1
|
El-Bahnasy SS, Khalaf M, Ayad DM, Menazea AA. A green approach to improve antibacterial properties of PVC/PVDF film doped by silver nanoparticles via nanosecond laser ablation for wound healing application. Sci Rep 2024; 14:27926. [PMID: 39537795 PMCID: PMC11561074 DOI: 10.1038/s41598-024-78841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Nanocomposite films of (30% PVC/70% PVDF) blend containing silver nanoparticles were synthesized via pulsed laser ablation route (PLA). Changes in physical characterization of PVC/PVDF blend before and after the incorporation of AgNPs have been studied. FTIR results confirms the interaction between AgNPs and PVC/PVDF. XRD results obtain the existence of peak at 38.42̊ in sample PVC/PVDF/Ag4 which confirm the embedded AgNPs in the high concentration. SEM photos confirm the distribution of silver nanoparticles on the surface of the sample in spherical shape which approved the dispersion of silver nanoparticles in PVC/PVDF blend. The inhibitory zone diameters observed for PVC/PVDF/Ag4 against Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Bacillus cereus were recorded as 11 ± 1, 10 ± 1, 15.7 ± 0.6, and 17.7 ± 0.6, respectively. PVC/PVDF/AgNPs nanocomposite film could be suggested for biomedical applications such as wound healing products.
Collapse
Affiliation(s)
- S S El-Bahnasy
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Khalaf
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - D M Ayad
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - A A Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
2
|
Ahmed Amin S, Dawood MEA, Mahmoud M, Bassiouny DM, Moustafa MMA, Abd El Ghany K. Innovative synthesis and molecular modeling of actinomycetes-derived silver nanoparticles for biomedical applications. Microb Pathog 2024; 196:106990. [PMID: 39362288 DOI: 10.1016/j.micpath.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07. Our research highlights the promise of these biogenically synthesized nanoparticles in advancing biomedical applications. Actinomycetes were sourced and screened for their ability to produce metallic nanoparticles, revealing that among 35 samples, only six showed this capability. Notably, Streptomyces albus strain smmdk14 (OR685674), Micromonospora maris strain smmdk13 (OR685672), and Arthrobacter crystallopoietes strain smmdk12 (OR685674) were identified as effective silver nanoparticle producers. The synthesized nanoparticles demonstrated potent antibacterial activity against common pathogens including E. coli, Pseudomonas aeruginosa, Klebsiella spp., Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter spp. The data obtained from color change observation, UV-visible spectrophotometry, Zeta potential, FTIR spectroscopy, and transmission electron microscopy (TEM) characterized AgNPs potentiality. The nanoparticles were spherical, with sizes ranging from 6.46 nm to 24.7 nm. Optimization of production conditions, comparison of antimicrobial effects with antibiotics, evaluation of potential toxicity, and assessment of wound-healing capabilities were also conducted. The biosynthesized AgNPs exhibited superior antibacterial properties compared to traditional antibiotics and significantly accelerated wound healing by approximately 66.4 % in fibroblast cell cultures. Additionally, computational analysis predicted interactions between various metal ions and specific amino acid residues in proteins 6REV and 3K07. Overall, this study demonstrates the successful creation of AgNPs with notable antibacterial and wound-healing properties, underscoring their potential for medical applications.
Collapse
Affiliation(s)
- Safia Ahmed Amin
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed E A Dawood
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed Mahmoud
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Dina M Bassiouny
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Moshtohor, Benha University, 13736, Egypt.
| | | |
Collapse
|
3
|
Li H, Wang Z, Lu Q, Wang L, Tan Y, Chen F. Heterogeneous integration of an on-chip Nd:YAG whispering gallery mode laser with a lithium-niobate-on-insulator platform. OPTICS LETTERS 2024; 49:1397-1400. [PMID: 38489409 DOI: 10.1364/ol.515441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
The integration of heterogeneous optical components onto an optical platform is crucial for the advancement of photonic chips. To achieve this, efficient coupling of optical signals between components and the platform is essential. Here, we have successfully integrated a Nd:YAG microdisk laser with a lithium-niobate-on-insulator (LNOI) photonic platform by modulating the propagation modes of LNOI. Ridge waveguides are fabricated on the LNOI by carefully adjusting the cross-sectional dimensions to enable the propagation of higher-order propagation modes. This ridge waveguide ensures that the effective refractive index of the higher-order mode closely matches that of the fundamental mode of the Nd:YAG microdisk, ensuring efficient waveguide-microdisk coupling. This on-chip laser, consisting of an Nd:YAG microdisk and LNOI integration, achieves a maximum output power of 23 µW, and a mode suppression ratio of 53.6 dB. This research presents an efficient approach for constructing highly functional heterogeneous integrated optical chips.
