1
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Meulders B, Marei WFA, Xhonneux I, Bols PEJ, Leroy JLMR. Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. Sci Rep 2023; 13:21664. [PMID: 38066095 PMCID: PMC10709407 DOI: 10.1038/s41598-023-49184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Maternal metabolic disorders may cause lipotoxic effects on the developing oocyte. Understanding the timing at which this might disrupt embryo epigenetic programming and how this is linked with mitochondrial dysfunction is crucial for improving assisted reproductive treatments, but has not been investigated before. Therefore, we used a bovine in vitro model to investigate if pathophysiological palmitic acid (PA) concentrations during in vitro oocyte maturation and in vitro embryo culture alter embryo epigenetic patterns (DNA methylation (5mC) and histone acetylation/methylation (H3K9ac/H3K9me2)) compared to control (CONT) and solvent control (SCONT), at the zygote and morula stage. Secondly, we investigated if these epigenetic alterations are associated with mitochondrial dysfunction and changes in ATP production rate, or altered expression of epigenetic regulatory genes. Compared to SCONT, H3K9ac and H3K9me2 levels were increased in PA-derived zygotes. Also, 5mC and H3K9me2 levels were increased in PA-exposed morulae compared to SCONT. This was associated with complete inhibition of glycolytic ATP production in oocytes, increased mitochondrial membrane potential and complete inhibition of glycolytic ATP production in 4-cell embryos and reduced SOD2 expression in PA-exposed zygotes and morulae. For the first time, epigenetic alterations in metabolically compromised zygotes and morulae have been observed in parallel with mitochondrial dysfunction in the same study.
Collapse
Affiliation(s)
- Ben Meulders
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium.
| | - Waleed F A Marei
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Inne Xhonneux
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Peter E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Wang S, Larina IV. Dynamics of gametes and embryos in the oviduct: what can in vivo imaging reveal? Reproduction 2023; 165:R25-R37. [PMID: 36318634 PMCID: PMC9827618 DOI: 10.1530/rep-22-0250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
In brief In vivo imaging of gametes and embryos in the oviduct enables new studies of the native processes that lead to fertilization and pregnancy. This review article discusses recent advancements in the in vivo imaging methods and insights which contribute to understanding the oviductal function. Abstract Understanding the physiological dynamics of gametes and embryos in the fallopian tube (oviduct) has significant implications for managing reproductive disorders and improving assisted reproductive technologies. Recent advancements in imaging of the mouse oviduct in vivo uncovered fascinating dynamics of gametes and embryos in their native states. These new imaging approaches and observations are bringing exciting momentum to uncover the otherwise-hidden processes orchestrating fertilization and pregnancy. For mechanistic investigations, in vivo imaging in genetic mouse models enables dynamic phenotyping of gene functions in the reproductive process. Here, we review these imaging methods, discuss insights recently revealed by in vivo imaging, and comment on emerging directions, aiming to stimulate new in vivo studies of reproductive dynamics.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, U.S.A
| |
Collapse
|
4
|
Wang M, Hu J, Huang B, Yang Q, Liu S, Li Z, Yang L, Xi Q, Zhu L, Jin L. Investigating the impact of SARS-CoV-2 infection on basic semen parameters and in vitro fertilization/intracytoplasmic sperm injection outcomes: a retrospective cohort study. Reprod Biol Endocrinol 2022; 20:46. [PMID: 35260151 PMCID: PMC8901866 DOI: 10.1186/s12958-022-00918-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/24/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the influences of SARS-CoV-2 infection on semen parameters and investigate the impact of the infection on in vitro fertilization (IVF) outcomes. METHODS This retrospective study enrolled couples undergoing IVF cycles between May 2020 and February 2021 at Tongji Hospital, Wuhan. Baseline characteristics were matched using propensity score matching. Participants were categorized into an unexposed group (SARS-COV-2 negative) and exposed group (SARS-COV-2 positive) based on a history of SARS-CoV-2 infection, and the populations were 148 and 50 after matching, respectively. IVF data were compared between the matched cohorts. Moreover, semen parameters were compared before and after infection among the infected males. The main measures were semen parameters and IVF outcomes, including laboratory and clinical outcomes. RESULTS Generally, the concentration and motility of sperm did not significantly differ before and after infection. Infected males seemed to have fewer sperm with normal morphology, while all values were above the limits. Notably, the blastocyst formation rate and available blastocyst rate in the exposed group were lower than those in the control group, despite similar mature oocytes rates, normal fertilization rates, cleavage rates, and high-quality embryo rates. Moreover, no significant differences were exhibited between the matched cohorts regarding the implantation rate, biochemical pregnancy rate, clinical pregnancy rate, or early miscarriage rate. CONCLUSIONS The results of this retrospective cohort study suggested that the semen quality and the chance of pregnancy in terms of IVF outcomes were comparable between the males with a history of SARS-CoV-2 infection and controls, although a decreased blastocyst formation rate and available blastocyst rate was observed in the exposed group, which needs to be reinforced by a multicenter long-term investigation with a larger sample size.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Qiyu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Sibo Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Liu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
5
|
Leese HJ, McKeegan PJ, Sturmey RG. Amino Acids and the Early Mammalian Embryo: Origin, Fate, Function and Life-Long Legacy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9874. [PMID: 34574797 PMCID: PMC8467587 DOI: 10.3390/ijerph18189874] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Amino acids are now recognised as having multiple cellular functions in addition to their traditional role as constituents of proteins. This is well-illustrated in the early mammalian embryo where amino acids are now known to be involved in intermediary metabolism, as energy substrates, in signal transduction, osmoregulation and as intermediaries in numerous pathways which involve nitrogen metabolism, e.g., the biosynthesis of purines, pyrimidines, creatine and glutathione. The amino acid derivative S-adenosylmethionine has emerged as a universal methylating agent with a fundamental role in epigenetic regulation. Amino acids are now added routinely to preimplantation embryo culture media. This review examines the routes by which amino acids are supplied to the early embryo, focusing on the role of the oviduct epithelium, followed by an outline of their general fate and function within the embryo. Functions specific to individual amino acids are then considered. The importance of amino acids during the preimplantation period for maternal health and that of the conceptus long term, which has come from the developmental origins of health and disease concept of David Barker, is discussed and the review concludes by considering the potential utility of amino acid profiles as diagnostic of embryo health.
