1
|
Jahani A, Jazayeri MH. Tailoring cellulose: from extraction and chemical modification to advanced industrial applications. Int J Biol Macromol 2025; 309:142950. [PMID: 40216103 DOI: 10.1016/j.ijbiomac.2025.142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cellulose is a natural polymer with excellent physicochemical properties that can be extracted from various plant sources and has widespread applications across multiple industries. Due to its biodegradability, renewability, and mechanical strength, cellulose has gained significant attention in fields such as pharmaceuticals, food packaging, sensors, water treatment, and textiles. However, its inherent limitations, such as poor solubility, low electrical conductivity, and limited functionality, hinder its application in advanced technologies. To overcome these challenges, chemical modifications have been extensively explored to enhance its structural properties and broaden its utility in specialized applications. This review explores the modifications applied to cellulose with a focus on targeted advanced industries. Emphasis is placed on identifying the limitations of cellulose in each industry and highlighting the most recent techniques available for modifying its properties to meet specific requirements. Finally, this review discusses the challenges associated with cellulose processing and the high costs of extraction while providing insights into future research directions and potential advancements in cellulose-based technologies.
Collapse
Affiliation(s)
- Abolfazl Jahani
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Hossein Jazayeri
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Gao J, Li X, Chen T, Zhao Y, Xiong H, Han X. Application Progress of Electron Beam Radiation in Adsorption Functional Materials Preparation. Molecules 2025; 30:1084. [PMID: 40076308 PMCID: PMC11901924 DOI: 10.3390/molecules30051084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
To solve the problems of water and air pollution, adsorption functional materials (ASFMs) have been extensively investigated and applied. Among the preparation methods of ASFM, electron beam radiation (EBR) has attracted much attention for its high efficiency, environmental friendliness, and wide applicability. Based on the introduction of the application of EBR technology, the EBR preparation of ASFM is summarized by grafting and cross-linking. Secondly, the application of corresponding ASFM for the adsorption of metal ions, inorganic anions, dyes, drugs and chemical raw materials, and carbon dioxide is summarized systematically. Then, the adsorption mechanisms of ASFM are illustrated, according to the different pollutants. Finally, the progress, issues, and prospects of EBR technology for ASFM preparation are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Houhua Xiong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.G.); (X.L.); (T.C.); (Y.Z.)
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.G.); (X.L.); (T.C.); (Y.Z.)
| |
Collapse
|
3
|
Zhang X, Ma K, Zhao L, Peng H, Gong Y. EDAC-modified chitosan/imidazolium-polysulfone composite beads for removal of Cr(VI) from aqueous solution. Int J Biol Macromol 2024; 278:134876. [PMID: 39168218 DOI: 10.1016/j.ijbiomac.2024.134876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
To enhance the stability and adsorption performance of chitosan in Cr(VI)-contaminated acidic wastewater, a novel EDAC-modified-EDTA-crosslinked chitosan derivative (CSEC) was synthesized via a one-pot method with chitosan, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC), and Na2EDTA as raw materials. To further improve the mechanical strength and separation performance of CSEC, a novel composite bead (CSEP) of CSEC and imidazolium-functionalized polysulfone (IMPSF) was prepared through a phase inversion method. The chemical composition and microstructure of CSEC and CSEP were characterized by FESEM, FTIR, NMR and XPS techniques. The maximum adsorption capacities of CSEC and CSEP for Cr(VI) were 145.96 and 135.82 mg g-1 at pH 3, respectively, and the equilibrium time for Cr(VI) adsorption by CSEC and CSEP was 5 min and 8 h, respectively. The adsorption process of Cr(VI) by both CSEC and CSEP was exothermic and spontaneous. Compared to CSEC, CSEP has significantly enhanced resistance to interference from coexisting anions. The removal mechanism of Cr(VI) by CSEP might involve redox reaction as well as electrostatic attraction between Cr(VI) oxyanions and various nitrogen cations, including protonated amino groups, guanidinium groups, protonated tertiary amine groups, and imidazolium cations. The CSEP beads have potential application value in the treatment of acidic wastewater containing Cr(VI).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kangrui Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liqin Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hong Peng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Peng L, Li W, Du J, Zhang M, Zhao L. Efficient removal of p-nitrophenol from water by imidazolium ionic liquids functionalized cellulose microsphere. Int J Biol Macromol 2024; 273:133117. [PMID: 38871098 DOI: 10.1016/j.ijbiomac.2024.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Removing p-nitrophenol (PNP) from water resources is crucial due to its significant threat to the environment and human health. Herein, imidazolium ionic liquids with short/long alkyl chain ([C2VIm]Br and [C8VIm]Br) modified cellulose microspheres (MCC-[C2VIm]Br and MCC-[C8VIm]Br) were synthesized by radiation method. To examine the impact of adsorbent hydrophilicity on adsorption performance, batch and column experiments were conducted for PNP adsorption. The MCC-[C2VIm]Br and MCC-[C8VIm]Br, with an equivalent molar import amount of ionic liquids, exhibited maximum adsorption capacities of 190.84 mg/g and 191.20 mg/g for PNP, respectively, and the adsorption equilibrium was reached within 30 min. Both adsorbents displayed exceptional reusability. Integrating the findings from XPS and FTIR analyses, and AgNO3 identification, the suggested adsorption mechanism posited that the adsorbents engaged with PNP through ion exchange, hydrogen bonds and π-π stacking. Remarkably, the hydrophobic MCC-[C8VIm]Br exhibited superior selectivity for PNP than the hydrophilic MCC-[C2VIm]Br, while had little effect on adsorption capacity and rate. MCC-[C8VIm]Br-2 with high grafting yield increased the adsorption capacity to 327.87 mg/g. Moreover, MCC-[C8VIm]Br-2 demonstrated efficient PNP removal from various real water samples, and column experiments illustrated its selective capture of PNP from groundwater. The promising adsorption performance indicates that MCC-[C8VIm]Br-2 holds potential for PNP removal from wastewater.