Collapse
|
4
|
Shao H, Zhang T, Gong Y, He Y. Silver-Containing Biomaterials for Biomedical Hard Tissue Implants. Adv Healthc Mater 2023; 12:e2300932. [PMID: 37300754 DOI: 10.1002/adhm.202300932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Bacterial infection caused by biomaterials is a very serious problem in the clinical treatment of implants. The emergence of antibiotic resistance has prompted other antibacterial agents to replace traditional antibiotics. Silver is rapidly developing as an antibacterial candidate material to inhibit bone infections due to its significant advantages such as high antibacterial timeliness, high antibacterial efficiency, and less susceptibility to bacterial resistance. However, silver has strong cytotoxicity, which can cause inflammatory reactions and oxidative stress, thereby destroying tissue regeneration, making the application of silver-containing biomaterials extremely challenging. In this paper, the application of silver in biomaterials is reviewed, focusing on the following three issues: 1) how to ensure the excellent antibacterial properties of silver, and not easy to cause bacterial resistance; 2) how to choose the appropriate method to combine silver with biomaterials; 3) how to make silver-containing biomaterials in hard tissue implants have further research. Following a brief introduction, the discussion focuses on the application of silver-containing biomaterials, with an emphasis on the effects of silver on the physicochemical properties, structural properties, and biological properties of biomaterials. Finally, the review concludes with the authors' perspectives on the challenges and future directions of silver in commercialization and in-depth research.
Collapse
Affiliation(s)
- Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Guanlin Machinery Limited Company, Anji, Hangzhou, 313300, China
| | - Tao Zhang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Rahmah MI. Study the effect of graphene and silver nanoparticles on the structural, morphological, optical, and antibacterial properties of commercial titanium oxide. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Farea MO, Pashameah RA, Sharma K, Alzahrani E, Al-Muntaser AA, Sugair MTS, Morsi MA. Gamma irradiation boosted the optical and electrical properties of PVP/NaAlg/Au ternary nanocomposite films for flexible optoelectronic devices. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04498-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Structural and Optical characterization of Semiconducting Lithium Modified Zinc Borate Glassy System for UV Band Reject Filter. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Synthesis of nanostructured Bi2O3NPs using laser ablation technique and its effect on the optical, thermal, and conductivity characterization of the PEO/CMC blend. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Subashini K, Prakash S, Sujatha V. Biological applications of green synthesized zinc oxide and nickel oxide nanoparticles mediated poly(glutaric acid-co-ethylene glycol-co-acrylic acid) polymer nanocomposites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
El-Sharnouby M, Askary AE, Awwad NS, Ibrahium HA, Moustapha ME, Farea MO, Menazea AA, Abdelghany AM. Enhanced Electrical Conductivity and Dielectric Performance of Ternary Nanocomposite Film of PEMA/PS/Silver NPs Synthesized by Laser Ablation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02286-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Du J, Zhou J, Zhang L, Yang N, Ding X, Zhang J. Investigation of the Crystallization Characteristics of Intermediate States in Ge 2Sb 2Te 5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:536. [PMID: 35159881 PMCID: PMC8839464 DOI: 10.3390/nano12030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Laser pulses can be utilized to induce intermediate states of phase change materials between amorphous and crystalline phases, making phase change materials attractive and applicable for multi-level storage applications. In this paper, intermediate states of Ge2Sb2Te5 thin films induced via employing a nanosecond multi-pulse laser with different energy and pulse duration were performed by Raman spectroscopy, reflection measurement and thermal simulations. Upon laser-crystallized Ge2Sb2Te5 films, optical functions change drastically, leading to distinguishable reflectivity contrasts of intermediate states between amorphous and crystalline phases due to different crystallinity. The changes in optical intensity for laser-crystallized Ge2Sb2Te5 are also accompanied by micro-structure evolution, since high-energy and longer pulses result in higher-level intermediate states (corresponding to high reflection intensity) and largely contribute to the formation of stronger Raman peaks. By employing thermal analysis, we further demonstrated that the variations of both laser fluence and pulse duration play decisive roles in the degree of crystallinity of Ge2Sb2Te5 films. Laser fluence is mainly responsible for the variations in crystallization temperature, while the varying pulse duration has a great impact on the crystallization time. The present study offers a deeper understanding of the crystallization characteristic of phase change material Ge2Sb2Te5.
Collapse
Affiliation(s)
- Jia Du
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (L.Z.); (N.Y.); (X.D.); (J.Z.)
| | | | | | | | | | | |
Collapse
|
12
|
Mat Isa SZ, Zainon R, Tamal M. State of the Art in Gold Nanoparticle Synthesisation via Pulsed Laser Ablation in Liquid and Its Characterisation for Molecular Imaging: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:875. [PMID: 35160822 PMCID: PMC8838486 DOI: 10.3390/ma15030875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
With recent advances in nanotechnology, various nanomaterials have been used as drug carriers in molecular imaging for the treatment of cancer. The unique physiochemical properties and biocompatibility of gold nanoparticles have developed a breakthrough in molecular imaging, which allows exploration of gold nanoparticles in drug delivery for diagnostic purpose. The conventional gold nanoparticles synthetisation methods have limitations with chemical contaminations during the synthesisation process and the use of higher energy. Thus, various innovative approaches in gold nanoparticles synthetisation are under development. Recently, studies have been focused on the development of eco-friendly, non-toxic, cost-effective and simple gold nanoparticle synthesisation. The pulsed laser ablation in liquid (PLAL) technique is a versatile synthetic and convincing technique due to its high efficiency, eco-friendly and facile method to produce gold nanoparticle. Therefore, this study aimed to review the eco-friendly gold nanoparticle synthesisation method via the PLAL method and to characterise the gold nanoparticles properties for molecular imaging. This review paper provides new insight to understand the PLAL technique in producing gold nanoparticles and the PLAL parameters that affect gold nanoparticle properties to meet the desired needs in molecular imaging.