Collapse
Affiliation(s)
- Henry J. Leese
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| | - Paul J. McKeegan
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| | - Roger G. Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
- Division of Developmental Biology and Medicine, The University of Manchester, St Mary’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
6
|
Penova-Veselinovic B, Melton PE, Huang RC, Yovich JL, Burton P, Wijs LA, Hart RJ. DNA methylation patterns within whole blood of adolescents born from assisted reproductive technology are not different from adolescents born from natural conception. Hum Reprod 2021; 36:2035-2049. [PMID: 33890633 DOI: 10.1093/humrep/deab078] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Do the epigenome-wide DNA methylation profiles of adolescents born from ART differ from the epigenome of naturally conceived counterparts? SUMMARY ANSWER No significant differences in the DNA methylation profiles of adolescents born from ART [IVF or ICSI] were observed when compared to their naturally conceived, similar aged counterparts. WHAT IS KNOWN ALREADY Short-term and longer-term studies have investigated the general health outcomes of children born from IVF treatment, albeit without common agreement as to the cause and underlying mechanisms of these adverse health findings. Growing evidence suggests that the reported adverse health outcomes in IVF-born offspring might have underlying epigenetic mechanisms. STUDY DESIGN, SIZE, DURATION The Growing Up Healthy Study (GUHS) is a prospective study that recruited 303 adolescents and young adults, conceived through ART, to compare various long-term health outcomes and DNA methylation profiles with similar aged counterparts from Generation 2 from the Raine Study. GUHS assessments were conducted between 2013 and 2017. The effect of ART on DNA methylation levels of 231 adolescents mean age 15.96 ± 1.59 years (52.8% male) was compared to 1188 naturally conceived counterparts, 17.25 ± 0.58 years (50.9% male) from the Raine Study. PARTICIPANTS/MATERIALS, SETTING, METHODS DNA methylation profiles from a subset of 231 adolescents (13-19.9 years) from the GUHS, generated using the Infinium Methylation Epic Bead Chip (EPIC) array were compared to 1188 profiles from the Raine Study previously measured using the Illumina 450K array. We conducted epigenome-wide association approach (EWAS) and tested for an association between the cohorts applying Firth's bias reduced logistic regression against the outcome of ART versus naturally conceived offspring. Additionally, within the GUHS cohort, we investigated differences in methylation status in fresh versus frozen embryo transfers, cause of infertility as well as IVF versus ICSI conceived offspring. Following the EWAS analysis we investigated nominally significant probes using Gene Set Enrichment Analysis (GSEA) to identify enriched biological pathways. Finally, within GUHS we compared four estimates (Horvath, Hanuum, PhenoAge [Levine], and skin Horvath) of epigenetic age and their correlation with chronological age. MAIN RESULTS AND THE ROLE OF CHANCE Between the two cohorts, we did not identify any DNA methylation probes that reached a Bonferroni corrected P-value < 1.24E-0.7. When comparing IVF versus ICSI conceived adolescents within the GUHS cohort, after adjustment for participant age, sex, maternal smoking, multiple births, and batch effect, three methylation probes (cg15016734, cg26744878 and cg20233073) reached a Bonferroni correction of 6.31E-08. After correcting for cell count heterogeneity, two of the aforementioned probes remained significant and an additional two probes (cg 0331628 and cg 20235051) were identified. A general trend towards hypomethylation in the ICSI offspring was observed. All four measures of epigenetic age were highly correlated with chronological age and showed no evidence of accelerated epigenetic aging within their whole blood. LIMITATIONS, REASONS FOR CAUTION The small sample size coupled with the use of whole blood, where epigenetic differences may occur in other tissue. This was corrected by the utilized statistical method that accounts for imbalanced sample size between groups and adjusting for cell count heterogeneity. Only a small portion of the methylome was analysed and rare individual differences may be missed. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide further reassurance that the effects of the ART manipulations occurring during early embryogenesis, existing in the neonatal period are indeed of a transient nature and do not persist into adolescence. However, we have not excluded that alternative epigenetic mechanisms may be at play. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NHMRC project Grant no. 1042269 and R.J.H. received funding support from Ferring Pharmaceuticals Pty Ltd. R.J.H. is the Medical Director of Fertility Specialists of Western Australia and a shareholder in Western IVF. He has received educational sponsorship from Merck Sharp & Dohme Corp.- Australia, Merck-Serono Australia Pty Ltd and Ferring Pharmaceuticals Pty Ltd. P.B. is the Scientific Director of Concept Fertility Centre, Subiaco, Western Australia. J.L.Y. is the Medical Director of PIVET Medical Centre, Perth, Western Australia. The remaining authors have no conflicts of interest.
