1
|
Canales-Huerta N, Cádiz M, Ulloa MT, Chilet LA, Palma K, Jara-Wilde J, Cuevas F, González MJ, Navarro N, Toledo J, Castañeda V, Scavone P, Härtel S. Delayed biofilm formation in non-motile uropathogenic Escherichia coli strain in static and dynamic growth conditions. Microb Pathog 2025; 206:107712. [PMID: 40412736 DOI: 10.1016/j.micpath.2025.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/04/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Urinary tract infections associated with the placement of indwelling urinary catheters are a significant concern in hospital settings, as they are linked to an increased risk of severe infections and complications due to biofilm formation. These infections are primarily caused by uropathogens such as Escherichia coli (UPEC). UPEC possesses peritrichous flagella, which facilitates its motility, adhesion to surfaces, and biofilm formation. Understanding the development of UPEC communities is essential for developing effective treatment and eradication strategies. In this study, we characterized the biofilm formation of a clinical non-motile UPEC strain under both static and dynamic culture conditions that simulate the urinary catheter environment. We developed a dynamic culture system coupled with light sheet fluorescence microscopy (LSFM) to quantify the stages of biofilm formation over time. Our results demonstrate that flagella play a crucial role in the initial phase of biofilm formation. The non-motile strain exhibited a delay in the adhesion phase compared to motile strains but ultimately formed biofilms of similar volume during subsequent stages. These findings highlight the significance of flagella in dynamic biofilm formation models and provide valuable insights for modeling the evolution of bacterial communities in nosocomial environments using LSFM.
Collapse
Affiliation(s)
- Nicole Canales-Huerta
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Martín Cádiz
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile; Centro de Informática Médica y Telemedicina CIMT, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Lucas Alé Chilet
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karina Palma
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile; Centro de Informática Médica y Telemedicina CIMT, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabrizio Cuevas
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María José González
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicolás Navarro
- Advanced Center for Chronic Diseases ACCDiS, Santiago, Chile; Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado REDECA, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Victor Castañeda
- Departamento de Tecnología Médica, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile; Centro de Informática Médica y Telemedicina CIMT, Faculty of Medicine, University of Chile, Santiago, Chile; Centro Nacional en Sistemas de Información en Salud CENS, Santiago, Chile; Centro de Modelamiento Matemático CMM, Universidad de Chile, Santiago, Beauchef 851, Casilla 170-3, Santiago, Chile.
| |
Collapse
|
2
|
Yang A, Tian Y, Li X. Unveiling the hidden arsenal: new insights into Proteus mirabilis virulence in UTIs. Front Cell Infect Microbiol 2024; 14:1465460. [PMID: 39606746 PMCID: PMC11599158 DOI: 10.3389/fcimb.2024.1465460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium commonly found in urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). The pathogenic mechanisms of Proteus mirabilis are complex and diverse, involving various virulence factors, including fimbriae, flagella, urease, polyphosphate kinase, lipopolysaccharides, cyclic AMP receptor protein, Sigma factor RpoE, and RNA chaperone protein Hfq. These factors play crucial roles in bacterial colonization, invasion, evasion of host immune responses, biofilm formation, and urinary stone formation. This paper is the first to comprehensively describe the hydrogenase system, autotransporter proteins, molybdate-binding protein ModA, and two-component systems as virulence factors in Proteus mirabilis, providing new insights into its pathogenic mechanisms in urinary tract infections. This review explores the mechanisms of biofilm formation by Proteus mirabilis and the various virulence factors involved in UTIs, revealing many newly discovered virulence factors from recent studies. These findings may offer new targets for clinical treatment of UTIs and vaccine development, highlighting the importance of understanding these virulence factors.
Collapse
Affiliation(s)
- Aoyu Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchong Tian
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
González MJ, Navarro N, Cruz E, Sánchez S, Morales JO, Zunino P, Robino L, Lima A, Scavone P. First report on the physicochemical and proteomic characterization of Proteus mirabilis outer membrane vesicles under urine-mimicking growth conditions: comparative analysis with Escherichia coli. Front Microbiol 2024; 15:1493859. [PMID: 39568990 PMCID: PMC11578119 DOI: 10.3389/fmicb.2024.1493859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Uropathogenic bacteria employ multiple strategies to colonize the urinary tract, including biofilm formation, invasion of urothelial cells, and the production of adhesins, toxins, and siderophores. Among the most prevalent pathogens causing urinary tract infections (UTIs) are Uropathogenic Escherichia coli and Proteus mirabilis. A notable feature of Gram-negative bacteria is their ability to produce outer membrane vesicles (OMVs), which play critical roles in bacterial survival, virulence, and host-pathogen interactions, including UTIs. Methods In this study, OMVs were isolated and characterized from two clinical strains, E. coli U144 and P. mirabilis 2,921, cultured in both Luria-Bertani broth and artificial urine. Result and discussion The OMVs ranged in size from 85 to 260 nm, with the largest vesicles observed in artificial urine. Proteomic analysis allowed the identification of 282 proteins in OMVs from E. coli and 353 proteins from P. mirabilis when cultured LB medium, while 215 were identified from E. coli and 103 from P. mirabilis when cultured in artificial urine. The majority of these proteins originated from the bacterial envelope, while others were linked to motility and adhesion. Notably, the protein composition of OMVs varied depending on the growth medium, and proteins associated with zinc and iron uptake being more prominent in artificial urine, suggesting their importance in the urinary environment. Crucially, this is the first report to characterize P. mirabilis OMVs under different culture conditions, offering novel insights into the role of OMVs in UTI pathogenesis. These findings provide a deeper understanding of the molecular mechanisms by which OMVs contribute to bacterial virulence, establishing the foundation for potential therapeutic interventions targeting OMV-mediated processes in UTIs.
Collapse
Affiliation(s)
- María José González
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicolás Navarro
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Erlen Cruz
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Sofía Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Luciana Robino
- Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
4
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024; 65:2976-3000. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Subramaniyan Y, Khan A, Fathima F, Rekha PD. Differential expression of urease genes and ureolytic activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa isolates in different nutritional conditions. Arch Microbiol 2023; 205:383. [PMID: 37973630 DOI: 10.1007/s00203-023-03722-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.
Collapse
Affiliation(s)
- Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Altaf Khan
- Department of Urology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|