Collapse
Affiliation(s)
- Siti Zaleha Mat Isa
- Department of Biomedical Imaging, Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas 13200, Pulau Pinang, Malaysia;
| | - Rafidah Zainon
- Department of Biomedical Imaging, Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas 13200, Pulau Pinang, Malaysia;
| | - Mahbubunnabi Tamal
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
13
|
S.S. P, Rudayni HA, Bepari A, Niazi SK, Nayaka S. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci 2022; 29:228-238. [PMID: 35002413 PMCID: PMC8716891 DOI: 10.1016/j.sjbs.2021.08.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
The current study described the systematic and detailed extracellular synthesis method of silver nanoparticles (AgNPs) using Streptomyces hirsutus strain SNPGA-8 by green synthesis method. The AgNPs were subjected for characterizations using UV-Vis, FTIR, TGA, TEM, EDX, XRD, and zeta-potential analyses. The antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Candida albicans, Alternaria alternata, Candida glabrata and Fusarium oxysporum was determined by the agar well diffusion technique. The cytotoxicity of AgNPs against human lung cancer (A549) was studied by MTT and ROS assays and capping of proteins of AgNPs from SDS-PAGE. In the UV-Vis., absorption peak was found at 418 nm, FTIR analysis revealed the infrared bands of specific functional groups from 3273 cm-1 to 428 cm-1; TEM data confirmed the spherical shape, smallest size of particle as 18.99 nm, while EDX analysis confirmed the elemental composition of AgNPs with 22.24% Ag. The XRD pattern confirmed the nature of AgNPs as crystalline, and zeta potential peak was found at -24.6 mV indicating the higher stability. The AgNPs exhibited increased antimicrobial activity with increase in dosage volume and considerable MIC and MBC values against microbial pathogens. In the MTT cytotoxicity assay, the IC50 value of 31.41 μg/mL is obtained against A549 cell line, suggesting the potential of AgNPs to inhibit the tumour cells; and ROS assay displayed increased ROS production with increase in treatment time. Based on the results, it is evident that Streptomyces hirsutus strain SNPGA-8 AgNPs are potentially promising to be applied for biomedical uses.
Collapse
Affiliation(s)
- Pallavi S.S.
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Hassan Ahmed Rudayni
- Biology Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | - Sreenivasa Nayaka
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
14
|
El-Kader MA, Ahmed M, Elabbasy M, Afifi M, Menazea A. Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. SURFACE AND COATINGS TECHNOLOGY 2021; 409:126861. [DOI: 10.1016/j.surfcoat.2021.126861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Menazea A, Awwad NS. Pulsed Nd:YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Tommalieh M, Ibrahium HA, Awwad NS, Menazea A. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128814] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Menazea A, Ahmed M. Wound healing activity of Chitosan/Polyvinyl Alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128401] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Menazea A, Ahmed M. Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128536] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Babich E, Kaasik V, Redkov A, Maurer T, Lipovskii A. SERS-Active Pattern in Silver-Ion-Exchanged Glass Drawn by Infrared Nanosecond Laser. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1849. [PMID: 32947813 PMCID: PMC7560222 DOI: 10.3390/nano10091849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
Abstract
The irradiation of silver-to-sodium ion-exchanged glass with 1.06-μm nanosecond laser pulses of mJ-range energy results in the formation of silver nanoparticles under the glass surface. Following chemical removal of ~25-nm glass layer reveals a pattern of nanoparticles capable of surface enhancement of Raman scattering (SERS). The pattern formed when laser pulses are more than half-overlapped provides up to ~105 enhancement and uniform SERS signal distribution, while the decrease of the pulse overlap results in an order of magnitude higher but less uniform enhancement.
Collapse
Affiliation(s)
- Ekaterina Babich
- Institute of physics, nanotechnology and telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (V.K.); (A.L.)
- Sector of optics of heterogeneous nanostructures and optical materials, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Vladimir Kaasik
- Institute of physics, nanotechnology and telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (V.K.); (A.L.)
- Sector of optics of heterogeneous nanostructures and optical materials, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Alexey Redkov
- Laboratory of structural and phase transformations in condensed media, Institute of Problems of Mechanical Engineering RAS, Bolshoy pr. V. O. 61, 199178 St. Petersburg, Russia;
| | - Thomas Maurer
- Light, Nanomaterials, Nanotechnologies (L2n), Université de Technologie de Troyes & CNRS ERL 7004, rue Marie Curie 12, CS 42060, 10004 Troyes CEDEX, France;
| | - Andrey Lipovskii
- Institute of physics, nanotechnology and telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (V.K.); (A.L.)
- Sector of optics of heterogeneous nanostructures and optical materials, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
| |
Collapse
|