Collapse
Affiliation(s)
- B Penova-Veselinovic
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - P E Melton
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - R C Huang
- Faculty of Health and Medical Sciences, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Nedlands, WA, Australia
| | - J L Yovich
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,PIVET Medical Centre, Perth, WA, Australia
| | - P Burton
- Concept Fertility Centre, Subiaco, WA, Australia.,School of Health and Medical Sciences, Faculty of Health Science, Edith Cowan University, Perth, WA, Australia
| | - L A Wijs
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - R J Hart
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Fertility Specialists of Western Australia, Bethesda Hospital, Claremont, WA, Australia
| |
Collapse
|
7
|
Epigenetic Changes in Equine Embryos after Short-Term Storage at Different Temperatures. Animals (Basel) 2021; 11:ani11051325. [PMID: 34066466 PMCID: PMC8148113 DOI: 10.3390/ani11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In embryos subjected to assisted reproductive techniques, epigenetic modifications may occur that can influence embryonic development and establishment of pregnancy. In horses, the storage temperature during transport of fresh embryos before transfer is a major concern. The aim of this study was, therefore, to determine the effects of two storage temperatures (5 °C and 20 °C) on equine embryos, collected at day seven after ovulation and stored for 24 h, concerning morphological development, expression of candidate genes associated with embryo growth and development, maternal recognition of pregnancy, methylation, apoptosis and gene-specific and global DNA methylation. Temperature during storage did not affect embryo size. There were no changes in pH and lipid peroxidation of the medium irrespective of group. mRNA expression and gene-specific DNA methylation of genes related to growth and development, maternal recognition of pregnancy, DNA methylation and apoptosis in stored embryos (5 °C and 20 °C) were altered when compared to fresh embryos. Therefore, our study demonstrates for the first time the gene-specific and global DNA methylation status of fresh equine embryos collected on days seven and eight after ovulation. Short-term storage, regardless of temperature, may compromise embryo development after transfer. Abstract In embryos subjected to assisted reproductive techniques, epigenetic modifications may occur that can influence embryonic development and the establishment of pregnancy. In horses, the storage temperature during transport of fresh embryos before transfer is a major concern. The aim of this study was, therefore, to determine the effects of two storage temperatures (5 °C and 20 °C) on equine embryos, collected at day seven after ovulation and stored for 24 h, on: (i) morphological development; (ii) expression of candidate genes associated with embryo growth and development, maternal recognition of pregnancy, methylation and apoptosis, and (iii) gene-specific and global DNA methylation. Embryos (n = 80) were collected on day seven or day eight after ovulation and assigned to four groups: day seven control (E7F, fresh); day seven, stored for 24 h at 5 °C (E5C); day seven, stored for 24 h at 20 °C (E20C) and day eight control (E8F, fresh 24h time control). The embryos and the storage medium (EquiHold, holding medium, Minitube, Tiefenbach, Germany) from all treatment groups were analyzed for (i) medium temperature, pH, and lipid peroxidation (malondialdehyde; MDA) and (ii) embryo morphology, mRNA expression and DNA methylation (immunohistochemistry and gene-specific DNA methylation). The size of embryos stored at 5 °C was larger (p < 0.01), whereas embryos stored at 20 °C were smaller (p < 0.05) after 24 h. There were no changes in pH and MDA accumulation irrespective of the group. The mRNA expression of specific genes related to growth and development (POU5F1, SOX2, NANOG), maternal recognition of pregnancy (CYP19A1, PTGES2), DNA methylation (DNMT1, DNMT3A, DNMT3B) and apoptosis (BAX) in the E5C and E20C were either up or downregulated (p < 0.05) when compared to controls (E7F and E8F). The immune expression of 5mC and 5hmC was similar among treatment groups. Percentage of methylation in the CpG islands was lower in the specific genes ESR1, NANOG and DNMT1 (p < 0.001) in E20C embryos when compared to E8F (advanced embryo stage). Therefore, our study demonstrates for the first time the gene-specific and global DNA methylation status of fresh equine embryos collected on days seven and eight after ovulation. Although our results suggest some beneficial effects of storage at 20 °C in comparison to 5 °C, the short-term storage, regardless of temperature, modified gene expression and methylation of genes involved in embryo development and may compromise embryo viability and development after transfer.
Collapse
|
8
|
Siqueira LG, Silva MVG, Panetto JC, Viana JH. Consequences of assisted reproductive technologies for offspring function in cattle. Reprod Fertil Dev 2020; 32:82-97. [PMID: 32188560 DOI: 10.1071/rd19278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormal fetuses, neonates and adult offspring derived by assisted reproductive technologies (ART) have been reported in humans, rodents and domestic animals. The use of ART has also been associated with an increased likelihood of certain adult diseases. These abnormalities may arise as a result of an excess of or missing maternally derived molecules during invitro culture, because the invitro environment is artificial and suboptimal for embryo development. Nonetheless, the success of ART in overcoming infertility or improving livestock genetics is undeniable. Limitations of invitro embryo production (IVEP) in cattle include lower rates of the establishment and maintenance of pregnancy and an increased incidence of neonatal morbidity and mortality. Moreover, recent studies demonstrated long-term effects of IVEP in cattle, including increased postnatal mortality, altered growth and a slight reduction in the performance of adult dairy cows. This review addresses the effects of an altered preimplantation environment on embryo and fetal programming and offspring development. We discuss cellular and molecular responses of the embryo to the maternal environment, how ART may disturb programming, the possible role of epigenetic effects as a mechanism for altered phenotypes and long-term effects of ART that manifest in postnatal life.
