Laboratory of Industrial Microbiology, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, 1421, Blvd, Marcelino Garcia Barragan, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico;
| | - Johanne Manus
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| | - Stephane Salmieri
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| |
Collapse
|
28
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Yadav A, Saini I, Kaushik P, Ahmad Ansari M, Rashid Khan M, Haq N. Effects of arbuscular mycorrhizal fungi and P-solubilizing Pseudomonas fluorescence (ATCC-17400) on morphological traits and mineral content of sesame. Saudi J Biol Sci 2021; 28:2649-2654. [PMID: 34025149 PMCID: PMC8117026 DOI: 10.1016/j.sjbs.2021.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.
Collapse
Affiliation(s)
- Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, 122502 Rewari, India
| | - Ishan Saini
- Department of Botany, Kurukshetra University Kurukshetra, Kurukshetra 136119, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia 46022, Spain
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Proteomic analysis of oilseed cake: a comparative study of species-specific proteins and peptides extracted from ten seed species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:297-306. [PMID: 32629549 DOI: 10.1002/jsfa.10643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In recent years there has been a visible trend among consumers to move away from consuming meat in favor of plant products. Meat producers have therefore been trying to meet the expectations of consumers by introducing new products to the food market with a greater proportion of plant ingredients. Meat products are enriched not only by the addition of vegetable oils but also by ground or whole oilseeds or their preparation. In this study, we present in-solution tryptic digestion and an ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS)-based proteomics approach to investigate specific proteins and peptides of ten oilseed cakes, by-products of cold pressing oil from coconut, evening primrose, hemp, flax, milk thistle, nigella, pumpkin, rapeseed, sesame, and sunflower seeds, for authentication purposes. RESULTS We identified a total of 229 unique oilseed proteins. The number of specific proteins varied depending on the sample, from 4 to 48 in evening primrose and sesame. Moreover, we identified approximately 440 oilseed unique peptides in the cakes of all the analyzed oilseeds; the largest amounts were found in sesame (107 peptides), sunflower (100), pumpkin, hemp (42), rapeseed (36), and flax cake (35 peptides). CONCLUSIONS We provide novel information on unique / species-specific peptide markers that will extend the scope of testing the authenticity of a wide range of foods. The results of this peptide discovery experiment may further contribute to the development of targeted methods for the detection and quantification of oilseed proteins in processed foods, and thus to the improvement of food quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
31
|
Saeed A, Murshed MN, Al-Shahari EA. Effect of low-dose fast neutrons on the protein components of peripheral blood mononuclear cells of whole-body irradiated Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40443-40455. [PMID: 32666461 DOI: 10.1007/s11356-020-10085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The immune system is exposed to extremely low doses of neutrons under different circumstances, such as through exposure to cosmic rays, nuclear accidents, and neutron therapy. Peripheral blood mononuclear cells (PBMCs) are the primary immune cells that exhibit selective immune responses. Changes in the functions of the protein components of PBMC can be induced by structural modifications of these proteins themselves. Herein, we have investigated the effect of low-dose fast neutrons on PBMC proteins at 0, 2, 4, and 8 days post-whole body irradiation. 64 Wistar rats were used in this study of which, 32 were exposed to fast neutrons at a total dose of 10 mGy (241Am-Be, 0.2 mGy/h), and the other 32 were used as controls. Blood samples were drawn, and PBMCs were isolated from whole blood. Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy were used to estimate the changes in the proteins of PBMCs. An alkaline comet assay was performed to assess DNA damage. Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were utilized to discriminate between irradiated and non-irradiated samples. FTIR and fluorescence spectra of the tested samples revealed alterations in the amides and tryptophan, and therefore protein structure at time intervals of 2 and 4 days post-irradiation. No changes were recorded in samples tested at time intervals of 0 and 8 days post-irradiation. The FTIR band intensities of the PBMC proteins of the irradiated samples decreased slightly and were statistically significant. Curve fitting of the amide I band in the FTIR spectra showed changes in the secondary structure of the proteins. At 2 days post-irradiation, fluorescence spectra of the tested samples revealed decreases in the band tryptophan. The comet assay revealed low levels of DNA damage. In conclusion, low-dose fast neutrons can affect the proteins of PBMC.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Department of Physics, Thamar University, Thamar, Yemen.
