1
|
Gelfat I, Aqeel Y, Tremblay JM, Jaskiewicz JJ, Shrestha A, Lee JN, Hu S, Qian X, Magoun L, Sheoran A, Bedenice D, Giem C, Manjula-Basavanna A, Pulsifer AR, Tu HX, Li X, Minus ML, Osburne MS, Tzipori S, Shoemaker CB, Leong JM, Joshi NS. Single domain antibodies against enteric pathogen virulence factors are active as curli fiber fusions on probiotic E. coli Nissle 1917. PLoS Pathog 2022; 18:e1010713. [PMID: 36107831 PMCID: PMC9477280 DOI: 10.1371/journal.ppat.1010713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.
Collapse
Affiliation(s)
- Ilia Gelfat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yousuf Aqeel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Justyna J. Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James N. Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Xi Qian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Loranne Magoun
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Abhineet Sheoran
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniela Bedenice
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Colter Giem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Amanda R. Pulsifer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hann X. Tu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Xiaoli Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilyn L. Minus
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Neel S. Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Wang DY, Zhan F, Liu HL. Study of the changes in immune indexes, pathogenic characteristics and related risk factors in children with viral diarrhea. Transl Pediatr 2021; 10:2544-2551. [PMID: 34765478 PMCID: PMC8578756 DOI: 10.21037/tp-21-433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Infectious diarrhea is a serious hazard to children under 5 years old. The causative microorganisms are mostly viruses and bacteria, with different treatment required for each. Currently, early clinical differential diagnosis is difficult with the available testing methods. Therefore, new and more sensitive indicators of viral infection reflect the early stage of infection are needed. METHODS We collected blood samples and fresh fecal samples from 100 children diagnosed with viral diarrhea who were treated in the outpatient clinic at Changzhou Tumor Hospital Affiliated to Soochow University from January 2018 to December 2020. The levels of interleukin-2 (IL-2), IL-6, tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) in serum, the erythrocyte sedimentation rate (ESR) and enterovirus were measured and compared with those in a matched healthy control group. Patients' demographic and risk factor data were collected by interviewing parents. RESULTS The mean levels of IL-2, IL-6, TNF-α, ESR, and CRP in the viral diarrhea group were higher than those in the healthy control group. Except for IL-6, the differences in inflammatory factors between groups were statistically significant (P<0.05). Human rotavirus (HRV) infection was the highest. Children's hand-washing habits, weekly disinfection of toys, and vaccination were protective factors for viral diarrhea, and indoor flies were an important risk factor (P<0.05). CONCLUSIONS The serum levels of markers were significantly increased in the children with viral diarrhea. HRV was the main pathogen, and mixed infections existed. Infection control requires hand washing, regular disinfection of toys, vaccination and preventing indoor flies.
Collapse
Affiliation(s)
- Di-Ying Wang
- Department of Clinical Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Feng Zhan
- Department of Clinical Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Hui-Ling Liu
- Department of Clinical Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| |
Collapse
|
3
|
Ackaert C, Smiejkowska N, Xavier C, Sterckx YGJ, Denies S, Stijlemans B, Elkrim Y, Devoogdt N, Caveliers V, Lahoutte T, Muyldermans S, Breckpot K, Keyaerts M. Immunogenicity Risk Profile of Nanobodies. Front Immunol 2021; 12:632687. [PMID: 33767701 PMCID: PMC7985456 DOI: 10.3389/fimmu.2021.632687] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Nanobodies (Nbs), the variable domains of camelid heavy chain-only antibodies, are a promising class of therapeutics or in vivo imaging reagents entering the clinic. They possess unique characteristics, including a minimal size, providing fast pharmacokinetics, high-target specificity, and an affinity in the (sub-)nanomolar range in conjunction with an easy selection and production, which allow them to outperform conventional antibodies for imaging and radiotherapeutic purposes. As for all protein theranostics, extended safety assessment and investigation of their possible immunogenicity in particular are required. In this study, we assessed the immunogenicity risk profile of two Nbs that are in phase II clinical trials: a first Nb against Human Epidermal growth factor Receptor 2 (HER2) for PET imaging of breast cancer and a second Nb with specificity to the Macrophage Mannose Receptor (MMR) for PET imaging of tumor-associated macrophages. For the anti-HER2 Nb, we show that only one out of 20 patients had a low amount of pre-existing anti-drug antibodies (ADAs), which only marginally increased 3 months after administering the Nb, and without negative effects of safety and pharmacokinetics. Further in vitro immunogenicity assessment assays showed that both non-humanized Nbs were taken up by human dendritic cells but exhibited no or only a marginal capacity to activate dendritic cells or to induce T cell proliferation. From our data, we conclude that monomeric Nbs present a low immunogenicity risk profile, which is encouraging for their future development toward potential clinical applications.