Collapse
Affiliation(s)
- Luiz G Siqueira
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330; and Corresponding author.
| | | | - João C Panetto
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330
| | - João H Viana
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil 70770-917
| |
Collapse
|
9
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Cwik B. Intergenerational monitoring in clinical trials of germline gene editing. JOURNAL OF MEDICAL ETHICS 2020; 46:183-187. [PMID: 31473657 PMCID: PMC7036322 DOI: 10.1136/medethics-2019-105620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 05/08/2023]
Abstract
Design of clinical trials for germline gene editing stretches current accepted standards for human subjects research. Among the challenges involved is a set of issues concerning intergenerational monitoring-long-term follow-up study of subjects and their descendants. Because changes made at the germline would be heritable, germline gene editing could have adverse effects on individuals' health that can be passed on to future generations. Determining whether germline gene editing is safe and effective for clinical use thus may require intergenerational monitoring. The aim of this paper is to identify and argue for the significance of a set of ethical issues raised by intergenerational monitoring in future clinical trials of germline gene editing. Though long-term, multigenerational follow-up study of this kind is not without precedent, intergenerational monitoring in this context raises unique ethical challenges, challenges that go beyond existing protocols and standards for human subjects research. These challenges will need to be addressed if clinical trials of germline gene editing are ever pursued.
Collapse
Affiliation(s)
- Bryan Cwik
- Philosophy and University Studies, Portland State University, Portland, Oregon, USA
| |
Collapse
|
11
|
Chen S, Schoen J. Air-liquid interface cell culture: From airway epithelium to the female reproductive tract. Reprod Domest Anim 2020; 54 Suppl 3:38-45. [PMID: 31512315 DOI: 10.1111/rda.13481] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 01/04/2023]
Abstract
The air-liquid interface (ALI) approach is primarily used to mimic respiratory tract epithelia in vitro. It is also known to support excellent differentiation of 3D multilayered skin models. To establish an ALI culture, epithelial cells are seeded into compartmentalized culture systems on porous filter supports or gel substrata. After an initial propagation period, the culture medium is removed from the apical side of the epithelium, exposing the cells to the surrounding air. Therefore, nutritive supply to the cells is warranted only by the basolateral cell pole. Under these conditions, the epithelial cells differentiate and regain full baso-apical polarity. Some types of epithelia even generate in vivo-like apical fluid or mucus. Interestingly, the ALI culture approach has also been shown to support morphological and functional differentiation of epithelial cells that are not normally exposed to ambient air in vivo. This review aims at giving a brief overview on the characteristics of ALI cultures in general and ALI models of female reproductive tract epithelia in particular. We discuss the applicability of ALI models for the investigation of the early embryonic microenvironment and for its implications in assisted reproductive technologies.
Collapse
Affiliation(s)
- Shuai Chen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
12
|
Chang HY, Hwu WL, Chen CH, Hou CY, Cheng W. Children Conceived by Assisted Reproductive Technology Prone to Low Birth Weight, Preterm Birth, and Birth Defects: A Cohort Review of More Than 50,000 Live Births During 2011-2017 in Taiwan. Front Pediatr 2020; 8:87. [PMID: 32232018 PMCID: PMC7082315 DOI: 10.3389/fped.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
Objectives: The use of assisted reproductive technology (ART) has increased rapidly in Taiwan. The purpose of this study is to discuss the risks of low birth weight, preterm birth, and birth defect for children conceived by assisted reproductive technology in Taiwan. Methods: Both National ART report database and National birth reports were obtained from the Health Promotion Administration in the Ministry of Health and Welfare in Taiwan. The cohort included live births (n = 1,405,625) and children conceived by ART (n = 50,988/172,818 cycles) from 2011 to 2017. The prevalence of low birth weight, preterm birth, and birth defect were compared between the ART and natural pregnancy groups. Results: Children conceived by ART displayed a higher rate of low birth weight as compared to those in the natural pregnancy group (p < 0.001), even when analyses were restricted to singleton births (p < 0.001). A higher rate of preterm birth (p < 0.001) was also observed in children conceived by ART even when analyses were restricted to singleton births (p < 0.05). A significant increased rate of birth defects was noted from children conceived by ART (p < 0.05). Conclusions: With the increasing need for and use of ART-conceptions, the likelihood of risks induced or related to Assistant Reproductive Technology (ART) has drawn considerable attention in recent years. Taiwan, as one of the leading countries with outstanding ART performances and modern medical care, the result of the current study suggests that further consideration and tighter regulations and policy are needed with regard to the use of ART.
Collapse
Affiliation(s)
- Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hui Chen
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Yin Hou
- Department of Family Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Wei Cheng
- Department of Pathology, Kee-Lung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung City, Taiwan.,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
13
|
Risks in Surrogacy Considering the Embryo: From the Preimplantation to the Gestational and Neonatal Period. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6287507. [PMID: 30112409 PMCID: PMC6077588 DOI: 10.1155/2018/6287507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Surrogacy is an assisted reproduction-based approach in which the intended parents assign the gestation and birth to another woman called the surrogate mother. The drivers of surrogacy refer largely to infertility, medical conditions, same-sex couples' parenting, and cases of diversity regarding sexual identity and orientation. Surrogacy consists of a valid option for a variety of conditions or circumstances ranging from medical to social reasons. However, surrogacy may be associated with risks during the preimplantation, prenatal, and neonatal period. It became obvious during the exhaustive literature research that data on surrogacy and its association with factors specific to the IVF practice and the options available were not fully represented. Could it be that surrogacy management adds another level of complexity to the process from the ovarian stimulation, the subsequent IVF cycle, and the techniques employed within the IVF and the Genetic Laboratory to the fetal, perinatal, and neonatal period? This work emphasizes the risks associated with surrogacy with respect to the preimplantation embryo, the fetus, and the infant. Moreover, it further calls for larger studies reporting on surrogacy and comparing the surrogate management to that of the routine IVF patient in order to avoid suboptimal management of a surrogate cycle. This is of particular importance in light of the fact that the surrogate cycle may include not only the surrogate but also the egg donor, sperm donor, and the commissioning couple or single person.