| | - Mohammad N Murshed
- Department of Physics, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb, Yemen
| | - Eman Abdulqader Al-Shahari
- Department of Biology, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| |
Collapse
|
32
|
Effects of gamma irradiation on soybean oil stability by enhancing tocopherol content in soybean. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Effect of ɣ-irradiation on the microbial inactivation, nutritional value, and antioxidant activities of infant formula. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Chundang P, Thongprajukaew K, Kovitvadhi U, Chotimanothum B, Kovitvadhi A, Pakkong P. Improving the nutritive value of mulberry leaves, Morus spp. (Rosales: Moraceae) for silkworm larvae, Bombyx mori (Lepidoptera: Bombycidae) using gamma irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1820268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Görgüç A, Özer P, Yılmaz FM. Microwave‐assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q‐TOF/MS. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ahmet Görgüç
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Pınar Özer
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| |
Collapse
|
36
|
Qin Z, Liu HM, Cheng XC, Wang XD. Effect of drying pretreatment methods on structure and properties of pectins extracted from Chinese quince fruit. Int J Biol Macromol 2019; 137:801-808. [DOI: 10.1016/j.ijbiomac.2019.06.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
|
37
|
Hassan AB, Mohamed Ahmed IA, Sir Elkhatim KA, Elagib RA, Mahmoud NS, Mohamed MM, Salih AM, Fadimu G. Controlling fungal growth in sesame ( Sesamum indicum L.) seeds with γ-irradiation: impacts on some properties of sesame oil. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.0933182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated the free fatty acids, fatty acid profile, total phenolics, and antioxidant activity of sesame seed oil extracted from γ-irradiated seeds and the decontamination effects of the treatment on fungal incidence in the seeds. Gamma irradiation reduced (P ≤ 0.05) fungal growth and colony forming units of sesame seeds in a dose-dependent manner. The free fatty acid content of sesame oil decreased (P ≤ 0.05) in irradiated samples compared to non-radiated controls, but there was no difference (P ≥ 0.05) between samples treated at doses ≥ 1.0 kGy. A concomitant (P ≤ 0.05) increase in total phenolic and scavenging activity was observed in the oil extracted from γ-irradiated sesame seeds in comparison with non-radiated samples, while free fatty acid (FFA) content decreased. The results obtained in the present study demonstrate that γ-irradiation at low doses can be used as an effective post-harvest preservation method for sesame seeds without a major effect on the quality of sesame oil.
Collapse
|
38
|
Fathi N, Almasi H, Pirouzifard MK. Effect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible films. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Ahmed MM, Abdalla IG, Salih AM, Hassan AB. Effect of gamma radiation on storability and functional properties of sorghum grains ( Sorghum bicolor L.). Food Sci Nutr 2018; 6:1933-1939. [PMID: 30349683 PMCID: PMC6189617 DOI: 10.1002/fsn3.752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
This study was aimed to evaluate the effect of gamma irradiation at dose levels of 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 kGy on fungal growth, free fatty acids, in vitro protein digestibility (IVPD), protein solubility, and functional properties of sorghum grains. Results indicated that radiation process enhanced the storability properties. It eliminates the fungal incidence particularly at the higher doses 4.0 and 5.0 kGy, and significantly (p < 0.05) reduced the content of the free fatty acids to the level 3.4-3.2 mg/g. Moreover, a significant increase in IVPD and soluble protein was noticed in irradiated grains as compared to non-irradiated sample and this increased with the increase in dose; however, maximum IVPD (17.6%) and protein solubility (11.7%) were observed in sorghum grains irradiated at 2.0 kGy. On the other hand, a significant reduction in emulsion capacity was observed after radiation of grains, however, the emulsion activity and stability were stable up to 1.0 kGy. The foaming properties of the radiated sample show no significant change particular at low doses up to 2.0 kGy when they are compared to untreated samples. It can be concluded that low doses of gamma irradiation might improve the storability and quality characteristics of sorghum grains and can be used as an effective alternative postharvest method for preserving and extending the shelf life of sorghum and its products.
Collapse
Affiliation(s)
- Manahel Mohammed Ahmed
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of KhartoumKhartoumSudan
| | - Ismat G. Abdalla
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of KhartoumKhartoumSudan
| | - A. M. Salih
- Institute of chemistry and Nuclear PhysicsSudanese Atomic Energy Commission (SAEC)KhartoumSudan
| | - Amro B. Hassan
- Environment and Natural Resource and Desertification Research Institute (ENDRI)National Center for ResearchKhartoumSudan
| |
Collapse
|
40
|
Han Z, Cai MJ, Cheng JH, Sun DW. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|