Collapse
Affiliation(s)
- Chloé Ackaert
- Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Natalia Smiejkowska
- Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Catarina Xavier
- In vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yann G J Sterckx
- Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Medical Biochemistry, University of Antwerp (UA), Wilrijk, Belgium
| | | | - Benoit Stijlemans
- Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Yvon Elkrim
- Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vicky Caveliers
- In vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium.,Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Tony Lahoutte
- In vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium.,Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Serge Muyldermans
- Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marleen Keyaerts
- In vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium.,Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Kim BJ, Lueangsakulthai J, Sah BNP, Scottoline B, Dallas DC. Quantitative Analysis of Antibody Survival across the Infant Digestive Tract Using Mass Spectrometry with Parallel Reaction Monitoring. Foods 2020; 9:E759. [PMID: 32526824 PMCID: PMC7353590 DOI: 10.3390/foods9060759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022] Open
Abstract
Orally delivered antibodies may be useful for the prevention of enteric pathogen infection, but to be effective they need to survive intact across digestion through the gastrointestinal tract. As a test case, we fed a recombinant human antibody, palivizumab, spiked into human milk to four infants and collected gastric, intestinal and stool samples. We identified a tryptic peptide from palivizumab (LLIYDTSK) that differs from all endogenous human antibodies and used this for quantitation of the intact palivizumab. To account for dilution by digestive fluids, we co-fed a non-digestible, non-absorbable molecule-polyethylene glycol 28-quantified it in each sample and used this value to normalize the observed palivizumab concentration. The palivizumab peptide, a stable isotope-labeled synthetic peptide and polyethylene glycol 28 were quantified via a highly sensitive and selective parallel-reaction monitoring approach using nano-liquid chromatography/Orbitrap mass spectrometry. On average, the survival of intact palivizumab from the feed to the stomach, upper small intestine and stool were 88.4%, 30.0% and 5.2%, respectively. This approach allowed clear determination of the extent to which palivizumab was degraded within the infant digestive tract. This method can be applied with some modifications to study the digestion of any protein.
Collapse
Affiliation(s)
- Bum Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (J.L.); (B.N.P.S.)
| | - Jiraporn Lueangsakulthai
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (J.L.); (B.N.P.S.)
| | - Baidya Nath P. Sah
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (J.L.); (B.N.P.S.)
| | - Brian Scottoline
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA;
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (J.L.); (B.N.P.S.)
| |
Collapse
|
5
|
del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019. [PMCID: PMC6346216 DOI: 10.3389/fmicb.2018.03179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Linero F, Sepúlveda C, Christopoulou I, Hulpiau P, Scolaro L, Saelens X. Neutralization of Junín virus by single domain antibodies targeted against the nucleoprotein. Sci Rep 2018; 8:11451. [PMID: 30061671 PMCID: PMC6065417 DOI: 10.1038/s41598-018-29508-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023] Open
Abstract
The syndrome viral haemorrhagic fever (VHF) designates a broad range of diseases that are caused by different viruses including members of the family Arenaviridae. Prophylaxis for Argentine Haemorrhagic Fever (AHF), caused by the arenavirus Junín (JUNV), has been achieved by the use of a live attenuated vaccine, named Candid#1. The standard treatment of AHF is transfusion of convalescent human plasma. Our aim was to develop an alternative and safer treatment for AHF based on the use of virus-neutralizing single domain antibodies (VHHs). We describe the first reported VHHs directed against an arenavirus. These VHHs could neutralize Candid#1 by altering virion binding/fusion. Surprisingly, the neutralizing VHHs appeared to be specific for the viral nucleoprotein (N) that is not known to be involved in arenavirus entry. Candid#1 VHH-escape viruses had acquired a predicted N-glycosylation site in the surface glycoprotein GP1 that is present in highly pathogenic JUNV strains. Accordingly, the Candid#1-neutralizing VHHs could not neutralize pathogenic JUNV strains, but they could still bind to cells infected with a pathogenic strain or the escape mutant viruses. These results show that the attenuated strains of JUNV can be potently neutralized by nucleoprotein-specific VHHs.
Collapse
Affiliation(s)
- Florencia Linero
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Claudia Sepúlveda
- Laboratory of Virology, Faculty of Sciences, University of Buenos Aires, C1428EGA, Caba, Argentina
| | - Ioanna Christopoulou
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, B-9052, Belgium
| | - Luis Scolaro
- Laboratory of Virology, Faculty of Sciences, University of Buenos Aires, C1428EGA, Caba, Argentina
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.
| |
Collapse
|
7
|
Maffey L, Vega CG, Miño S, Garaicoechea L, Parreño V. Anti-VP6 VHH: An Experimental Treatment for Rotavirus A-Associated Disease. PLoS One 2016; 11:e0162351. [PMID: 27603013 PMCID: PMC5014449 DOI: 10.1371/journal.pone.0162351] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023] Open
Abstract
Species A Rotaviruses (RVA) remain a leading cause of mortality in children under 5 years of age. Current treatment options are limited. We assessed the efficacy of two VP6-specific llama-derived heavy chain antibody fragments (VHH) -2KD1 and 3B2- as an oral prophylactic and therapeutic treatment against RVA-induced diarrhea in a neonatal mouse model inoculated with virulent murine RVA (ECw, G16P[16]I7). Joint therapeutic administration of 2KD1+3B2 (200 μg/dose) successfully reduced diarrhea duration, RVA infection severity and virus shedding in feces. While the same dose of 2KD1 or 3B2 (200 μg) significantly reduced duration of RVA-induced diarrhea, 2KD1 was more effective in diminishing the severity of intestinal infection and RVA shedding in feces, perhaps because 2KD1 presented higher binding affinity for RVA particles than 3B2. Neither prophylactic nor therapeutic administration of the VHH interfered with the host's humoral immune response against RVA. When 2KD1 (200 μg) was administered after diarrhea development, it also significantly reduced RVA intestinal infection and fecal shedding. Host antibody responses against the oral VHH treatment were not detected, nor did viral escape mutants. Our findings show that oral administration of anti-VP6 VHH constitute, not only an effective prophylactic treatment against RVA-associated diarrhea, but also a safe therapeutic tool against RVA infection, even once diarrhea is present. Anti-VP6 VHH could be used complementary to ongoing vaccination, especially in populations that have shown lower immunization efficacy. These VHH could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea.
Collapse
Affiliation(s)
- Lucía Maffey
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Celina G. Vega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Samuel Miño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Lorena Garaicoechea
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
8
|
Abstract
Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa; School of Environmental Sciences, University of Guelph, Guelph; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|