Collapse
|
14
|
Zacchini F, Arena R, Abramik A, Ptak GE. Embryo biopsy and development: the known and the unknown. Reproduction 2017; 154:R143-R148. [DOI: 10.1530/rep-17-0431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/14/2017] [Accepted: 08/29/2017] [Indexed: 01/13/2023]
Abstract
Preimplantation genetic diagnosis (PGD) has been introduced in clinical practice as a tool for selecting ‘healthy’ embryos before their transfer in utero. PGD protocols include biopsy of cleaving embryos (blastomere biopsy (BB)) or blastocysts (trophectoderm biopsy (TB)), followed by genetic analysis to select ‘healthy’ embryos for transfer in utero. Currently, TB is replacing the use of BB in the clinical practice. However, based on the European Society of Human Reproduction and Embryology Preimplantation Genetic Diagnosis Consortium reports, BB has been used in >87% of PGD cycles for more than 10 years. An exhaustive evaluation of embryo biopsy (both BB and TB) risks and safety is still missing. The few epidemiological studies available are quite controversial and/or are limited to normalcy at birth or early childhood. On the other hand, studies on animals have shown that BB can be a risk factor for impaired development, during both pre- and postnatal life, while little is known on TB. Thus, there is an urgent need of focused researches on BB, as it has contributed to give birth to children for more than 10 years, and on TB, as its application is significantly growing in clinical practice. In this context, the aim of this review is to provide a complete overview of the current knowledge on the short-, medium- and long-term effects of embryo biopsy in the mouse model.
Collapse
|
15
|
Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232:R1-R26. [PMID: 27875265 DOI: 10.1530/joe-16-0302] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Animal oviducts and human Fallopian tubes are a part of the female reproductive tract that hosts fertilization and pre-implantation development of the embryo. With an increasing understanding of roles of the oviduct at the cellular and molecular levels, current research signifies the importance of the oviduct on naturally conceived fertilization and pre-implantation embryo development. This review highlights the physiological conditions within the oviduct during fertilization, environmental regulation, oviductal fluid composition and its role in protecting embryos and supplying nutrients. Finally, the review compares different aspects of naturally occurring fertilization and assisted reproductive technology (ART)-achieved fertilization and embryo development, giving insight into potential areas for improvement in this technology.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
16
|
Kleijkers SHM, Mantikou E, Slappendel E, Consten D, van Echten-Arends J, Wetzels AM, van Wely M, Smits LJM, van Montfoort APA, Repping S, Dumoulin JCM, Mastenbroek S. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT. Hum Reprod 2016; 31:2219-30. [PMID: 27554441 DOI: 10.1093/humrep/dew156] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Does embryo culture medium influence pregnancy and perinatal outcome in IVF? SUMMARY ANSWER Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. WHAT IS KNOWN ALREADY A wide variety of culture media for human preimplantation embryos in IVF/ICSI treatments currently exists. It is unknown which medium is best in terms of clinical outcomes. Furthermore, it has been suggested that the culture medium used for the in vitro culture of embryos affects birthweight, but this has never been demonstrated by large randomized trials. STUDY DESIGN, SIZE, DURATION We conducted a multicenter, double-blind RCT comparing the use of HTF and G5 embryo culture media in IVF. Between July 2010 and May 2012, 836 couples (419 in the HTF group and 417 in the G5 group) were included. The allocated medium (1:1 allocation) was used in all treatment cycles a couple received within 1 year after randomization, including possible transfers with frozen-thawed embryos. The primary outcome was live birth rate. PARTICIPANTS/MATERIALS, SETTING, METHODS Couples that were scheduled for an IVF or an ICSI treatment at one of the six participating centers in the Netherlands or their affiliated clinics. MAIN RESULTS AND THE ROLE OF CHANCE The live birth rate was higher, albeit nonsignificantly, in couples assigned to G5 than in couples assigned to HTF (44.1% (184/417) versus 37.9% (159/419); RR: 1.2; 95% confidence interval (CI): 0.99-1.37; P = 0.08). Number of utilizable embryos per cycle (2.8 ± 2.3 versus 2.3 ± 1.8; P < 0.001), implantation rate after fresh embryo transfer (20.2 versus 15.3%; P < 0.001) and clinical pregnancy rate (47.7 versus 40.1%; RR: 1.2; 95% CI: 1.02-1.39; P = 0.03) were significantly higher for couples assigned to G5 compared with those assigned to HTF. Of the 383 live born children in this trial, birthweight data from 380 children (300 singletons (G5: 163, HTF: 137) and 80 twin children (G5: 38, HTF: 42)) were retrieved. Birthweight was significantly lower in the G5 group compared with the HTF group, with a mean difference of 158 g (95% CI: 42-275 g; P = 0.008). More singletons were born preterm in the G5 group (8.6% (14/163) versus 2.2% (3/137), but singleton birthweight adjusted for gestational age and gender (z-score) was also lower in the G5 than in the HTF group (-0.13 ± 0.08 versus 0.17 ± 0.08; P = 0.008). LIMITATIONS, REASONS FOR CAUTION This study was powered to detect a 10% difference in live births while a smaller difference could still be clinically relevant. The effect of other culture media on perinatal outcome remains to be determined. WIDER IMPLICATIONS OF THE FINDINGS Embryo culture media used in IVF affect not only treatment efficacy but also perinatal outcome. This suggests that the millions of human embryos that are cultured in vitro each year are sensitive to their environment. These findings should lead to increased awareness, mechanistic studies and legislative adaptations to protect IVF offspring during the first few days of their existence. STUDY FUNDING/COMPETING INTERESTS This project was partly funded by The NutsOhra foundation (Grant 1203-061) and March of Dimes (Grant 6-FY13-153). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER NTR1979 (Netherlands Trial Registry). TRIAL REGISTRATION DATE 1 September 2009. DATE OF FIRST PATIENT'S ENROLMENT 18 July 2010.
