1
|
Bian N, Chen X, Ren X, Yu Z, Jin M, Chen X, Liu C, Luan Y, Wei L, Chen Y, Song W, Zhao Y, Wang B, Jiang T, Zhang C, Shu Z, Su X, Wang L. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J Microbiol Biotechnol 2022; 38:200. [PMID: 35995893 DOI: 10.1007/s11274-022-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus (S. aureus), a Gram-positive bacteria, is an incurable cause of hospital and community-acquired infections. Inhibition bacterial virulence is a viable strategy against S. aureus infections based on the multiple virulence factors secreted by S. aureus. Alpha-hemolysin (Hla) plays a crucial role in bacteria virulence without affecting bacterial viability. Here, we identified that 7,8-Dihydroxyflavone (7,8-DHF), a natural compound, was able to decrease the expression of and did not affect the in vitro growth of S. aureus USA300 at a concentration of 32 μg/mL. It was verified by western blot and RT-qPCR that the natural compound could inhibit the transcription and translation of Hla. Further mechanism studies revealed that 7,8-DHF has a negative effect on transcriptional regulator agrA and RNAIII, preventing the upregulation of virulence gene. Cytotoxicity assays showed that 7,8-DHF did not produce significant cytotoxicity to A549 cells. Animal experiments showed that the combination of 7,8-DHF and vancomycin had a more significant therapeutic effect on S. aureus infection, reflecting the synergistic effect of 7,8-DHF with antibiotics. In conclusion, 7,8-DHF was able to target Hla to protect host cells from hemolysis while limiting the development of bacterial resistance.
Collapse
Affiliation(s)
- Nan Bian
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Zishu Yu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yanhe Luan
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zunhua Shu
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Kang X, Ma Q, Wang G, Li N, Mao Y, Wang X, Wang Y, Wang G. Potential Mechanisms of Quercetin Influence the ClfB Protein During Biofilm Formation of Staphylococcus aureus. Front Pharmacol 2022; 13:825489. [PMID: 35153795 PMCID: PMC8831371 DOI: 10.3389/fphar.2022.825489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to establish the mode of binding between Quercetin (QEN) and an essential protein called ClfB in forming biofilm in Staphylococcus aureus (S. aureus). In this study, the raw data of GSE163153 were analyzed for quality control, alignment, and gene counts, and the differential analysis detected the key differentially expressed genes (DEGs) assisting in the formation of the S. aureus biofilm. Then, the protein-protein interaction (PPI) and gene function enrichment analyses of the target genes, identified a gene called clfB to be closely related to biofilm formation. ClfB was structurally characterized, molecularly docked, and kinetically simulated to unravel the mode of binding of QEN to ClfB. Meanwhile, the growth curve and transmission electron microscopy methods examined the effect of QEN on the S. aureus growth. Results indicated that the clfB gene was increasingly expressed during biofilm formation and was involved in cell adhesion, pathogenicity, and infection. We identified 5 amino acid sites of ClfB (D272, R331, I379, K391, E490) as potential sites for binding QEN, which would indirectly influence the changes in the functional sites N234, D270, Y273, F328, inhibiting the formation of biofilm. Meanwhile, 128 μg/ml of QEN could significantly inhibit the S. aureus biofilm formation. This manuscript serves as a molecular foundation for QEN as an antibacterial drug providing a new perspective for developing antibacterial drugs.
Collapse
Affiliation(s)
- Xinyun Kang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| | - Qiang Ma
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| | - Guilai Wang
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, China
| | - Na Li
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanni Mao
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yuxia Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
- *Correspondence: Guiqin Wang,
| |
Collapse
|
3
|
Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D’Abrosca B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules 2020; 25:E5024. [PMID: 33138250 PMCID: PMC7663672 DOI: 10.3390/molecules25215024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria are social organisms able to build complex structures, such as biofilms, that are highly organized surface-associated communities of microorganisms, encased within a self- produced extracellular matrix. Biofilm is commonly associated with many health problems since its formation increases resistance to antibiotics and antimicrobial agents, as in the case of Pseudomonas aeruginosa and Staphylococcus aureus, two human pathogens causing major concern. P. aeruginosa is responsible for severe nosocomial infections, the most frequent of which is ventilator-associated pneumonia, while S. aureus causes several problems, like skin infections, septic arthritis, and endocarditis, to name just a few. Literature data suggest that natural products from plants, bacteria, fungi, and marine organisms have proven to be effective as anti-biofilm agents, inhibiting the formation of the polymer matrix, suppressing cell adhesion and attachment, and decreasing the virulence factors' production, thereby blocking the quorum sensing network. Here, we focus on plant derived chemicals, and provide an updated literature review on the anti-biofilm properties of terpenes, flavonoids, alkaloids, and phenolic compounds. Moreover, whenever information is available, we also report the mechanisms of action.
Collapse
Affiliation(s)
- Francesca Guzzo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Elisabetta Buommino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
4
|
Strain-specific anti-biofilm and antibiotic-potentiating activity of 3',4'-difluoroquercetin. Sci Rep 2020; 10:14162. [PMID: 32843653 PMCID: PMC7447797 DOI: 10.1038/s41598-020-71025-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Antibacterial properties of 3',4'-difluoroquercetin (di-F-Q), a fluorine-substituted stable quercetin derivative, were investigated. Even though di-F-Q itself did not show interesting antibacterial activity, treatment of the Staphylococcus aureus strains with di-F-Q resulted in a dose-dependent reduction in biofilm formation with IC50 values of 1.8 ~ 5.3 mg/L. Also, the antibacterial activity of ceftazidime (CAZ) against carbapenem-resistant Pseudomonas aeruginosa (CRPA) showed eightfold decrease upon combination with di-F-Q. Assessment of the antimicrobial activity of CAZ in combination with di-F-Q against 50 clinical isolates of P. aeruginosa confirmed 15.7% increase in the percentages of susceptible P. aeruginosa isolates upon addition of di-F-Q to CAZ. Further mechanistic studies revealed that di-F-Q affected the antibiotics efflux system in CRPA but not the β-lactamase activity. Thus, di-F-Q was almost equally effective as carbonyl cyanide m-chlorophenyl hydrazine in inhibiting antibiotic efflux by P. aeruginosa. In vivo evaluation of the therapeutic efficacy of CAZ-(di-F-Q) combination against P. aeruginosa showed 20% of the mice treated with CAZ-(di-F-Q) survived after 7 days in IMP carbapenemase-producing multidrug-resistant P. aeruginosa infection group while no mice treated with CAZ alone survived after 2 days. Taken together, di-F-Q demonstrated unique strain-specific antimicrobial properties including anti-biofilm and antibiotic-potentiating activity against S. aureus and P. aeruginosa, respectively.
Collapse
|
5
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|