Collapse
Affiliation(s)
- Lifang Peng
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenkang Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Manman Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China.
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Jabli M, Sebeia N, El-Ghoul Y, Soury R, Al-Ghamdi YO, Saleh TA. Chemical modification of microcrystalline cellulose with polyethyleneimine and hydrazine: Characterization and evaluation of its adsorption power toward anionic dyes. Int J Biol Macromol 2023; 229:210-223. [PMID: 36592846 DOI: 10.1016/j.ijbiomac.2022.12.309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Functionalization and various applications of biomaterials have progressively gained a major interest due to the cost-effectiveness, renewability, and biodegradability of these substrates. The current work focalized on the functionalization of microcrystalline cellulose with polyethyleneimine solution (3 %, 5 %, and 10 %) and hydrazine sulfate salt (1:1, 1:2, 2:1) using an impregnation method. Untreated and treated samples were characterized using FT-IR, SEM, XRD, TGA, and DTA analyses. The crystallinity index values for control microcrystalline cellulose, cellulose-polyethyleneimine, and cellulose-hydrazine were 57.13.8 %, 57.29 %, and 52.62 %, respectively. Cellulose-polyethyleneimine (5 %) and cellulose-hydrazine (1:1) displayed the highest adsorption capacities for calmagite (an anionic dye). At equilibrium, the maximum adsorption capacities for calmagite achieved 104 mg/g for cellulose-polyethyleneimine (5 %), 45 mg/g for cellulose-hydrazine (1:1), and only 12.4 mg/g for untreated cellulose. Adsorption kinetics complied well with the pseudo-second-order kinetic model. The adsorption isotherm fitted well with the Langmuir isotherm. Overall, the functionalized cellulosic samples could be considered potential materials for the treatment of contaminated waters.
Collapse
Affiliation(s)
- Mahjoub Jabli
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Textile Materials and Processes Research Unit, Tunisia National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia.
| | - Nouha Sebeia
- Textile Materials and Processes Research Unit, Tunisia National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Raoudha Soury
- Department of Chemistry, College of Science, University of Hail, Ha'il, 81451, Saudi Arabia
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres. Polymers (Basel) 2023; 15:polym15020321. [PMID: 36679202 PMCID: PMC9863566 DOI: 10.3390/polym15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023] Open
Abstract
The hydrometallurgical recovery of gold from electronic waste and gold slag is a hot research topic. To develop a cost-effective and environmentally friendly adsorbent for gold recovery, four types of amino-acid (arginine, histidine, methionine, and cysteine)-functionalized cellulose microspheres were prepared via a radiation technique. The adsorption performance of the amino acid resins toward Au(III) ions was systematically investigated by batch experiments. The amino acid resins could absorb Au(III) ions at a wide pH range. The adsorption process was followed by the pseudo-second-order model and Langmuir model. The theoretical maximum adsorption capacity was calculated as 396.83 mg/g, 769.23 mg/g, 549.45 mg/g, and 636.94 mg/g for ArgR, HisR, MetR, and CysR, respectively. The amino acid resins could effectively and selectively recover trace Au(III) ions from the leaching solutions of printed circuit board and gold slag waste. Lastly, the mechanism underlying amino acid resin's Au(III) ion recovery capability was investigated by FTIR, XRD, and XPS analyses. This work describes a series of cost-effective gold adsorbents with excellent selectivity and adsorption capacity to boost their practical application.
Collapse
|
7
|
Elgarahy AM, Maged A, Elwakeel KZ, El-Gohary F, El-Qelish M. Tuning cationic/anionic dyes sorption from aqueous solution onto green algal biomass for biohydrogen production. ENVIRONMENTAL RESEARCH 2023; 216:114522. [PMID: 36243056 DOI: 10.1016/j.envres.2022.114522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Global water security and energy demands associated with uncontrollable population growth and rapid industrial progress are one of the utmost serious needs dangerously confronting humanity. On account of waste as a wealth strategy; a multifunctional eco-friendly sorbent (MGAP) from green alga was prepared successfully for remediation of cationic/anionic organic dyes and biohydrogen production. The structural and morphological properties of sorbent were systematically scrutinized by a variety of spectral analyses. The loading capacity of MGAP towards rhodamine B (RhB) and methyl orange (MO) dyes was inclusivity inspected under variable experimental conditions. The adsorption kinetics of both dyes onto MGAP was in good agreement with pseudo-second-order theory, whereas adsorption isotherms could fit well with the Langmuir model, with satisfactory loading capacities of 144.92 and 196.04 mg g-1 for RhB and MO molecules, respectively. Moreover, ultra-sonication treatment admirably decreased the sorption equilibrium time from 180.0 min to 30.0 min. Furthermore, spent sorbent was managed particularly for biohydrogen production with a measured yield of 112.89, 116.59, and 128.17 mL-H2/gVS for MGAP, MGAP-MO, and MGAP-RhB, respectively. Overall, the produced MGAP can potentially be offered up as a promising dye scavenger for wastewater remediation and biohydrogen production, thereby fulfilling waste management and circular economy.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt; Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| |
Collapse
|
8
|
Efficient and selective adsorption of Pd(II) by amino acid-functionalized cellulose microspheres and their applications in palladium recovery from PCBs leaching solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|