Collapse
Affiliation(s)
- Sander H M Kleijkers
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eleni Mantikou
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Els Slappendel
- IVF Department, Catharina Hospital, Eindhoven, The Netherlands
| | - Dimitri Consten
- Center for Reproductive Medicine, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Jannie van Echten-Arends
- Section of Reproductive Medicine, Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alex M Wetzels
- Department of Obstetrics and Gynaecology, Radboud university medical center, Nijmegen, The Netherlands
| | - Madelon van Wely
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Luc J M Smits
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Aafke P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John C M Dumoulin
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Velazquez MA, Smith CGC, Smyth NR, Osmond C, Fleming TP. Advanced maternal age causes adverse programming of mouse blastocysts leading to altered growth and impaired cardiometabolic health in post-natal life. Hum Reprod 2016; 31:1970-80. [PMID: 27402911 PMCID: PMC4991661 DOI: 10.1093/humrep/dew177] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
STUDY QUESTION Does advanced maternal age (AMA) in mice affect cardiometabolic health during post-natal life in offspring derived from an assisted reproduction technology (ART) procedure? SUMMARY ANSWER Offspring derived from blastocysts collected from aged female mice displayed impaired body weight gain, blood pressure, glucose metabolism and organ allometry during post-natal life compared with offspring derived from blastocysts from young females; since all blastocysts were transferred to normalized young mothers, this effect is independent of maternal pregnancy conditions. WHAT IS KNOWN ALREADY Although studies in mice have shown that AMA can affect body weight and behaviour of offspring derived from natural reproduction, data on the effects of AMA on offspring cardiometabolic health during post-natal development are not available. Given the increasing use of ART to alleviate infertility in women of AMA, it is pivotal to develop ART-AMA models addressing the effects of maternal aging on offspring health. STUDY DESIGN, SIZE, DURATION Blastocysts from old (34-39 weeks) or young (8-9 weeks) C57BL/6 females mated with young CBA males (13-15 weeks) were either subjected to differential cell staining (inner cell mass and trophectoderm) or underwent embryo transfer (ET) into young MF1 surrogates (8-9 weeks) to produce young (Young-ET, 9 litters) and old (Old-ET, 10 litters) embryo-derived offspring. Offspring health monitoring was carried out for 30 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS All animals were fed with standard chow. Blood pressure was measured at post-natal Weeks 9, 15 and 21, and at post-natal Week 30 a glucose tolerance test (GTT) was performed. Two days after the GTT mice were killed for organ allometry. Blastocyst cell allocation variables were evaluated by T-test and developmental data were analysed with a multilevel random effects regression model. MAIN RESULTS AND THE ROLE OF CHANCE The total number of cells in blastocysts from aged mice was decreased (P < 0.05) relative to young mice due to a lower number of cells in the trophectoderm (mean ± SEM: 34.5 ± 2.1 versus 29.6 ± 1.0). Weekly body weight did not differ in male offspring, but an increase in body weight from Week 13 onwards was observed in Old-ET females (final body weight at post-natal Week 30: 38.5 ± 0.8 versus 33.4 ± 0.8 g, P < 0.05). Blood pressure was increased in Old-ET offspring at Weeks 9-15 in males (Week 9: 108.5 ± 3.13 versus 100.8 ± 1.5 mmHg, Week 15: 112.9 ± 3.2 versus 103.4 ± 2.1 mmHg) and Week 15 in females (115.9 ± 3.7 versus 102.8 ± 0.7 mmHg; all P < 0.05 versus Young-ET). The GTT results and organ allometry were not affected in male offspring. In contrast, Old-ET females displayed a greater (P < 0.05) peak glucose concentration at 30 min during the GTT (21.1 ± 0.4 versus 17.8 ± 1.16 mmol/l) and their spleen weight (88.2 ± 2.6 ± 105.1 ± 4.6 mg) and several organ:body weight ratios (g/g × 10(3)) were decreased (P < 0.05 versus Young-ET), including the heart (3.7 ± 0.06 versus 4.4 ± 0.08), lungs (4.4 ± 0.1 versus 5.0 ± 0.1), spleen (2.4 ± 0.06 versus 3.2 ± 0.1) and liver (36.4 ± 0.6 versus 39.1 ± 0.9). LIMITATIONS, REASONS FOR CAUTION Results from experimental animal models cannot be extrapolated to humans. Nevertheless, they are valuable to develop conceptual models that can produce hypotheses for eventual testing in the target species (i.e. humans). WIDER IMPLICATIONS OF THE FINDINGS Our data show that offspring from mouse embryos from aged mothers can develop altered phenotypes during post-natal development compared with embryos from young mothers. Because all embryos were transferred into young mothers for the duration of pregnancy to normalize the maternal in vivo environment, our findings indicate that adverse programming via AMA is already established at the blastocyst stage. Whilst human embryos display increased aneuploidy compared with mouse, we believe our data have implications for women of AMA undergoing assisted reproduction, including surrogacy programmes. STUDY FUNDING/COMPETING INTERESTS This work was supported through the European Union FP7-CP-FP Epihealth programme (278418) to T.P.F. and the BBSRC (BB/F007450/1) to T.P.F. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK School of Agriculture, Food & Rural Development, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - C G C Smith
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - N R Smyth
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - C Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, UK
| | - T P Fleming
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
18
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
Affiliation(s)
- Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
| | - Neelam Pathak
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Nirmal Kumar Lohiya
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR), Bhopal, India
| |
Collapse
|
19
|
Landecker H. It is what it eats: Chemically defined media and the history of surrounds. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 57:148-160. [PMID: 26992285 DOI: 10.1016/j.shpsc.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The cultivation of living organs, cells, animals, and embryos in the laboratory has been central to the production of biological knowledge. Over the twentieth century, the drive to variance control in the experimental setting led to systematic efforts to generate synthetic, chemically defined substitutes for complex natural foods, housing, and other substrates of life. This article takes up the history of chemically defined media with three aims in mind. First, to characterize patterns of decontextualization, tinkering, and negotiation between life and experimenter that occur across disparate histories of cultivation. Second, to highlight the paradoxical historicity of cultivated organisms generated to be freed from context, as they incorporate and embody the purified amino acids, vitamins, plastics, and other artificial supports developed in the name of experimental control. Third, to highlight the figure-ground reversal that occurs as these cells and organisms are reconsidered as accidentally good models of life in industrialized conditions of pollution and nutrient excess, due to the man-made nature of their surrounds. Methodologically, the history of surrounds is described as an epigenetic approach that focuses on the material relations between different objects and organisms previously considered quite separately, from explanted organs to bacteria to plant cells to rats to human embryos.
Collapse
Affiliation(s)
- Hannah Landecker
- Department of Sociology & The Institute for Society and Genetics, University of California, Los Angeles, USA.
| |
Collapse
|
20
|
Hansen PJ, Dobbs KB, Denicol AC, Siqueira LGB. Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res 2016; 363:237-247. [PMID: 26391275 PMCID: PMC4703572 DOI: 10.1007/s00441-015-2287-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
The developmental program of the embryo displays a plasticity that can result in long-acting effects that extend into postnatal life. In mammals, adult phenotype can be altered by changes in the maternal environment during the preimplantation period. One characteristic of developmental programming during this time is that the change in adult phenotype is often different for female offspring than for male offspring. In this paper, we propose the hypothesis that sexual dimorphism in preimplantation programming is mediated, at least in part, by sex-specific responses of embryos to maternal regulatory molecules whose secretion is dependent on the maternal environment. The strongest evidence for this idea comes from the study of colony-stimulating factor 2 (CSF2). Expression of CSF2 from the oviduct and endometrium is modified by environmental factors of the mother, in particular seminal plasma and obesity. Additionally, CSF2 alters several properties of the preimplantation embryo and has been shown to alleviate negative consequences of culture of mouse embryos on postnatal phenotype in a sex-dependent manner. In cattle, exposure of preimplantation bovine embryos to CSF2 causes sex-specific changes in gene expression, interferon-τ secretion and DNA methylation later in pregnancy (day 15 of gestation). It is likely that several embryokines can alter postnatal phenotype through actions directed towards the preimplantation embryo. Identification of these molecules and elucidation of the mechanisms by which sexually-disparate programming is established will lead to new insights into the control and manipulation of embryonic development.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| | - Kyle B Dobbs
- Department of Biology, Mugar 212-213, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Anna C Denicol
- Department of Biology, Mugar 212-213, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Luiz G B Siqueira
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
- Embrapa Gado de Leite, Rua Eugenio do Nascimento, 610, Juiz de Fora, MG 36038-330, Brazil
| |
Collapse
|
21
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Ghosh J, Mainigi M, Coutifaris C, Sapienza C. Outlier DNA methylation levels as an indicator of environmental exposure and risk of undesirable birth outcome. Hum Mol Genet 2015; 25:123-9. [PMID: 26566672 DOI: 10.1093/hmg/ddv458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
We have identified a novel molecular phenotype that defines a subgroup of newborns who have highly disrupted epigenomes. We profiled DNA methylation in cord blood of 114 children selected from the lowest and highest quintiles of the birth weight distribution (irrespective of their mode of conception) at 96 CpG sites in genes we have found previously to be related to birth weight or growth and metabolism. We identified those individuals in each group who differed from the mean of the distribution by the greatest magnitude at each site and for the largest number of sites. Such 'outlier' individuals differ substantially from the rest of the group in having highly disrupted methylation levels at many CpG sites. We find that children from the lowest quintile of the birth weight distribution have a significantly greater number of disrupted CpGs than children from the highest quintile of the birth weight distribution. Among children from the lowest quintile of the birth weight distribution, 'outlier' individuals are significantly more common among children conceived in vitro than children conceived in vivo. These observations are novel and potentially important because they associate a molecular phenotype (multiple and large DNA methylation differences) in normal somatic tissues (cord blood) with both a prenatal exposure (conception in vitro) and a clinically important outcome (low birth weight). These observations suggest that some individuals are more susceptible to environmentally mediated epigenetic alterations than others.
Collapse
Affiliation(s)
- Jayashri Ghosh
- Fels Institute for Cancer Research and Molecular Biology
| | - Monica Mainigi
- Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19119, USA
| | - Christos Coutifaris
- Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19119, USA
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA and
| |
Collapse
|
23
|
Harbottle S, Hughes CI, Cutting R, Roberts S, Brison D. Elective Single Embryo Transfer: an update to UK Best Practice Guidelines. HUM FERTIL 2015; 18:165-83. [DOI: 10.3109/14647273.2015.1083144] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Langbeen A, De porte HF, Bartholomeus E, Leroy JL, Bols PE. Bovine in vitro reproduction models can contribute to the development of (female) fertility preservation strategies. Theriogenology 2015; 84:477-89. [DOI: 10.1016/j.theriogenology.2015.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/01/2015] [Accepted: 04/11/2015] [Indexed: 01/06/2023]
|
25
|
Lowe R, Gemma C, Rakyan VK, Holland ML. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics 2015; 16:295. [PMID: 25888192 PMCID: PMC4410000 DOI: 10.1186/s12864-015-1506-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/30/2015] [Indexed: 11/23/2022] Open
Abstract
Background As sex determines mammalian development, understanding the nature and developmental dynamics of the sexually dimorphic transcriptome is important. To explore this, we generated 76 genome-wide RNA-seq profiles from mouse eight-cell embryos, late gestation and adult livers, together with 4 ground-state pluripotent embryonic (ES) cell lines from which we generated both RNA-seq and multiple ChIP-seq profiles. We complemented this with previously published data to yield 5 snap-shots of pre-implantation development, late-gestation placenta and somatic tissue and multiple adult tissues for integrative analysis. Results We define a high-confidence sex-dimorphic signature of 69 genes in eight-cell embryos. Sex-chromosome-linked components of this signature are largely conserved throughout pre-implantation development and in ES cells, whilst the autosomal component is more dynamic. Sex-biased gene expression is reflected by enrichment for activating and repressive histone modifications. The eight-cell signature is largely non-overlapping with that defined from fetal liver, neither was it correlated with adult liver or other tissues analysed. The number of sex-dimorphic genes increases throughout development. We identified many more dimorphic genes in adult compared to fetal liver. However, approximately two thirds of the dimorphic genes identified in fetal liver were also dimorphic in adult liver. Sex-biased expression differences unique to adult liver were enriched for growth hormone-responsiveness. Sexually dimorphic gene expression in pre-implantation development is driven by sex-chromosome based transcription, whilst later development is characterised by sex dimorphic autosomal transcription. Conclusion This systematic study identifies three distinct phases of sex dimorphism throughout mouse development, and has significant implications for understanding the developmental origins of sex-specific phenotypes and disease in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1506-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Lowe
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | - Carolina Gemma
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | - Vardhman K Rakyan
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | - Michelle L Holland
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
26
|
Lucas ES, Salker MS, Brosens JJ. Reprint of: Uterine plasticity and reproductive fitness. Reprod Biomed Online 2013; 27:664-72. [DOI: 10.1016/j.rbmo.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Uterine plasticity and reproductive fitness. Reprod Biomed Online 2013; 27:506-14. [DOI: 10.1016/j.rbmo.2013.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022]
|
28
|
Sharkey AM, Macklon NS. The science of implantation emerges blinking into the light. Reprod Biomed Online 2013; 27:453-60. [PMID: 24055396 DOI: 10.1016/j.rbmo.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
Abstract
Although embryo implantation is essential for human survival, it remains an enigmatic biological phenomenon. Following fertilization, the resulting blastocyst must signal its presence to the mother, attach to the luminal epithelium of the endometrium and embed into the decidualising stroma. Failure to do so results in infertility, which affects around 9% of women. Subsequent placental development requires remodelling of maternal blood vessels by trophoblast cells from the placenta, that invade deep into the decidua. Failure in these very early stages can compromise fetal development, resulting in diseases of pregnancy such as intrauterine growth restriction or pre-eclampsia which can also impact on health in adulthood. Abnormal implantation therefore constitutes a significant disease burden in humans. Although we have known for many years that successful implantation requires an embryo that is competent to implant and an endometrium that is receptive, the molecular basis of these processes remains poorly understood. Our inability to identify implantation-competent embryos or to diagnose/treat the non-receptive endometrium therefore limits our ability to intervene through assisted reproduction techniques. This Implantation Symposium aims to review recent exciting developments in our understanding of the biology of early implantation and to highlight the rapid progress being made to translate these into improved diagnosis and treatment.
Collapse
Affiliation(s)
- Andrew M Sharkey
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
29
|
Oestrogen and progesterone action on endometrium: a translational approach to understanding endometrial receptivity. Reprod Biomed Online 2013; 27:497-505. [PMID: 23933037 DOI: 10.1016/j.rbmo.2013.06.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Embryo attachment and implantation is critical to successful reproduction of all eutherian mammals, including humans; a better understanding of these processes could lead to improved infertility treatments and novel contraceptive methods. Experience with assisted reproduction, especially oocyte donation cycles, has established that despite the diverse set of hormones produced by the ovary in a cycle-dependent fashion, the sequential actions of only two of them, oestrogen and progesterone, are sufficient to prepare a highly receptive endometrium in humans. Further investigation on the endometrial actions of these two hormones is currently providing significant insight into the implantation process in women, strongly suggesting that an abnormal response to progesterone underlies infertility in some patients.
Collapse
|